Quantitative uniform propagation of chaos for Maxwell molecules

Joaquín Fontbona (joint work with Roberto Cortez)

Center for Mathematical Modeling, University of Chile

CIRM Workshop, April 2017

The spatially homogeneous Boltzmann equation

- Propagation of chaos
- Main result and outline of the proof
- 4 Coupling construction
- 5 Time-dependent estimate
- **6** Uniform relaxation and time independent bound

1. The spatially homogeneous Boltzmann equation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Boltzmann equation on \mathbb{R}^3 (1872)

$$\partial_t f + v \cdot \nabla_x f = Q(f, f)$$

• Describes infinitely many gas particles evolving in $\Omega \subseteq \mathbb{R}^3$, interacting through binary elastic collisions.

Boltzmann equation on \mathbb{R}^3 (1872)

$$\partial_t f + v \cdot \nabla_x f = Q(f, f)$$

- Describes infinitely many gas particles evolving in $\Omega \subseteq \mathbb{R}^3$, interacting through binary elastic collisions.
- $f = f_t(x, v)$: density of particles at position $x \in \Omega \subseteq \mathbb{R}^3$ with velocity $v \in \mathbb{R}^3$ at time $t \ge 0$.
- Q: bilinear operator (to be specified), acting only on velocity

Boltzmann equation on \mathbb{R}^3 (1872)

$$\partial_t f + v \cdot \nabla_x f = Q(f, f)$$

- Describes infinitely many gas particles evolving in $\Omega \subseteq \mathbb{R}^3$, interacting through binary elastic collisions.
- $f = f_t(x, v)$: density of particles at position $x \in \Omega \subseteq \mathbb{R}^3$ with velocity $v \in \mathbb{R}^3$ at time $t \ge 0$.
- Q: bilinear operator (to be specified), acting only on velocity
- Very difficult!

Boltzmann equation on \mathbb{R}^3 (1872)

$$\partial_t f + v \cdot \nabla_x f = Q(f, f)$$

- Describes infinitely many gas particles evolving in $\Omega \subseteq \mathbb{R}^3$, interacting through binary elastic collisions.
- $f = f_t(x, v)$: density of particles at position $x \in \Omega \subseteq \mathbb{R}^3$ with velocity $v \in \mathbb{R}^3$ at time $t \ge 0$.
- Q: bilinear operator (to be specified), acting only on velocity
- Very difficult!
- Following Kac ('56), we consider spatially homogeneous version: $f = f_t(v)$.

Spatially homogeneous Boltzmann equation

Spatially homogeneous Boltzmann equation on \mathbb{R}^3

$$\partial_t f_t(v) = Q(f_t, f_t)(v)$$

:= $\frac{1}{2} \int_{\mathbb{R}^3} dv_* \int_{\mathbb{S}^2} d\sigma B(|v - v_*|, \theta) \left[f_t(v') f_t(v'_*) - f_t(v) f_t(v_*) \right],$

•
$$v' = v'(v, v_*, \sigma) := \frac{v + v_*}{2} + \frac{|v - v_*|}{2}\sigma.$$

•
$$v'_* = v'_*(v, v_*, \sigma) := \frac{v+v_*}{2} - \frac{|v-v_*|}{2}\sigma.$$

- θ : deviation angle, defined by $\cos \theta = \frac{v v_*}{|v v_*|} \cdot \sigma$.
- $B(|v v_*|, \theta)$: collision kernel, depends on physics of the model.

4 / 28

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Spatially homogeneous Boltzmann equation

Spatially homogeneous Boltzmann equation on \mathbb{R}^3

$$\partial_t f_t(v) = Q(f_t, f_t)(v)$$

:= $\frac{1}{2} \int_{\mathbb{R}^3} dv_* \int_{\mathbb{S}^2} d\sigma B(|v - v_*|, \theta) \left[f_t(v') f_t(v'_*) - f_t(v) f_t(v_*) \right],$

•
$$v' = v'(v, v_*, \sigma) := \frac{v + v_*}{2} + \frac{|v - v_*|}{2}\sigma.$$

•
$$v'_* = v'_*(v, v_*, \sigma) := \frac{v + v_*}{2} - \frac{|v - v_*|}{2}\sigma.$$

- θ : deviation angle, defined by $\cos \theta = \frac{v v_*}{|v v_*|} \cdot \sigma$.
- $B(|v v_*|, \theta)$: collision kernel, depends on physics of the model.

In the sequel, "Boltzmann equation" always means its spatially homogeneous version

Joaquínn Fontbona (U. of Chile)

Boltzmann equation

Elementary properties :

• Preserves mass:

$$\int f_t(v)dv = \mathsf{Constant} = 1$$

• Preserves momentum:

$$\int v f_t(v) dv = \mathsf{Constant}$$

• Preserves kinetic energy:

e

$$\int |v|^2 f_t(v) dv = \mathsf{Constant}$$

Heuristic (probabilistic) interpretation

• Two particles with velocities v and v_* collide at **random** times,

Heuristic (probabilistic) interpretation

- Two particles with velocities v and v_* collide at random times, with deviation angle θ , at rate $B(|v v^*|, \theta) \sin \theta$.
- Post-collisional velocities v' and v'_{*} chosen at random, uniformly on the circles:

Heuristic (probabilistic) interpretation

- Two particles with velocities v and v_* collide at random times, with deviation angle θ , at rate $B(|v v^*|, \theta) \sin \theta$.
- Post-collisional velocities v' and v'_{*} chosen at random, uniformly on the circles:

Exact conservation of momentum and energy:

$$\begin{aligned} v + v_* &= v' + v'_*, \\ v|^2 + |v_*|^2 &= |v'|^2 + |v'_*|^2. \end{aligned}$$

Collision kernel

• We will work with the Maxwell molecules case:

$$B(|v - v_*|, \theta) \sin \theta = \beta(\theta),$$

with
$$\beta(\theta) \stackrel{0}{\sim} \theta^{-3/2}$$
, then
$$\int_0^{\pi/2} \beta(\theta) d\theta = \infty \qquad \text{(prevalence of grazing collisions)}.$$

• Sometimes one uses a cutoff version of β , so $\int_0^{\pi/2} \beta(\theta) d\theta < \infty$ in those cases.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Goal

 Mathematical validation of the Boltzmann equation from "molecular chaos": to obtain its solution as limit of random, jump N-particles systems as N→∞.

Goal

- Mathematical validation of the Boltzmann equation from "molecular chaos": to obtain its solution as limit of random, jump N-particles systems as N→∞.
- If this happens uniformly in time and
- relaxation rate of the particles as $t \to \infty$ is uniform in N,
- we get ${\rm bottom-up}$ derivation of the relaxation as $t \to \infty$ of the Boltzmann equation

Goal

- Mathematical validation of the Boltzmann equation from "molecular chaos": to obtain its solution as limit of random, jump N-particles systems as N→∞.
- If this happens uniformly in time and
- relaxation rate of the particles as $t \to \infty$ is uniform in N,
- we get ${\rm bottom-up}$ derivation of the relaxation as $t\to\infty$ of the Boltzmann equation

....by 2017:

• relaxation of the equation (Maxwell) "understood" (PDE results)

Goal

- Mathematical validation of the Boltzmann equation from "molecular chaos": to obtain its solution as limit of random, jump N-particles systems as N→∞.
- If this happens uniformly in time and
- relaxation rate of the particles as $t \to \infty$ is uniform in N,
- we get ${\rm bottom-up}$ derivation of the relaxation as $t\to\infty$ of the Boltzmann equation

....by 2017:

- relaxation of the equation (Maxwell) "understood" (PDE results)
- Kac's program in spatially homogeneous case: Mischler & Mouhot '13 for Maxwell and hard spheres cases by "top-down" approach. Also, bounds are hard to make explicit.

Joaquínn Fontbona (U. of Chile)

Boltzmann equation

Particle system

- $N \in \mathbb{N}$: number of particles.
- Particle system is a Markov jump process on $(\mathbb{R}^3)^N$, denoted

$$\mathbf{V}_t = (V_t^1, \dots, V_t^N)$$

with (exchangeable) generator \mathcal{A}^N given by:

$$\mathcal{A}^{N}\Phi(\mathbf{v}) = \frac{1}{2(N-1)} \sum_{i \neq j} \int_{\mathbb{S}^{2}} d\sigma [\Phi(\mathbf{a}_{ij}(\mathbf{v},\sigma)) - \Phi(\mathbf{v})] B(\theta),$$

where $\mathbf{a}_{ij}(\mathbf{v},\sigma) \in (\mathbb{R}^3)^N$ is vector $\mathbf{v} = (v^1,\ldots,v^N) \in (\mathbb{R}^3)^N$

Particle system

- $N \in \mathbb{N}$: number of particles.
- Particle system is a Markov jump process on $(\mathbb{R}^3)^N$, denoted

$$\mathbf{V}_t = (V_t^1, \dots, V_t^N)$$

with (exchangeable) generator \mathcal{A}^N given by:

$$\mathcal{A}^{N}\Phi(\mathbf{v}) = \frac{1}{2(N-1)} \sum_{i \neq j} \int_{\mathbb{S}^{2}} d\sigma [\Phi(\mathbf{a}_{ij}(\mathbf{v},\sigma)) - \Phi(\mathbf{v})] B(\theta),$$

where $\mathbf{a}_{ij}(\mathbf{v},\sigma) \in (\mathbb{R}^3)^N$ is vector $\mathbf{v} = (v^1, \ldots, v^N) \in (\mathbb{R}^3)^N$ with *i*-th and *j*-th components v^i and $v^j \in \mathbb{R}^3$ respectively replaced by $v'(v^i, v^j, \sigma)$ and $v'_*(v^i, v^j, \sigma)$.

Particle system

- $N \in \mathbb{N}$: number of particles.
- Particle system is a Markov jump process on $(\mathbb{R}^3)^N$, denoted

$$\mathbf{V}_t = (V_t^1, \dots, V_t^N)$$

with (exchangeable) generator \mathcal{A}^N given by:

$$\mathcal{A}^{N}\Phi(\mathbf{v}) = \frac{1}{2(N-1)} \sum_{i \neq j} \int_{\mathbb{S}^{2}} d\sigma [\Phi(\mathbf{a}_{ij}(\mathbf{v},\sigma)) - \Phi(\mathbf{v})] B(\theta),$$

where $\mathbf{a}_{ij}(\mathbf{v},\sigma) \in (\mathbb{R}^3)^N$ is vector $\mathbf{v} = (v^1, \ldots, v^N) \in (\mathbb{R}^3)^N$ with *i*-th and *j*-th components v^i and $v^j \in \mathbb{R}^3$ respectively replaced by $v'(v^i, v^j, \sigma)$ and $v'_*(v^i, v^j, \sigma)$.

Notational dependence on N will be omitted!!!

Particle system dynamics (cutoff case)

Particle system dynamics (cutoff case)

 At t = 0 sample N indep. velocities with law f₀,
 wait exponential time with rate proportional to N,

Joaquínn Fontbona (U. of Chile)

Particle system dynamics (cutoff case)

- 1) wait exponential time with rate proportional to N,
- 2) choose $(v, v^*) = (v_i, v_j)$ with $i \neq j$ at random,

Particle system dynamics (cutoff case)

- 1) wait exponential time with rate proportional to N,
- 2) choose $(v, v^*) = (v_i, v_j)$ with $i \neq j$ at random,
- 3) choose θ with density proportional to $\beta(\theta)$,

Particle system dynamics (cutoff case)

- 1) wait exponential time with rate proportional to N,
- 2) choose $(v, v^*) = (v_i, v_j)$ with $i \neq j$ at random,
- 3) choose θ with density proportional to $\beta(\theta)$,
- 4) choose v' (and v'_*) unif. on the circle, update $(v_i, v_j) := (v', v'_*)$

Particle system dynamics (cutoff case)

0) At t = 0 sample N indep. velocities with law f_0 ,

- 1) wait exponential time with rate proportional to N,
- 2) choose $(v, v^*) = (v_i, v_j)$ with $i \neq j$ at random,
- 3) choose θ with density proportional to $\beta(\theta)$,
- 4) choose v' (and v'_*) unif. on the circle, update $(v_i, v_j) := (v', v'_*)$
- 5) Go to 1)

Particle system dynamics (cutoff case)

0) At t = 0 sample N indep. velocities with law f_0 ,

- 1) wait exponential time with rate proportional to N,
- 2) choose $(v, v^*) = (v_i, v_j)$ with $i \neq j$ at random,
- 3) choose θ with density proportional to $\beta(\theta)$,
- 4) choose v' (and v'_*) unif. on the circle, update $(v_i, v_j) := (v', v'_*)$
- 5) Go to 1)

Particle system dynamics (cutoff case)

0) At t = 0 sample N indep. velocities with law f_0 ,

- 1) wait exponential time with rate proportional to N,
- 2) choose $(v, v^*) = (v_i, v_j)$ with $i \neq j$ at random,
- 3) choose θ with density proportional to $\beta(\theta)$,
- 4) choose v' (and v'_*) unif. on the circle, update $(v_i, v_j) := (v', v'_*)$
- 5) Go to 1)

Particle system dynamics (cutoff case)

0) At t = 0 sample N indep. velocities with law f_0 ,

- 1) wait exponential time with rate proportional to N,
- 2) choose $(v, v^*) = (v_i, v_j)$ with $i \neq j$ at random,
- 3) choose θ with density proportional to $\beta(\theta)$,
- 4) choose v' (and v'_*) unif. on the circle, update $(v_i, v_j) := (v', v'_*)$
- 5) Go to 1)

Particle system dynamics (cutoff case)

0) At t = 0 sample N indep. velocities with law f_0 ,

- 1) wait exponential time with rate proportional to N,
- 2) choose $(v, v^*) = (v_i, v_j)$ with $i \neq j$ at random,
- 3) choose θ with density proportional to $\beta(\theta)$,
- 4) choose v' (and v'_*) unif. on the circle, update $(v_i, v_j) := (v', v'_*)$
- 5) Go to 1)

Particle system dynamics (cutoff case)

0) At t = 0 sample N indep. velocities with law f_0 ,

- 1) wait exponential time with rate proportional to N,
- 2) choose $(v, v^*) = (v_i, v_j)$ with $i \neq j$ at random,
- 3) choose θ with density proportional to $\beta(\theta)$,
- 4) choose v' (and v'_*) unif. on the circle, update $(v_i, v_j) := (v', v'_*)$
- 5) Go to 1)

Particle system dynamics (cutoff case)

0) At t = 0 sample N indep. velocities with law f_0 ,

- 1) wait exponential time with rate proportional to N,
- 2) choose $(v, v^*) = (v_i, v_j)$ with $i \neq j$ at random,
- 3) choose θ with density proportional to $\beta(\theta)$,
- 4) choose v' (and v'_*) unif. on the circle, update $(v_i, v_j) := (v', v'_*)$
- 5) Go to 1)

• Collisions $\Rightarrow V_t^1, \dots, V_t^N$ are not independent.

3

- Collisions $\Rightarrow V_t^1, \dots, V_t^N$ are not independent.
- We say propagation of chaos holds if: for each $k \in \mathbb{N}$ and $t \ge 0$,

$$\lim_{N \to \infty} \mathsf{Law}(V^1_t, \dots, V^k_t) = f^{\otimes k}_t \quad \text{weakly}$$

as $N \to \infty$.

• Equivalently (by exchageability) empirical measure satisfies

$$ar{\mathbf{V}}_t := rac{1}{N}\sum_{i=1}^N \delta_{V^i_t} o f_t$$
 in law, weakly
Propagation of chaos

- Collisions $\Rightarrow V_t^1, \dots, V_t^N$ are not independent.
- We say propagation of chaos holds if: for each $k \in \mathbb{N}$ and $t \ge 0$,

$$\lim_{N \to \infty} \mathrm{Law}(V^1_t, \dots, V^k_t) = f_t^{\otimes k} \quad \text{weakly}$$

as $N \to \infty$.

• Equivalently (by exchageability) empirical measure satisfies

$$ar{\mathbf{V}}_t := rac{1}{N}\sum_{i=1}^N \delta_{V^i_t} o f_t$$
 in law, weakly

Our goal

Quantify this convergence in the Maxwell molecules case, with $\ensuremath{\mathsf{explicit}}$ rates .

Joaquínn Fontbona (U. of Chile)

Known results or approaches (Maxwell case)

Technique	Authors	Rate
Weak convergence, expan-	Kac (1d), McKean,	no rate
sions	Grünbaum, $\sim\!\!6070$'s	
Trajectorial coupling	Tanaka ${\sim}80$, Sznitmann	$\frac{e^t}{N}$
with "nonlinear process"	${\sim}90$, Graham & Méléard	11
(Mostly cut-off)	'97	
semigroup, PDE stability	Mischler & Mouhot '13	$rac{1}{N^arepsilon}$ in \mathcal{W}_1
Trajectorial coupling, but	Fournier & Mischler '16	$rac{(1+t)^2}{N^{1/2}}$ in \mathcal{W}_2^2
only for <mark>Nanbu</mark> system		11

э

Known results or approaches (Maxwell case)

Technique	Authors	Rate
Weak convergence, expan-	Kac (1d), McKean,	no rate
sions	Grünbaum, $\sim\!\!6070$'s	
Trajectorial coupling	Tanaka ${\sim}80$, Sznitmann	$\frac{e^t}{N}$
with "nonlinear process"	${\sim}90$, Graham & Méléard	1.
(Mostly cut-off)	'97	
semigroup, PDE stability	Mischler & Mouhot '13	$rac{1}{N^arepsilon}$ in \mathcal{W}_1
Trajectorial coupling, but	Fournier & Mischler '16	$rac{(1+t)^2}{N^{1/2}}$ in \mathcal{W}_2^2
only for Nanbu system		

"Nanbu" case:

• only one particle updates upon collision (non-physical).

Known results or approaches (Maxwell case)

Technique	Authors	Rate
Weak convergence, expan-	Kac (1d), McKean,	no rate
sions	Grünbaum, $\sim\!\!6070'$ s	
Trajectorial coupling	Tanaka ${\sim}80$, Sznitmann	$\frac{e^t}{N}$
with "nonlinear process"	${\sim}90$, Graham & Méléard	1,
(Mostly cut-off)	'97	
semigroup, PDE stability	Mischler & Mouhot '13	$rac{1}{N^arepsilon}$ in \mathcal{W}_1
Trajectorial coupling, but	Fournier & Mischler '16	$rac{(1+t)^2}{N^{1/2}}$ in \mathcal{W}_2^2
only for Nanbu system		

"Nanbu" case:

- only one particle updates upon collision (non-physical).
- Rate in *N* corresponds to **empirical measure of i.i.d. sample** (Fournier& Guillin '14).

3. Main result and outline of the proof

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Wasserstein distance and optimal coupling

We need

Definition

Let μ , ν be probability measures on $(\mathbb{R}^3)^k$. Define:

Coupling: a random pair
$$(\mathbf{X}, \mathbf{Y}) = ((X^1, \dots, X^k), (Y^1, \dots, Y^k))$$

with $Law(X) = \mu$ and $Law(Y) = \nu$.

p-Wasserstein distance: minimal expected L^p -distance between couplings:

$$\mathcal{W}_p(\mu,\nu) = \left(\inf_{\mathbf{X},\mathbf{Y}} \mathbb{E}\frac{1}{k} \sum_{i=1}^k |X^i - Y^i|^p\right)^{1/p}$$

Optimal coupling: random pair (\mathbf{X}, \mathbf{Y}) achieving the infimum (always exists).

Joaquínn Fontbona (U. of Chile)

Theorem (Cortez & F. '15 submitted)

If f_0 has finite moments of all orders, and $\mathbf{V}_0 \sim f_0^{\otimes N}$,

$$\sup_{t \ge 0} \mathbb{E}\left(\mathcal{W}_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{V_t^i}\right), f_t\right) \le \frac{C_{\epsilon}}{N^{\frac{1}{3}-\epsilon}}$$

Same bound holds for $\sup_{t>0} W_2^2(\mathsf{Law}(V_t^1,\ldots,V_t^k), f_t^{\otimes k})$, any k.

3

Theorem (Cortez & F. '15 submitted)

If f_0 has finite moments of all orders, and $\mathbf{V}_0 \sim f_0^{\otimes N}$,

$$\sup_{t \ge 0} \mathbb{E}\left(\mathcal{W}_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{V_t^i}\right), f_t\right) \le \frac{C_{\epsilon}}{N^{\frac{1}{3}-\epsilon}}$$

Same bound holds for $\sup_{t\geq 0} W_2^2(\mathsf{Law}(V_t^1,\ldots,V_t^k),f_t^{\otimes k})$, any k.

• Also valid if \mathbf{V}_0 is only exchangeable (additional term $\mathcal{W}_2^2(\mathsf{Law}(\mathbf{V}_0), f_0^{\otimes N})$).

Theorem (Cortez & F. '15 submitted)

If f_0 has finite moments of all orders, and $\mathbf{V}_0 \sim f_0^{\otimes N}$,

$$\sup_{t \ge 0} \mathbb{E}\left(\mathcal{W}_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{V_t^i}\right), f_t\right) \le \frac{C_{\epsilon}}{N^{\frac{1}{3}-\epsilon}}$$

Same bound holds for $\sup_{t\geq 0} W_2^2(\mathsf{Law}(V_t^1,\ldots,V_t^k),f_t^{\otimes k})$, any k.

• Also valid if \mathbf{V}_0 is only exchangeable (additional term $\mathcal{W}_2^2(\mathsf{Law}(\mathbf{V}_0), f_0^{\otimes N})).$

• Similar result obtained in '15 for Landau equation through related ideas (but different techniques) by Fournier&Guillin

Joaquínn Fontbona (U. of Chile)

Steps of the proof

 Extend to Boltzmann setting new coupling argument (F.&Cortez, AAP '16) for 1d (Kac-type) particles systems with true binary collisions, rely also on estimates of Fournier& Mischler'16 for the Nambu case This will yield (non-uniform) quantitative estimate for W₂² :

$$\frac{C(1+t)^2}{N^{\frac{1}{3}}}$$

under finite *p*-moment assumption for f_0 , for some p > 4.

(4) (E) (E)

Steps of the proof

 Extend to Boltzmann setting new coupling argument (F.&Cortez, AAP '16) for 1d (Kac-type) particles systems with true binary collisions, rely also on estimates of Fournier& Mischler'16 for the Nambu case This will yield (non-uniform) quantitative estimate for W₂² :

$$\frac{C(1+t)^2}{N^{\frac{1}{3}}}$$

under finite *p*-moment assumption for f_0 , for some p > 4.

2) Combine with recent uniform in N (polynomial) stabilization result for the N- particle system of M. Rousset ('14).

4. Coupling construction

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider (for fixed N): Poisson point measure \mathcal{N} on $\mathbb{R}_+ \times \mathbb{R}_+ \times [0, 2\pi) \times \mathcal{G}$

$$\mathcal{N}(\underbrace{dt,dz}_{\mathsf{rate}\ N/2\ \times\ \infty},\underbrace{d\phi}_{\mathsf{uniform\ in}\ [0,\ 2\pi)},\underbrace{d\xi,d\zeta}_{\mathsf{uniform\ in}\ \mathcal{G}})$$

Consider (for fixed N): Poisson point measure \mathcal{N} on $\mathbb{R}_+ \times \mathbb{R}_+ \times [0, 2\pi) \times \mathcal{G}$

$$\mathcal{N}(\underbrace{dt,dz}_{\mathsf{rate}\ N/2\ \times\ \infty},\underbrace{d\phi}_{\mathsf{uniform\ in}\ [0,\ 2\pi)},\underbrace{d\xi,d\zeta}_{\mathsf{uniform\ in}\ \mathcal{G}})$$

- t > 0: collision times
- z > 0: parametrization of θ
- $\phi \in [0, 2\pi)$: angle in circles
- $\mathbf{i}(\xi) = |\xi| + 1$ for $\xi \in [0, N)$.
- $\mathcal{G} = \{(\xi, \zeta) \in [0, N)^2 : \mathbf{i}(\xi) \neq \mathbf{i}(\zeta)\}.$
- $\mathbf{i}(\xi), \mathbf{i}(\zeta)$: indexes of colliding particles.

Joaquínn Fontbona (U. of Chile)

• Consider for each $i = 1, \ldots, N$,

i chooses another particle to interact with

$$\mathcal{N}^{i}(dt, dz, d\phi, d\xi) := \underbrace{\mathcal{N}(dt, dz, d\phi, [i-1, i), d\xi)}_{+ \mathcal{N}(dt, dz, d\phi, d\xi, [i-1, i))}$$

someone else chooses \boldsymbol{i} to interact with

• Define (V^1, \ldots, V^N) by $dV_t^i = \int_0^\infty \int_0^{2\pi} \int_0^N c(V_{t^-}^i, V_{t^-}^{\mathbf{i}(\xi)}, z, \phi) \mathcal{N}^i(dt, dz, d\phi, d\xi),$ where $c(v, v_*, z, \phi) := v'(v, v_*, \theta, \phi) - v.$ • Under \mathcal{N}^i , $V_{t^-}^{\mathbf{i}(\xi)}$ is an ξ -sample from the (random) measure

$$\frac{1}{N-1}\sum_{j\neq i}\delta_{V_{t^-}^j}.$$

Nonlinear processes

• Remark: if $V_{t^-}^{i(\xi)}$ above is replaced by an ξ -realization $Y_t^i(\xi)$ of the law f_t , the resulting SDE of the form:

$$dU_{t}^{i} = \int_{0}^{\infty} \int_{0}^{2\pi} \int_{0}^{N} c(U_{t^{-}}^{i}, Y_{t}^{i}(\xi), z, \phi) \mathcal{N}^{i}(dt, dz, d\phi, d\xi),$$

corresponds to a **nonlinear process** (cf. Tanaka).

• Also known as **Boltzmann process**, it is a jump process U on \mathbb{R}^3 , such that $Law(U_t) = f_t$.

Nonlinear processes

• Remark: if $V_{t^-}^{i(\xi)}$ above is replaced by an ξ -realization $Y_t^i(\xi)$ of the law f_t , the resulting SDE of the form:

$$dU_t^i = \int_0^\infty \int_0^{2\pi} \int_0^N c(U_{t^-}^i, \boldsymbol{Y}_t^i(\boldsymbol{\xi}), z, \phi) \mathcal{N}^i(dt, dz, d\phi, d\xi),$$

corresponds to a **nonlinear process** (cf. Tanaka).

- Also known as **Boltzmann process**, it is a jump process U on \mathbb{R}^3 , such that $Law(U_t) = f_t$.
- Heuristic: it represents the trajectory of a fixed particle immersed in an infinite population of "virtual particles".
- Classical propagation of chaos argument: to couple particles with independent nonlinear processes $\tilde{U}^1,...,\tilde{U}^N$

Coupling construction

The particle system and coupling construction

Key idea

Define a system of nonlinear processes $\mathbf{U}_t = (U_t^1, \dots, U_t^N)$ in such a way that $Y_t^i(\xi)$ is optimally coupled to $V_{t^-}^{\mathbf{i}(\xi)}$ for each i.

Key idea

Define a system of nonlinear processes $\mathbf{U}_t = (U_t^1, \dots, U_t^N)$ in such a way that $Y_t^i(\xi)$ is optimally coupled to $V_{t^-}^{\mathbf{i}(\xi)}$ for each i.

 Related idea: in F., Guérin & Méléard '09, diffusive Nambu type particles are "optimally coupled" with given independent nonlinear processes associated with Landau equation

Key idea

Define a system of nonlinear processes $\mathbf{U}_t = (U_t^1, \dots, U_t^N)$ in such a way that $Y_t^i(\xi)$ is optimally coupled to $V_{t^-}^{\mathbf{i}(\xi)}$ for each i.

- Related idea: in F., Guérin & Méléard '09, diffusive Nambu type particles are "optimally coupled" with given independent nonlinear processes associated with Landau equation
- Also in Fournier & Mischler '16 in the Nanbu setting for Boltzmann equation, using $\tilde{U}^1, \ldots, \tilde{U}^N$ independent.

Key idea

Define a system of nonlinear processes $\mathbf{U}_t = (U_t^1, \dots, U_t^N)$ in such a way that $Y_t^i(\xi)$ is optimally coupled to $V_{t^-}^{\mathbf{i}(\xi)}$ for each *i*.

- Related idea: in F., Guérin & Méléard '09, diffusive Nambu type particles are "optimally coupled" with given independent nonlinear processes associated with Landau equation
- Also in Fournier & Mischler '16 in the Nanbu setting for Boltzmann equation, using $\tilde{U}^1, \ldots, \tilde{U}^N$ independent.
- Effective binary collisions (our case): coupling argument introduced in Cortez & F. '16 AAP for 1d Kac's model and variants.

Key idea

Define a system of nonlinear processes $\mathbf{U}_t = (U_t^1, \dots, U_t^N)$ in such a way that $Y_t^i(\xi)$ is optimally coupled to $V_{t^-}^{\mathbf{i}(\xi)}$ for each *i*.

- Related idea: in F., Guérin & Méléard '09, diffusive Nambu type particles are "optimally coupled" with given independent nonlinear processes associated with Landau equation
- Also in Fournier & Mischler '16 in the Nanbu setting for Boltzmann equation, using $\tilde{U}^1, \ldots, \tilde{U}^N$ independent.
- Effective binary collisions (our case): coupling argument introduced in Cortez & F. '16 AAP for 1d Kac's model and variants. Some measurability issues must be taken care of...

Lemma (Coupling Lemma (Cortez & F. '16))

There exists a (measurable) mapping $(t, \mathbf{x}, \xi) \mapsto \prod_t^i (\mathbf{x}, \xi)$ such that for each $\mathbf{x} = (x^1, \dots, x^N) \in (\mathbb{R}^3)^N$ the pair

 $(x^{\mathbf{i}(\xi)}, \Pi^i_t(\mathbf{x}, \xi))$

is an optimal coupling (for W_2^2) between $\frac{1}{N-1}\sum_{j\neq i} \delta_{x^j}$ and f_t when ξ is chosen uniformly in $[0, N) \setminus [i - 1, i)$.

Lemma (Coupling Lemma (Cortez & F. '16))

There exists a (measurable) mapping $(t, \mathbf{x}, \xi) \mapsto \prod_t^i (\mathbf{x}, \xi)$ such that for each $\mathbf{x} = (x^1, \dots, x^N) \in (\mathbb{R}^3)^N$ the pair

 $(x^{\mathbf{i}(\xi)}, \Pi^i_t(\mathbf{x}, \xi))$

is an optimal coupling (for W_2^2) between $\frac{1}{N-1}\sum_{j\neq i} \delta_{x^j}$ and f_t when ξ is chosen uniformly in $[0, N) \setminus [i - 1, i)$.

In addition to choosing "virtual velocities" to interact with, here we also need to choose "circles" and couple their choices too...

Lemma (Optimal coupling of circles, Cortez &F. '16)

 \exists measurable function $\varphi : \mathbb{R}^3 \times \mathbb{R}^3 \times [0, 2\pi) \rightarrow [0, 2\pi)$ such that $\forall v, v_*, u, u_* \in \mathbb{R}^3$, $\forall \theta, \vartheta \in [0, 2\pi)$, the angle $\varphi = \varphi(v - v_*, u - u_*, \phi)$ is such that

 $(v'(v, v_*, \theta, \phi), u'(u, u_*, \vartheta, \varphi))$

is an optimal (quadratic) coupling between the uniform laws in the circles $C(v, v_*, \theta)$ and $C(u, u_*, \vartheta)$.

Lemma (Optimal coupling of circles, Cortez &F. '16)

 \exists measurable function $\varphi : \mathbb{R}^3 \times \mathbb{R}^3 \times [0, 2\pi) \rightarrow [0, 2\pi)$ such that $\forall v, v_*, u, u_* \in \mathbb{R}^3$, $\forall \theta, \vartheta \in [0, 2\pi)$, the angle $\varphi = \varphi(v - v_*, u - u_*, \phi)$ is such that

$$(v'(v, v_*, \theta, \phi), u'(u, u_*, \vartheta, \varphi))$$

is an optimal (quadratic) coupling between the uniform laws in the circles $C(v, v_*, \theta)$ and $C(u, u_*, \vartheta)$. Moreover, if $b, \tilde{b} \in \mathbb{R}^3$ denote their centers, $r, \tilde{r} \ge 0$ their radii, and $L^{\tilde{L}} \in \mathbb{S}^2$ their action of the methods are the section.

 $d, \tilde{d} \in \mathbb{S}^2$ their orthogonal unitary vectors, the optimal cost is

$$\underbrace{|b - \tilde{b}|^2}_{\text{traslation}} + \underbrace{(r - \tilde{r})^2}_{\text{dilation}} + \underbrace{r\tilde{r}(1 - |d \cdot \tilde{d}|)}_{\text{inclination}}$$

Lemma (Optimal coupling of circles, Cortez &F. '16)

 \exists measurable function $\varphi : \mathbb{R}^3 \times \mathbb{R}^3 \times [0, 2\pi) \rightarrow [0, 2\pi)$ such that $\forall v, v_*, u, u_* \in \mathbb{R}^3$, $\forall \theta, \vartheta \in [0, 2\pi)$, the angle $\varphi = \varphi(v - v_*, u - u_*, \phi)$ is such that

$$(v'(v, v_*, \theta, \phi), u'(u, u_*, \vartheta, \varphi))$$

is an optimal (quadratic) coupling between the uniform laws in the circles $C(v, v_*, \theta)$ and $C(u, u_*, \vartheta)$. Moreover, if $b, \tilde{b} \in \mathbb{R}^3$ denote their centers, $r, \tilde{r} \ge 0$ their radii, and

 $d, \tilde{d} \in \mathbb{S}^2$ their orthogonal unitary vectors, the optimal cost is

$$\underbrace{|b - \tilde{b}|^2}_{\text{traslation}} + \underbrace{(r - \tilde{r})^2}_{\text{dilation}} + \underbrace{r\tilde{r}(1 - |d \cdot \tilde{d}|)}_{\text{inclination}}$$

("Tanaka trick", sharp version)

SDEs for
$$\mathbf{V} = (V^1, \dots, V^N)$$
 and $\mathbf{U} = (U^1, \dots, U^N)$ become:

$$dV_{t}^{i} = \int_{0}^{\infty} \int_{0}^{2\pi} \int_{0}^{N} c(V_{t^{-}}^{i}, V_{t^{-}}^{i(\xi)}, \theta, \phi) \mathcal{N}^{i}(dt, dz, d\phi, d\xi),$$

$$dU_{t}^{i} = \int_{0}^{\infty} \int_{0}^{2\pi} \int_{0}^{N} c(U_{t^{-}}^{i}, \Pi_{t}^{i}(\mathbf{V}_{t^{-}}, \xi), \theta, \varphi_{t}^{i}) \mathcal{N}^{i}(dt, dz, d\phi, d\xi).$$

with

• $\Pi_t^i(\mathbf{V}_{t^-}, \xi)$ as in Coupling Lemma above and • $\varphi_t^i := \varphi(V_{t^-}^i - V_{t^-}^{\mathbf{i}(\xi)}, U_{t^-}^i - \Pi_t^i(\mathbf{V}_{t^-}, \xi), \phi)$ couples the angles " ϕ " "optimally".

SDEs for
$$\mathbf{V} = (V^1, \dots, V^N)$$
 and $\mathbf{U} = (U^1, \dots, U^N)$ become:

$$dV_{t}^{i} = \int_{0}^{\infty} \int_{0}^{2\pi} \int_{0}^{N} c(V_{t^{-}}^{i}, V_{t^{-}}^{i(\xi)}, \theta, \phi) \mathcal{N}^{i}(dt, dz, d\phi, d\xi),$$

$$dU_{t}^{i} = \int_{0}^{\infty} \int_{0}^{2\pi} \int_{0}^{N} c(U_{t^{-}}^{i}, \Pi_{t}^{i}(\mathbf{V}_{t^{-}}, \xi), \theta, \varphi_{t}^{i}) \mathcal{N}^{i}(dt, dz, d\phi, d\xi).$$

with

- $\Pi^i_t(\mathbf{V}_{t^-},\xi)$ as in Coupling Lemma above and
- $\varphi_t^i := \varphi(V_{t^-}^i V_{t^-}^{\mathbf{i}(\xi)}, U_{t^-}^i \Pi_t^i(\mathbf{V}_{t^-}, \xi), \phi)$ couples the angles " ϕ " "optimally".

By construction, processes (U^1, \ldots, U^N) are exchangeable but not independent (they have some simultaneous jumps).

5. Time-dependent estimate

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

1) Itô calculus and Gronwall's Lemma yield

$$\mathbb{E}|V_t^i - U_t^i|^2 \le C(1+t)^2 \mathbb{E}\mathcal{W}_2^2\left(\frac{1}{N-1}\sum_{j\neq i}\delta_{U_t^j}, f_t\right)$$

and

$$\mathbb{E}\mathcal{W}_2^2\left(\frac{1}{N}\sum_j \delta_{V_t^j}, f_t\right) \leq C(1+t)^2 \mathbb{E}\mathcal{W}_2^2\left(\frac{1}{N-1}\sum_{j\neq i} \delta_{U_t^j}, f_t\right) \\ + C\mathbb{E}\mathcal{W}_2^2\left(\frac{1}{N}\sum_j \delta_{U_t^j}, f_t\right)$$

2) Need to bound two expectations on the left by $CN^{-\frac{1}{3}}$.

3) As in F.& Cortez AAP'16, we prove : for each $k \leq N$,

$$\frac{1}{2} \mathbb{E} \mathcal{W}_2^2 \left(\frac{1}{N} \sum_j \delta_{U_t^j}, f_t \right) \leq \mathcal{W}_2^2 \left(\mathsf{Law}|_k(\mathbf{U}_t), f_t^{\otimes k} \right) \\ + \varepsilon_k(f_t) + \frac{k}{N} \int |v|^2 f_0(dv)$$

where

$$\varepsilon_k(f_t) := \mathbb{E}\mathcal{W}_2^2\left(\frac{1}{k}\sum_j \delta_{\tilde{U}_t^j}, f_t\right) \le \frac{C(f_0)}{k^{1/2}}$$

for $\tilde{U}_t^1, \dots \tilde{U}_t^k$ i.i.d. $\sim f_t$ (Fournier& Guillin '14).

Joaquínn Fontbona (U. of Chile)

3) As in F.& Cortez AAP'16, we prove : for each $k \leq N$,

$$\begin{split} \frac{1}{2} \mathbb{E} \mathcal{W}_2^2 \left(\frac{1}{N} \sum_j \delta_{U_t^j}, f_t \right) \leq \mathcal{W}_2^2 \left(\mathsf{Law}|_k(\mathbf{U}_t), f_t^{\otimes k} \right) \\ &+ \varepsilon_k(f_t) + \frac{k}{N} \int |v|^2 f_0(dv) \end{split}$$

where

$$\varepsilon_k(f_t) := \mathbb{E}\mathcal{W}_2^2\left(\frac{1}{k}\sum_j \delta_{\tilde{U}_t^j}, f_t\right) \le \frac{C(f_0)}{k^{1/2}}$$

for $\tilde{U}_t^1, \ldots \tilde{U}_t^k$ i.i.d. $\sim f_t$ (Fournier& Guillin '14). 4) Prove Decoupling Lemma: $\mathcal{W}_2^2 \left(\mathsf{Law}|_k(\mathbf{U}_t), f_t^{\otimes k} \right) \leq C \frac{k}{N}$.

3) As in F.& Cortez AAP'16, we prove : for each $k \leq N$,

$$\begin{split} \frac{1}{2} \mathbb{E} \mathcal{W}_2^2 \left(\frac{1}{N} \sum_j \delta_{U_t^j}, f_t \right) \leq \mathcal{W}_2^2 \left(\mathsf{Law}|_k(\mathbf{U}_t), f_t^{\otimes k} \right) \\ &+ \varepsilon_k(f_t) + \frac{k}{N} \int |v|^2 f_0(dv) \end{split}$$

where

$$\varepsilon_k(f_t) := \mathbb{E}\mathcal{W}_2^2\left(\frac{1}{k}\sum_j \delta_{\tilde{U}_t^j}, f_t\right) \le \frac{C(f_0)}{k^{1/2}}$$

for $\tilde{U}_t^1, \ldots \tilde{U}_t^k$ i.i.d. $\sim f_t$ (Fournier& Guillin '14).

4) Prove Decoupling Lemma: $W_2^2\left(\text{Law}|_k(\mathbf{U}_t), f_t^{\otimes k}\right) \leq C\frac{k}{N}$. (Change jumps of particles j > k with particle i by indep. ones)

Hence, for each $k \leq N$,

$$\frac{1}{2}\mathbb{E}\mathcal{W}_2^2\left(\frac{1}{N}\sum_j \delta_{U_t^j}, f_t\right) \leq C\frac{k}{N} + \frac{C'}{k^{1/2}}$$

Choosing $k = \lfloor N^{2/3} \rfloor$ yields the required order $N^{-1/3}$.

6. Uniform relaxation and time independent bound

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 ∽��?
Uniform in N relaxation of particles

Call \mathcal{U}^N the uniform distribution on the **Boltzmann sphere**

$$\mathcal{S}^{N} = \left\{ \mathbf{v} \in (\mathbb{R}^{3})^{N} : \frac{1}{N} \sum_{i=1}^{N} v^{i} = 0, \frac{1}{N} \sum_{i=1}^{N} |v^{i}|^{2} = 1 \right\},\$$

which are invariant for the N-particles dynamics.

Theorem (M.Rousset '14)

Let \mathbf{V}_0 be exchangeable, concentrated in \mathcal{S}^N . Then, $\forall \delta > 0, q > 1$

$$\partial_t^+ \mathcal{W}_{2,\mathsf{sym}}(\mathsf{Law}(\mathbf{V}_t), \mathcal{U}^N) \leq -c_{\delta,q}(t) \mathcal{W}_{2,\mathsf{sym}}(\mathsf{Law}(\mathbf{V}_t), \mathcal{U}^N)^{1+1/\delta},$$

where $c_{\delta,q}(t) = k_{\delta,q} \mathbb{E}(|V_t^1|^{2q(1+\delta)})^{-1/2q\delta}$ for some $k_{\delta,q} > 0$ not depending on N and

Joaquínn Fontbona (U. of Chile)

Uniform in N relaxation of particles

Call \mathcal{U}^N the uniform distribution on the **Boltzmann sphere**

$$\mathcal{S}^{N} = \left\{ \mathbf{v} \in (\mathbb{R}^{3})^{N} : \frac{1}{N} \sum_{i=1}^{N} v^{i} = 0, \frac{1}{N} \sum_{i=1}^{N} |v^{i}|^{2} = 1 \right\},\$$

which are invariant for the N-particles dynamics.

Theorem (M.Rousset '14)

Let \mathbf{V}_0 be exchangeable, concentrated in \mathcal{S}^N . Then, $\forall \delta > 0, q > 1$

$$\partial_t^+ \mathcal{W}_{2,\mathsf{sym}}(\mathsf{Law}(\mathbf{V}_t), \mathcal{U}^N) \leq -c_{\delta,q}(t) \mathcal{W}_{2,\mathsf{sym}}(\mathsf{Law}(\mathbf{V}_t), \mathcal{U}^N)^{1+1/\delta},$$

where
$$c_{\delta,q}(t) = k_{\delta,q} \mathbb{E}(|V_t^1|^{2q(1+\delta)})^{-1/2q\delta}$$
 for some $k_{\delta,q} > 0$ not depending on N and $\mathcal{W}_{2,sym}^2(\mu,\nu) = \inf_{\mathbf{X},\mathbf{Y}} \mathbb{E}\mathcal{W}_2^2\left(\frac{1}{N}\sum_j \delta_{X^j}, \frac{1}{N}\sum_j \delta_{Y^j}\right)$.

Proof of the uniform in time bound

1) Prove preservation of p-moments for arbitrary p > 4 by particle the system (follows from a "Povzner lemma")

Proof of the uniform in time bound

- 1) Prove preservation of p-moments for arbitrary p > 4 by particle the system (follows from a "Povzner lemma")
- 2) This improves Rousset's Thm. to : for all $0 < \delta < p 2$,

$$\mathcal{W}_{2,\mathsf{sym}}^2(\mathsf{Law}(\mathbf{V}_t),\mathcal{U}^N) \leq C_{p,\delta}(1+t)^{-\delta},$$

where $C_{p,\delta}$ depends only on p, δ and $\sup_N \mathbb{E}|V_0^1|^p$. 3) For \mathbf{V}_0 exchangeable, concentrated in \mathcal{S}^N , this and $\mathcal{W}_2^2(\mathcal{U}^N, (\mathcal{N}(0, I_3))^{\otimes N}) \leq CN^{-1/2}$ yield $\mathbb{E}\mathcal{W}_2^2(\bar{\mathbf{V}}_t, f_t) \leq C_{p,\delta}(1+t)^{-\delta} + CN^{-1/2} \leq CN^{-1/3}$ for $t \geq \bar{t}(N, \epsilon)$. For $t \leq \bar{t}(N, \epsilon)$, use our first bound.

4) General exchangeable \mathbf{V}_0 : reduce to previous case by "standarizing" the particle system.

Joaquínn Fontbona (U. of Chile)

27 / 28

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Cortez, R. and Fontbona, J.

Quantitative uniform propagation of chaos for Maxwell molecules Submitted, arXiv:1512.09308, 2015.

Cortez, R. and Fontbona, J.

Quantitative propagation of chaos for generalized Kac particle systems Ann. Applied Probab. 26, 2 (2016)

Fournier, N., and Mischler, S.

Rate of convergence of the Nanbu particle system for hard potentials and Maxwell molecules. Ann. Probab. 44, 1 (2016).

Mathias Rousset.

A N-uniform quantitative Tanaka's theorem for the conservative Kac's N-particle system with Maxwell molecules. Preprint, arXiv:1407.1965, 2014.

・ロト ・四ト ・ヨト ・ヨト ・日・