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Ricci curvature lower bounds on a manifold

Ricci curvature : measure of how far from being �at a manifold (M, g) is.
Spaces with constant curvature : spheres (positive curvature), Rd (zero
curvature), hyperbolic spaces (negative curvature) : Ric = κg .
Ric ≥ κ : the space is "`more curved"' than the model space with constant
curvature κ ∈ R.
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Probabilist's viewpoint: curvature lower bounds can be encoded into
properties of Brownian motion on the manifold. Several interesting
properties:

exponentially fast convergence to equilibrium

contraction of Brownian motions (in transport distances)

functional inequalities (spectral gap, log-Sobolev,...)

Aim: get good quantitative estimates for the speed of convergence to
equilibrium for high-dimensional systems. Many applications in statistical
physics (particle systems), numerical analysis (MCMC simulation),
statistics...
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Synthetic notion of Ricci curvature lower bounds (Lott-Sturm-Villani):
de�nition in geodesic spaces using optimal transport.

De�nition

µ, ν : probability measures on M with �nite second moment.

W2(µ, ν)2 := inf
π

∫
||x − y ||22π(dx , dy)

π : coupling of µ and ν.

W2 is a distance over P2(M). Moreover, when M is a geodesic space, it is
possible to build geodesics for W2 (in P(M)).
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Entropy

De�nition

Let µ be a nonnegative measure on a space X , and f a nonnegative
function. We de�ne

Entµ(f ) =

∫
f log fdµ−

(∫
fdµ

)
log

(∫
fdµ

)
.

If ν = f µ is a probability measure, we de�ne Entµ(ν) = Entµ(f ).
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Convexity of the entropy

Theorem (Lott-Villani 2009, Sturm 2006)

On a Riemannian manifold, Ric ≥ κ i� the entropy (w.r.t. the volume
measure) is κ-convex along W2 geodesics, i.e.

EntVol(µt) ≤ (1− t)EntVol(µ0) + t EntVol(µ1)− κt(1− t)

2
W2(µ0, µ1)2.

We can then use this property as a de�nition of lower bounds on Ricci
curvature, which makes sense on geodesic spaces.
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Why?

Jordan-Kinderlehrer-Otto : The heat equation on the manifold

u̇ = ∆u

can be encoded as the gradient �ow ODE in P(M)

u̇ = −∇EntVol(µ)

with respect to the W2 distance.
Hence convexity properties of the entropy translate into properties of the
heat equation.
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Markov chains

To adapt this notion to the discrete setting, we need to decide what plays
the role of the distance W2, and what measure to use instead of the
volume.
Probabilist's viewpoint: just decide what plays the role of Brownian motion
Framework : continuous time Markov chains on a �nite space X .
Jumps from x to y occur with rate K (x , y).
Assumption: there exists a reversible probability measure π, i.e. such that
π(x)K (x , y) = K (y , x)π(y). Also known as detailed balance condition. π
shall play the role of the volume.
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Question : is there an analogue to Ricci curvature lower bounds for Markov
chains on discrete spaces?
Test case : simple random walk on the discrete hypercube (Gromov 99,
Stroock 98).
Several possibilities : Bakry-Émery 1988, Ollivier 2007, Bonciocat-Sturm
2009, Erbar-Maas 2012, Mielke 2011, Gozlan-Roberto-Samson-Tetali 2014,
Leonard 2013,...
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To de�ne a notion of curvature following the lSV approach, we need a
geodesic distance on the space of probability measures. In the discrete
setting, it turns out that W2 is unsuitable.
To de�ne a a suitable distance, we shall mimic the Benamou-Brenier
formula for W2:

W2(µ0, µ1)2 = inf
∫ 1

0

|vt |2dµt

where the in�mum is over all paths of pairs of measures and vector �elds
(µt , vt) such that the continuity equation µ̇t + div(vtµt) = 0 holds.
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In the discrete setting, vector �elds are functions of edges
Φ : X × X −→ R.
The continuity equation then takes the form

ρ̇t(x) +
∑
y

Φt(x , y)K (x , y)ρ̂t(x , y) = 0

where ρ is the density with respect to π, and ρ̂ is a nonnegative measure
on X × X associated to ρ.
It turns out that the suitable choice is ρ̂(x , y) = ρ(x)−ρ(y)

log ρ(x)−log ρ(y) .
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Distance W

Theorem (Maas 2011, Mielke 2012)

The evolution of the MC is a gradient �ow of the entropy with respect to
the distance

W(µ0, µ1)2 := inf
∫ 1

0

1
2

∑
x ,y

Φt(x , y)2ρ̂t(x , y)K (x , y)π(x)dt

where the in�mum is taken over all couples of curves (ρt ,Φt) satisfying

ρ̇t(x) +
∑
y

Φt(x , y)K (x , y)ρ̂t(x , y) = 0

with Φt : X × X −→ R, ρt are probability densities with respect to π with
ρiπ = µi , and

ρ̂(x , y) =
ρ(x)− ρ(y)

log ρ(x)− log ρ(y)
.
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Convexity of the entropy

De�nition (Erbar-Maas 2012, Mielke 2012)

The Ricci curvature of the MC is bounded from below by κ ∈ R if for any
geodesic (νt)0≤t≤1 in P(X ), we have

Entπ(νt) ≤ (1− t)Entπ(ν0) + t Entπ(ν1)− κt(1− t)

2
W(ν0, ν1)2.

Practical criterion: look at the second derivative of the entropy along
geodesics, and check if it can be bounded from below.
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Example 1: the simple RW on the hypercube

Simple random walk on {0, 1}N : with rate 1, choose a coordinate
uniformly at random, and �ip it

Theorem (Erbar-Maas, 2012)

This Markov chain has curvature bounded from below by 2
N

In the limit N −→∞, after rescaling, we recover the curvature of the
Gaussian space (R,N (0, 1)).
Proof : direct computation in dimension 1 + tensorization.
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Example 2: the simple RW on the discrete torus

Simple random walk on Z/NZ: with rate 1, jump right or left with
probability 1/2.
This MC has nonnegative curvature. Analogous situation to the BM on a
torus (�at space).
Actually holds for any symmetric random walk on an abelian Cayley graph.
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Example 3: ZRP on complete graph

K particles on complete graph with L sites. Jump rate cx(n) from site x .

Theorem (F.-Maas 2015)

If c ≤ cx(n + 1)− cx(n) ≤ c + δ and δ < 2c/5, then curvature is bounded
from below by c

2
− 5δ

4
, uniformly in K and L.

Method of proof based on mimicking the Bochner identity. No general
identity, but a nice inequality for chains satisfying good spatial invariance
properties.
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Other examples

The exclusion process on the complete graph has positive curvature
(Erbar, Maas and Tetali 2014, F. and Maas 2015);

One-dimensional birth-death processes with monotone rates (Mielke
2012);

Ising model and hardcore model at high temperature (Erbar,
Henderson, Menz and Tetali 2016).
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Functional inequalities

Theorem (Erbar-Maas, 2012)

Assuming Ric ≥ κ > 0, we have

Varπ(f ) ≤ 1
κ
E(f , f ) (spectral gap/Poincaré inequality)

Entπ(f ) ≤ 1
2κ
E(f , log f ) (mLSI)

Entπ(f ) ≤ W(ν, π)
√
E(f , log f )− κ

2
W(ν, π)2 (HWI).

The Dirichlet form E(f , g) = 1
2

∑
(f (x)− f (y))(g(x)− g(y))K (x , y)π(x)

plays the role of
∫
∇f · ∇gdVol .

Various applications: convergence to equilibrium, hydrodynamic limits,
concentration of measure.
Other functional inequalities also hold (Cheeger isoperimetric inequality,
transport-entropy, transport-information...)
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The mLSI controls convergence to equilibrium in relative entropy: it holds
i�

Entπ(ρt) ≤ e−2κt Entπ(ρ0).

where ρt is the density of the law at time t of the Markov chain.

Similarly, the spectral gap controls convergence to equilibrium in L2 (the
optimal constant is the smallest positive eigenvalue of the generator of the
MC).

The mLSI is strictly stronger than a spectral gap.
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As an application, we recover a spectral gap, a mLSI and an HWI
inequality for the ZRP on the complete graph, with constants uniform in
the size of the graph and of the number of particles. The spectral gap was
previously obtained by Boudou, Caputo, Dai Pra and Posta, and the mLSI
by Caputo, Dai Pra and Posta.
For homogeneous rates, Caputo and Posta proved the uniform mLSI in
much greater generality (no restriction on δ) with a di�erent technique, but
with non-explicit constant.
The spectral gap for ZRP on the lattice, with di�usive constant (cL−2)
follow by comparing the Dirichlet forms.
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Diameter and spectral gap

Theorem (Li-Yau 1979, Zhong-Yang 1984)

On a compact manifold with nonnegative curvature and diameter D, the
spectral gap λ1 satis�es

λ1 ≥
π2

D2
.

Theorem (Erbar-F. 2016)

The same is true for Markov chains with nonnegative curvature, up to a
universal constant c , and with diameter de�ned by

D := supW(δx , δy ).

Similarly, the mLSI holds, also with constant cD−2.
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Sketch of proof of the spectral gap
Step 1: local gradient estimates, allowing to show that given a bounded
function f , Pt f is ||f ||∞√

2t
-lipschitz (with respect to W);

Step 2: the Dirichlet form E(Pt f ), which is the derivative of the variance
along the �ow, is decreasing. Hence

Varπ(f ) ≤ 2tE(f ) + Varπ(Pt f )

≤ 2tE(f ) +
D2

2t
||f ||2∞;

Step 3: The HWI inequality implies

Entπ(f 2) ≤ λ

2
E(f 2, log f 2) +

D2

2λ

∑
f (x)2π(x)

from which we can deduce

Varπ(f ) ≤ λ

2
E(f 2, log f 2) + eD

2/2λ
(∑

|f (x)|π(x)
)2

;

Step 4: Combine the two non-tight inequalities to deduce a tight Poincaré
inequality.
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The previous theorem cannot be expected to give good estimates for
interacting particle systems. Indeed, for independent particles, the
functional inequalities are dimension-free, while the squared diameter grows
linearly with the number of particles.
For example, if we apply it to the ZRP with constant rates (which has
nonnegative curvature) we get a mLSI with constant c

K2 log L

Conjecture : At �xed density K/L ≥ 1, the sharp mLSI constant is of order
L
K2 .
This may be related to the following conjecture for discrete curvature
Conjecture : In the previous theorem, we can replace the diameter bound by
an "`e�ective gaussian diameter"' ρ for the invariant measure π such that

∀A, π(dW(A, x) ≥ r) ≤ Me−ρr
2

where A is any set with mass ≥ 1/2.
The Riemannian version of this result has been established by E. Milman
(2009).
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