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Nonlinear recombination models
Classical model for genetic algorithms.
Consider sequences σ of length n from a finite alphabet S :

σ = (σ1, . . . , σn) ∈ Ω = Sn

For any A ⊂ [n] = {1, . . . , n}, write σ = σAσAc .

Recombination at A (also “collision” or “mating”):

Ω× Ω ∋ (σ, η) = (σAσAc , ηAηAc ) 7→ (ηAσAc , σAηAc ) = (σ′, η′)
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Recombination at A (also “collision” or “mating”):

Ω× Ω ∋ (σ, η) = (σAσAc , ηAηAc ) 7→ (ηAσAc , σAηAc ) = (σ′, η′)

If (σ, η) are sampled independently from a distribution p on Ω, and
if A is sampled independently from a distribution ν on [n], then
(σ′, η′) has distribution

∑

A⊂[n]

ν(A)
∑

σ,η

p(σ)p(η)1(ηAσAc ,σAηAc )=(σ′,η′)
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∑
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where pA denotes the marginal on A.
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If we only want the distribution of the first component σ′:

∑

η′

∑

A⊂[n]

ν(A)
∑

σ,η

p(σ)p(η)1(ηAσAc ,σAηAc )=(σ′,η′)

=
∑

σA

∑

ηAc

p(σAσ
′
Ac )p(σ′

AηAc ) =
∑

A⊂[n]

ν(A) pA(σ
′
A)pAc (σ′

Ac )

where pA denotes the marginal on A.
In conclusion, one recombination maps the law p of the first
sequence to

p 7→ Ψ[p] :=
∑

A⊂[n]

ν(A) pA ⊗ pAc ,

Nonlinear, quadratic map.

Remark: the map Ψ preserves marginal at every single site i ∈ [n]:

Ψ[p]i (σi ) = pi (σi) , i ∈ [n].



Evolution and convergence
Discrete time evolution:

p(k) = Ψ[p(k−1)], k ∈ N, p(0) = p.
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Continuous time evolution:

∂tpt = Ψ[pt ]− pt

=
∑

A ν(A)(pt,A ⊗ pt,Ac − pt), t > 0, p 0 = p.

Convergence : If ν is nondegenerate
[∀i , j ∈ [n] , ∃A ⊂ [n] s.t. A ∋ i ,Ac ∋ j and ν(A) > 0], then

pt → π := p 0,1 ⊗ · · · ⊗ p 0,n , t → ∞ product of marginals.

[ Geiringer 1944, ..., Rabani-Rabinovich-Sinclair 1998, ...,
Baake-Baake-Salamat 2014, Martinez 2015 ]

Remark analogy with Boltzmann-like equations from kinetic
theory: Ψ is a quadratic collision kernel as e.g. in the Kac model.

Later we discuss more general nonlinear evolutions which allow for
convergence to non-product measures.



Trend to equilibrium: total variation distance
Consider the following examples of distribution ν:

1) Single site recombination: ν(A) = 1
n

∑n
i=1 1A={i};

2) Single crossover: ν(A) = 1
n+1

∑n
i=0 1A={1,...,i};

3) Uniform crossover: ν(A) = 1
2n , for all A ⊂ [n];

4) Bernoulli(q) model: ν(A) = q|A|(1− q)n−|A|, some q ∈ [0, 12 ], .
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Rabani-Rabinovich-Sinclair 1998 obtained rates of convergence of
discrete-time evolution in total variation distance

‖µ− ν‖TV = 1
2

∑

σ

|µ(σ)− ν(σ)|,

measured by the mixing time

Tmix(ν, n) = max
p(0)

min{k ∈ N : ‖p(k) − π‖TV 6
1
4}

For model 1 and 2, they prove Tmix(ν, n) = O(n log n);
for model 3: Tmix(ν, n) = O(log n);
for model 4: Tmix(ν, n) = O(q−1 log n) [coupling analysis].
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Relative entropy: H(µ|ν) =

{

∑

σ µ(σ) log
(µ(σ)
ν(σ)

)

µ ≪ ν

+∞ µ 6≪ ν

Pinsker’s inequality: ‖µ − ν‖2TV 6 1
2 H(µ|ν).

Entropy decay rate: δ > 0 such that for all t > 0:

d
dtH(pt |π) 6 −δH(pt |π). (1)

Problem: Given product measure π, find δ = δ(π, ν, n) > 0 s.t.
this holds for all t > 0, for all initial p0 with same marginals as π.

In this case, decay to equilibrium: H(pt |π) 6 H(p0|π) e
−δt .

Measuring convergence in terms of relative entropy is very natural
in view of the analogy with kinetic theory; see e.g. Carlen-Carvalho
1992, or Desvillettes-Muhot-Villani 2011 review on Cercignani’s
conjecture. Unexplored thus far for nonlinear recombinations.
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πA
and fAfAc = µA⊗µAc

π .
If A = {i} write fi = f{i}. Note fi = 1 means that µ and π have the
same marginals: µi = πi . Define Ent(f ) = π[f log f ] = H(µ|π).
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equivalent to :

Problem: Given the measure π, find δ = δ(π, ν, n) > 0 s.t.

∑

A

ν(A)π

[

(fAfAc − f ) log
fAfAc

f

]

> δ Ent(f )

for all f : Ω 7→ [0,∞) such that π[f ] = 1 and fi = 1 for all i ∈ [n].



Functional inequalities

Fix π product measure. For any f : Ω 7→ [0,∞), define
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dtH(pt |π) 6 −δH(pt |π) is

equivalent to :

Problem: Given the measure π, find δ = δ(π, ν, n) > 0 s.t.

∑

A

ν(A)π

[

(fAfAc − f ) log
fAfAc

f

]

> δ Ent(f )

for all f : Ω 7→ [0,∞) such that π[f ] = 1 and fi = 1 for all i ∈ [n].
[“nonlinear” Log-Sobolev inequality with constraints on marginals]
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1−(1−q)n−qn

n−1 .
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Theorem (Entropy production estimates)

Let δ∗ = δ∗(ν, n) := infπ δ(π, ν, n).

1) Single site recombination: 2
n
+ O(n−2) > δ∗ > 1
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n−1 ;

4) Be(q) model: 4(1−(1−q/2)n)
n

+ O(n−2) > δ∗ >
1−(1−q)n−qn

n−1 .

Upper bounds are obtained by calculating the two sides of the
inequality for a suitable test function f [density of a mixture of
Bernoulli] and a suitable product measure π [Be(w), w ∼ 2−n].

Lower bounds: By “linearization” we find δ(π, ν, n) > κ(π, ν, n),
where κ > 0 is the optimal constant s.t.

∑

A ν(A) (Ent(fA) + Ent(fAc )) 6 (1− κ)Ent(f ) , (2)

for all f : Ω 7→ [0,∞) such that π[f ] = 1 and fi = 1 for all i ∈ [n].
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Main results II
∑

A ν(A) (Ent(fA) + Ent(fAc )) 6 (1− κ)Ent(f ) ,

for all f : Ω 7→ [0,∞) such that π[f ] = 1 and fi = 1 for all i ∈ [n].

With κ = 0 this is simply sub-additivity of relative entropy with
respect to a product measure: Ent(fA) + Ent(fAc ) 6 Ent(f ) , for
all f > 0 and all A ⊂ [n].
It cannot hold for κ > 0 without the marginal constraints on f : if
fi are non-trivial, then taking f =

∏

i fi yields
Ent(fA) + Ent(fAc ) = Ent(f ) =

∑

i Ent(fi) for all A ⊂ [n].

Theorem (Refined sub-additivity estimates)

Let κ∗ = κ∗(ν, n) := infπ κ(π, ν, n).

1) Single site recombination: κ∗ =
1

n−1 ;

2) Single crossover: κ∗ =
1

n+1 ;

3) Uniform crossover: κ∗ =
1−2−n+1

n−1 ;

4) Be(q) model: κ∗ =
1−(1−q)n−qn

n−1 .
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The lower bound δ(π, ν, n) > κ(π, ν, n), the “linearization”, is a
simple consequence of convexity:

π

[

(fAfAc − f ) log
fAfAc

f

]

> Ent(f )− Ent(fA)− Ent(fAc ).

Indeed: use π [(fAfAc − f ) log fAfAc ] = 0, and

π [fAfAc log f ] 6 π [(fAfAc log fAfAc ]

= π [fA log fA] + π [fAc log fAc ]

= Ent(fA) + Ent(fAc )



Ideas of proof II (computation of optimal κ)
Fix A cover of [n], i.e. a family of subsets covering [n].

Lemma (Generalized sub-additivity inequalities)

For any f > 0:
∑

A Ent(fA) 6 n+(A)Ent(f )

where n+(A) = maxk∈[n] #{A ∈ A : A ∋ k}.
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[See also (C, Menz, Tetali 2015) for some extensions of this to
weakly-dependent non-product measures]



Ideas of proof II (computation of optimal κ)
Fix A cover of [n], i.e. a family of subsets covering [n].

Lemma (Generalized sub-additivity inequalities)

For any f > 0:
∑

A Ent(fA) 6 n+(A)Ent(f )

where n+(A) = maxk∈[n] #{A ∈ A : A ∋ k}.

Proof. Use Shearer’s inequality for Shannon’s entropy. See [Shearer
et al. 1986; Madiman-Tetali 2010; Balister-Bollobas 2012].

[See also (C, Menz, Tetali 2015) for some extensions of this to
weakly-dependent non-product measures]

However, this lemma is not sufficient, it gives very poor bounds on
κ (e.g. exp. small in n for uniform crossover). It is crucial to use:

Lemma (Sub-modularity, or strong sub-additivity)

For any f > 0, the function A 7→ h(A) := −Ent(fA) is
sub-modular, i.e.

h(A) + h(B) > h(A ∩ B) + h(A ∪ B) , A,B ⊂ [n].
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Reversible quadratic systems

Following [Rabinovich-Sinclair-Widgerson 1992] we define a
general class of quadratic evolutions.
We do not require strict symmetry here but only reversibility.

Idea: Take a Markov kernel Q on Ω× Ω, that is
Q(σ, σ′; τ, τ ′) > 0,

∑

τ,τ ′∈ΩQ(σ, σ′; τ, τ ′) = 1 , and suppose that
µ ∈ Prob(Ω) is such that µ⊗ µ ∈ Prob(Ω×Ω) is reversible for Q.
Given an initial state p ∈ Prob(Ω), construct the measure

[(p ⊗ p)Q](τ, τ ′) =
∑

σ,σ′∈Ω p(σ)p(σ′)Q(σ, σ′; τ, τ ′).

Then take the projection on the first coordinate

Ψ[p](τ) =
∑

τ ′∈Ω[(p ⊗ p)Q](τ, τ ′).

The nonlinear equation is then:

∂tpt = Ψ[pt ]− pt , t > 0, p0 = p.

Note: pt → µ or to some other µ′ identified by the initial state p.
Important: Q is not assumed to be irreducible!
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µ(σ) = 1
Z

exp
(

β
∑

ij∈E σiσj +
∑

i∈[n] hiσi

)

µ = µG ,β,h is a probability on Ω = {−1,+1}n.
Consider the Reversible Markov Chain on Ω× Ω with kernel

Q(σ, σ′; τ, τ ′) =
∑

A ν(A)QA(σ, σ
′; τ, τ ′)

QA(σ, σ
′; τ, τ ′) = αA 1τ=σ′

A
σAc , τ ′=σAσ

′

Ac
+ (1− αA)1τ=σ, τ ′=σ′

αA := αA(σ, σ
′) =

µ(σ′

A
σAc )µ(σAσ

′

Ac
)

µ(σ′

A
σAc )µ(σAσ

′

Ac
)+µ(σ)µ(σ′)

A kind of heat bath in Ω× Ω w.r.t. µ⊗ µ. Remarks:
1) β = 0 ⇒ αA ≡ 1

2 , “lazy” recombination model.
2) Kernel Q does not depend on external fields h, but only on G , β.



Nonlinear Stochastic Ising Model II
The Markov chain yields a linear map on Prob(Ω× Ω). The chain
is not irreducible.



Nonlinear Stochastic Ising Model II
The Markov chain yields a linear map on Prob(Ω× Ω). The chain
is not irreducible. By projection one has the quadratic map on
Prob(Ω): p 7→ Ψ[p]

Ψ[p](τ) =
∑

τ ′

[(p ⊗ p)Q](τ, τ ′)

=
∑

σ,σ′,τ ′

p(σ)p(σ′)Q(σ, σ′; τ, τ ′)

Evolution equation:

∂tpt = Ψ[pt ]− pt , t > 0, p0 = p.



Nonlinear Stochastic Ising Model II
The Markov chain yields a linear map on Prob(Ω× Ω). The chain
is not irreducible. By projection one has the quadratic map on
Prob(Ω): p 7→ Ψ[p]

Ψ[p](τ) =
∑

τ ′

[(p ⊗ p)Q](τ, τ ′)

=
∑

σ,σ′,τ ′

p(σ)p(σ′)Q(σ, σ′; τ, τ ′)

Evolution equation:

∂tpt = Ψ[pt ]− pt , t > 0, p0 = p.

Fix ν(A) = 1
n

∑n
i=1 1A={i} [as in Gibbs sampler].

Lemma (Convergence to equilibrium: H-theorem)

Fix a graph finite G , β ∈ R, and p ∈ Prob(Ω). Then
pt → µ = µG ,β,h, as t → ∞, where h is the unique set of external
fields s.t. µi = pi for all i ∈ [n].



Nonlinear Stochastic Ising Model II
The Markov chain yields a linear map on Prob(Ω× Ω). The chain
is not irreducible. By projection one has the quadratic map on
Prob(Ω): p 7→ Ψ[p]

Ψ[p](τ) =
∑

τ ′

[(p ⊗ p)Q](τ, τ ′)

=
∑

σ,σ′,τ ′

p(σ)p(σ′)Q(σ, σ′; τ, τ ′)

Evolution equation:

∂tpt = Ψ[pt ]− pt , t > 0, p0 = p.

Fix ν(A) = 1
n

∑n
i=1 1A={i} [as in Gibbs sampler].

Lemma (Convergence to equilibrium: H-theorem)

Fix a graph finite G , β ∈ R, and p ∈ Prob(Ω). Then
pt → µ = µG ,β,h, as t → ∞, where h is the unique set of external
fields s.t. µi = pi for all i ∈ [n].

[dynamics indep. of h; if β = 0 we’re back to recombination model]



Nonlinear Stochastic Ising Model III

In analogy with linear Gibbs sampler and nonlinear recombinations:

Conjecture There exists universal c > 0 s.t. for any graph G , any
β: |β| 6 c/∆, where ∆ = maxdeg(G ),

H(pt |µ) 6 H(p|µ) e−c t/n , t > 0. (3)

for any initial p ∈ Prob(Ω).
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β: |β| 6 c/∆, where ∆ = maxdeg(G ),

H(pt |µ) 6 H(p|µ) e−c t/n , t > 0. (3)

for any initial p ∈ Prob(Ω).
A direct functional-analytic approach as for the β = 0 case seems
to be very difficult. On the other hand, we hope to carry out some
parts of Kac’s program for the Boltzmann equation.



Nonlinear Stochastic Ising Model III

In analogy with linear Gibbs sampler and nonlinear recombinations:

Conjecture There exists universal c > 0 s.t. for any graph G , any
β: |β| 6 c/∆, where ∆ = maxdeg(G ),

H(pt |µ) 6 H(p|µ) e−c t/n , t > 0. (3)

for any initial p ∈ Prob(Ω).
A direct functional-analytic approach as for the β = 0 case seems
to be very difficult. On the other hand, we hope to carry out some
parts of Kac’s program for the Boltzmann equation.

Remark: Adding a dissipative term (mutations, spin flip):

Q → Q ′ =
1

2
Q +

1

2
QGlauber,

then conjecture holds true.



Implementing Kac’ program ?

Work in progress with Arnaud Guillin:

1. Establish a particle system representation for which the
nonlinear equation is a limiting object;
2. Prove entropy production estimates for the particle system that
remain tight in the limit;
3. Establish propagation of chaos and so-called entropic chaos.
4. Deduce entropy decay for the nonlinear system.

See Carlen-Carvalho-Le Roux-Loss-Villani 2008 for a review of
Kac’s program for the Boltzmann-Kac equation.

Hope: the discrete combinatorial nature should allow us to avoid
all the regularities issues that make the program very difficult in
the kinetic theory setting.
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3. Establish propagation of chaos and so-called entropic chaos.
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Kac’s program for the Boltzmann-Kac equation.

Hope: the discrete combinatorial nature should allow us to avoid
all the regularities issues that make the program very difficult in
the kinetic theory setting.

THANK YOU!


