CIRM Research School

Modeling and Control of Open Quantum Systems ${ }^{1}$ 15-20 April 2018

Spin/spring composite quantum systems: usual notations and some useful formulae ${ }^{2}$

[^0]1 Cohen-Tannoudji, C.; Diu, B. \& Laloë, F.: Mécanique Quantique. Hermann, Paris, 1977, I\& II (quantum physics: a well known and tutorial textbook)
2 S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006. (quantum physics: spin/spring systems, decoherence, Schrödinger cats, entanglement)
3 C. Gardiner, P. Zoller: The Quantum World of Ultra-Cold Atoms and Light I\& II. Imperial College Press, 2009. (quantum physics: quantum optics view-point on quantum science and technologies, quantum stochastic process and continuous measurement)
4 Barnett, S. M. \& Radmore, P. M.: Methods in Theoretical Quantum Optics Oxford University Press, 2003. (mathematical physics: many useful operator formulae for spin/spring systems)
5 E. Davies: Quantum Theory of Open Systems. Academic Press, 1976. (mathematical physics: functional analysis aspects when the Hilbert space is of infinite dimension)
6 Gardiner, C. W.: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences [3rd ed], Springer, 2004. (tutorial introduction to probability, Markov processes, stochastic differential equations and Ito calculus)
7 M. Nielsen, I. Chuang: Quantum Computation and Quantum Information. Cambridge University Press, 2000. (tutorial introduction with a computer science and communication view point)

1 Operators, tensor products and three quantum rules

2 Summary of the main formulae

3 Harmonic oscillators (spring systems)

4 Qubits (half-spin systems)

5 Spin/spring composite systems

6 Stochastic differential equations

Dirac notations, spectral decomposition and trace

■ Vectors of the Hilbert \mathcal{H} are denoted by ket: $|\psi\rangle,|g\rangle,|e\rangle,|n\rangle,|\alpha\rangle$. Usually their norms are equal to one. $\bar{\psi}=|\psi\rangle^{\dagger}$ with ${ }^{\dagger}$ for Hermitian conjugate. If $(|n\rangle)$ is an Hilbert basis $|\psi\rangle=\sum_{n} \psi_{n}|n\rangle$ with $\psi_{n} \in \mathbb{C},\langle\psi|=\sum_{n} \psi_{n}^{*}\langle n|$ and $\left\langle n^{\prime} \mid n\right\rangle=\delta_{n^{\prime} n}$.
■ Spectral decomposition of an Hermitian operator $\boldsymbol{H}=\boldsymbol{H}^{\dagger}$ of $\mathcal{H}: \boldsymbol{H}=\sum_{\nu} \lambda_{\nu} \boldsymbol{P}_{\nu}$ where ν is the label attached to the real eigenvalue λ_{ν} and \boldsymbol{P}_{ν} is the orthogonal projector on the eigen-space attached to $\lambda_{\nu}\left(\sum_{\nu} \boldsymbol{P}_{\nu}=\boldsymbol{I}\right.$ and $\lambda_{\nu} \neq \lambda_{\nu^{\prime}}$ for $\nu \neq \nu^{\prime}$).

- A unitary operator \boldsymbol{U} preserves the Hermitian product: $\boldsymbol{U}^{\dagger} \boldsymbol{U}=\boldsymbol{U} \boldsymbol{U}^{\dagger}=\boldsymbol{I}$. Typically $e^{-i t \boldsymbol{H} / \hbar}$ for \boldsymbol{H} Hermitian and t real is unitary. Usually \hbar is set to 1 and \boldsymbol{H} is in pulsation unit ($2 \pi \times$ frequency unit).
- Function of Hermitian operator: take $\lambda \mapsto f(\lambda)$ a real function. For any Hermitian operator $\boldsymbol{H}=\sum_{\nu} \lambda_{\nu} \boldsymbol{P}_{\nu}$ one has $f(\boldsymbol{H}) \triangleq \sum_{\nu} f\left(\lambda_{\nu}\right) \boldsymbol{P}_{\nu}$. For any Hermitian operator \boldsymbol{H}, unitary operator \boldsymbol{U} and function $f: \boldsymbol{U}^{\dagger} f(\boldsymbol{H}) \boldsymbol{U} \equiv f\left(\boldsymbol{U}^{\dagger} \boldsymbol{H} \boldsymbol{U}\right)$.
- Take a (trace-class) operator \boldsymbol{M} on $\mathcal{H}: \operatorname{Tr}(\boldsymbol{M})=\sum_{n}\langle n| \boldsymbol{M}|n\rangle$ independent of the chosen Hilbert basis ($|n\rangle$). For operators $\boldsymbol{M}_{A B}: \mathcal{H}_{A} \mapsto \mathcal{H}_{B}$ and $\boldsymbol{M}_{B A}=\mathcal{H}_{B} \mapsto \mathcal{H}_{A}, \operatorname{Tr}\left(\boldsymbol{M}_{A B} \boldsymbol{M}_{B A}\right)=\operatorname{Tr}\left(\boldsymbol{M}_{B A} \boldsymbol{M}_{A B}\right)$. In particular $\operatorname{Tr}(|\psi\rangle\langle\psi|) \equiv\langle\psi \mid \psi\rangle=\||\psi\rangle \|^{2}$.
- Density operator: an Hermitian operator ρ is a density operator on \mathcal{H} if, and only if, it is trace-class (important when \mathcal{H} is of infinite dimension), non negative and of trace one. The spectral decomposition, $\rho=\sum_{n} p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|$ with $\left(\left|\psi_{n}\right\rangle\right)$ an Hilbert basis of $\mathcal{H}, p_{n} \geq 0$ and $\operatorname{Tr}(\rho)=\sum_{n} p_{n}=1$, shows that ρ is a statistical mixture of orthogonal states $\left|\psi_{n}\right\rangle$ (here p_{n} is not necessarily different from $p_{n^{\prime}}$ when $\left.n \neq n^{\prime}\right) . \rho$ is said pure when $p_{n}=0$ except for $n=\bar{n}$: the pure state $\rho=\left|\psi_{\bar{n}}\right\rangle\left\langle\psi_{\bar{n}}\right|$ corresponds to the wave function $\left|\psi_{\bar{n}}\right\rangle$.

Tensor products, composite systems and partial trace

■ Hilbert space $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ of the bipartite system (A, B) with \mathcal{H}_{A} (resp. \mathcal{H}_{B}) Hilbert space for sub-system A (resp. B): $\mathcal{H} \ni|\psi\rangle=\sum_{n_{A}, n_{B}} \psi_{n_{A} n_{B}}\left|n_{A} n_{B}\right\rangle$ with $\left(\left|n_{A}\right\rangle\right)$ and $\left(\left|n_{B}\right\rangle\right)$ Hilbert basis for A and $B,\left(\left|n_{A} n_{B}\right\rangle \triangleq\left|n_{A}\right\rangle \otimes\left|n_{B}\right\rangle\right)$ Hilbert basis of $\mathcal{H}:\left\langle n_{A}^{\prime} n_{B}^{\prime} \mid n_{A} n_{B}\right\rangle=\left\langle n_{A}^{\prime} \mid n_{A}\right\rangle\left\langle n_{B}^{\prime} \mid n_{B}\right\rangle=\delta_{n_{A}^{\prime} n_{A}} \delta_{n_{B}^{\prime} n_{B}}$. With
$|\phi\rangle=\sum_{n_{A}, n_{B}} \phi_{n_{A} n_{B}}\left|n_{A} n_{B}\right\rangle$ the Hermitian product $\langle\psi \mid \phi\rangle=\sum_{n_{A}, n_{B}} \psi_{n_{A} n_{B}}^{*} \phi_{n_{A} n_{B}}$ is independent of the chosen Hilbert basis for A and B. If $|\psi\rangle=\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle$ and $|\phi\rangle=\left|\phi_{A}\right\rangle \otimes\left|\phi_{B}\right\rangle$ then $\langle\psi \mid \phi\rangle=\left\langle\psi_{A} \mid \phi_{A}\right\rangle\left\langle\psi_{B} \mid \phi_{B}\right\rangle$.

- $|\psi\rangle \in \mathcal{H}$ is said entangled if and only $\forall\left|\psi_{\boldsymbol{A}}\right\rangle \in \mathcal{H}_{A}$ and $\forall\left|\psi_{B}\right\rangle \in \mathcal{H}_{B}$
$|\psi\rangle \neq\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle$ (similar to functions of two variables $f\left(x_{A}, x_{B}\right)$ that are not the product of two functions of one variables, $f\left(x_{A}, x_{B}\right) \neq f_{A}\left(x_{A}\right) f_{B}\left(x_{B}\right)$ for all f_{A} and f_{B}). Otherwise $|\psi\rangle$ is said separable.
■ For operators \boldsymbol{A} on $\mathcal{H}_{\boldsymbol{A}}$ and \boldsymbol{B} on \mathcal{H}_{B}, their tensor product $\boldsymbol{A} \otimes \boldsymbol{B}$ is an operator of \mathcal{H} defined by $\boldsymbol{A} \otimes \boldsymbol{B}|\psi\rangle=\sum_{n_{A}, n_{B}} \psi_{n_{A} n_{B}} \boldsymbol{A} \otimes \boldsymbol{B}\left(\left|n_{A} n_{B}\right\rangle\right)$ with $\boldsymbol{A} \otimes \boldsymbol{B}\left(\left|n_{\boldsymbol{A}} n_{\boldsymbol{B}}\right\rangle\right)=\boldsymbol{A}\left|n_{\boldsymbol{A}}\right\rangle \otimes \boldsymbol{B}\left|n_{\boldsymbol{B}}\right\rangle$. Thus $\boldsymbol{A} \otimes \boldsymbol{B}\left(\left|\psi_{\boldsymbol{A}}\right\rangle \otimes\left|\psi_{\boldsymbol{B}}\right\rangle\right)=\boldsymbol{A}\left|\psi_{\boldsymbol{A}}\right\rangle \otimes \boldsymbol{B}\left|\psi_{\boldsymbol{B}}\right\rangle$. By a slight abuse of notation, $\boldsymbol{A} \otimes \boldsymbol{B}$ is denoted by $\boldsymbol{A B}$.
- Any operator \boldsymbol{A} on \mathcal{H}_{A} admits an direct extension on \mathcal{H}, corresponding to $\boldsymbol{A} \otimes \boldsymbol{I}_{B}$. Thus $\boldsymbol{A} \otimes \boldsymbol{I}_{\boldsymbol{B}}\left(\left|\psi_{\boldsymbol{A}}\right\rangle \otimes\left|\psi_{\boldsymbol{B}}\right\rangle\right)=\left(\boldsymbol{A}\left|\psi_{\boldsymbol{A}}\right\rangle\right) \otimes\left|\psi_{\boldsymbol{B}}\right\rangle$. Most of the time, , $\boldsymbol{A} \otimes \boldsymbol{I}_{\boldsymbol{B}}$ is denoted by \boldsymbol{A}.
- Partial trace: for any (trace-class) operator ρ on \mathcal{H} is attached a (trace-class) operator ρ_{B} on \mathcal{H}_{B}, denoted by $\operatorname{Tr}_{A}(\rho)$, obtained by tracing over A and characterized by the identity $\operatorname{Tr}_{(A, B)}\left(\boldsymbol{I}_{A} \otimes \boldsymbol{B} \rho\right) \equiv \operatorname{Tr}_{B}\left(\boldsymbol{B} \rho_{B}\right)$ for any (bounded) operator \boldsymbol{B} on \mathcal{H}_{B}. The map (super-operator) $\operatorname{Tr}_{A}(): \rho \mapsto \rho_{B}$ is linear, trace preserving and completely positive (quantum channel see Nielsen-Chuang book).

1 Schrödinger: wave funct. $|\psi\rangle \in \mathcal{H}$ or density op. $\boldsymbol{\rho} \sim|\psi\rangle\langle\psi|$

$$
\frac{d}{d t}|\psi\rangle=-\frac{i}{\hbar} \boldsymbol{H}|\psi\rangle, \quad \frac{d}{d t} \boldsymbol{\rho}=-\frac{i}{\hbar}[\boldsymbol{H}, \boldsymbol{\rho}], \quad \boldsymbol{H}=\boldsymbol{H}_{0}+u \boldsymbol{H}_{1}
$$

2 Entanglement and tensor product for composite systems (S, M):
■ Hilbert space $\mathcal{H}=\mathcal{H}_{S} \otimes \mathcal{H}_{M}$
■ Hamiltonian $\boldsymbol{H}=\boldsymbol{H}_{S} \otimes \boldsymbol{I}_{M}+\boldsymbol{H}_{\text {int }}+\boldsymbol{I}_{S} \otimes \boldsymbol{H}_{M}$
■ observable on sub-system M only: $\boldsymbol{O}=\boldsymbol{I}_{\boldsymbol{S}} \otimes \boldsymbol{O}_{M}$.
3 Randomness and irreversibility induced by the measurement of observable \boldsymbol{O} with spectral decomp. $\sum_{\mu} \lambda_{\mu} \boldsymbol{P}_{\mu}$:

■ measurement outcome μ with proba.
$\mathbb{P}_{\mu}=\langle\psi| \boldsymbol{P}_{\mu}|\psi\rangle=\operatorname{Tr}\left(\boldsymbol{\rho} \boldsymbol{P}_{\mu}\right)$ depending on $|\psi\rangle, \boldsymbol{\rho}$ just before the measurement

- measurement back-action if outcome $\mu=y$:

$$
|\psi\rangle \mapsto|\psi\rangle_{+}=\frac{\boldsymbol{P}_{y}|\psi\rangle}{\sqrt{\langle\psi| \boldsymbol{P}_{y}|\psi\rangle}}, \quad \boldsymbol{\rho} \mapsto \boldsymbol{\rho}_{+}=\frac{\boldsymbol{P}_{y} \boldsymbol{\rho} \boldsymbol{P}_{y}}{\operatorname{Tr}\left(\rho \boldsymbol{P}_{y}\right)}
$$

${ }^{3}$ S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and Photons. Oxford University Press, 2006.

Summary: quantum harmonic oscillator (spring system)

■ Hilbert space:

$$
\mathcal{H}=\left\{\sum_{n \geq 0} \psi_{n}|n\rangle,\left(\psi_{n}\right)_{n \geq 0} \in I^{2}(\mathbb{C})\right\} \equiv L^{2}(\mathbb{R}, \mathbb{C})
$$

- Quantum state space:

$$
\mathbb{D}=\left\{\rho \in \mathcal{L}(\mathcal{H}), \rho^{\dagger}=\rho, \operatorname{Tr}(\rho)=1, \rho \geq 0\right\} .
$$

■ Operators and commutations:
$a|n\rangle=\sqrt{n}|n-1\rangle, \mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle ;$
$\boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a}, \boldsymbol{N}|n\rangle=n|n\rangle ;$
$\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=\boldsymbol{I}, \boldsymbol{a} f(\boldsymbol{N})=f(\boldsymbol{N}+\boldsymbol{I}) \boldsymbol{a}$;
$\boldsymbol{D}_{\alpha}=\boldsymbol{e}^{\alpha \mathbf{a}^{\dagger}-\alpha^{\dagger} \boldsymbol{a}}, \boldsymbol{D}_{-\alpha} \boldsymbol{a} \boldsymbol{D}_{\alpha}=\boldsymbol{a}+\alpha \boldsymbol{I}$.
$\boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right),[\boldsymbol{X}, \boldsymbol{P}]=\imath \boldsymbol{I} / 2$.
■ Hamiltonian: $\boldsymbol{H} / \hbar=\omega_{c} \mathbf{a}^{\dagger} \boldsymbol{a}+\boldsymbol{u}_{c}\left(\boldsymbol{a}+\boldsymbol{a}^{\dagger}\right)$. (associated classical dynamics:

$$
\left.\frac{d x}{d t}=\omega_{c} p, \frac{d p}{d t}=-\omega_{c} x-\sqrt{2} u_{c}\right) .
$$

- Classical pure state \equiv coherent state $|\alpha\rangle$

$$
\begin{aligned}
& \alpha \in \mathbb{C}:|\alpha\rangle=\sum_{n \geq 0}\left(e^{-|\alpha|^{2} / 2} \frac{\alpha^{n}}{\sqrt{n!}}\right)|n\rangle ;|\alpha\rangle \equiv \frac{1}{\pi^{1 / 4}} e^{r \sqrt{2} x \Im \alpha} e^{-\frac{(x-\sqrt{2} \Re \alpha)^{2}}{2}} \\
& \boldsymbol{a}|\alpha\rangle=\alpha|\alpha\rangle, \boldsymbol{D}_{\alpha}|0\rangle=|\alpha\rangle .
\end{aligned}
$$

■ Hilbert space:

$$
\mathcal{H}=\mathbb{C}^{2}=\left\{c_{g}|g\rangle+c_{e}|e\rangle, c_{g}, c_{e} \in \mathbb{C}\right\} .
$$

■ Quantum state space:
$\mathbb{D}=\left\{\rho \in \mathcal{L}(\mathcal{H}), \rho^{\dagger}=\rho, \operatorname{Tr}(\rho)=1, \rho \geq 0\right\}$.
■ Operators and commutations:

$$
\begin{aligned}
& \sigma_{\mathbf{-}}=|g\rangle\langle e|, \sigma_{+}=\sigma_{-}^{\dagger}=|e\rangle\langle g| \\
& \sigma_{\mathbf{x}}=\sigma_{\mathbf{-}}+\sigma_{+}=|g\rangle\langle e|+|e\rangle\langle g| ; \\
& \sigma_{\mathbf{y}}=i \sigma_{-}-i \sigma_{+}=i|g\rangle\langle e|-i|e\rangle\langle g| ; \\
& \sigma_{\mathbf{z}}=\sigma_{+} \sigma_{-}-\sigma_{-} \sigma_{+}=|e\rangle\langle e|-|g\rangle\langle g| ; \\
& \sigma_{\mathbf{x}}^{2}=\boldsymbol{I}, \sigma_{\mathbf{x}} \sigma_{\mathbf{y}}=i \sigma_{\mathbf{z}},\left[\sigma_{\mathbf{x}}, \sigma_{\mathbf{y}}\right]=2 i \sigma_{\mathbf{z}}, \ldots
\end{aligned}
$$

■ Hamiltonian: $\boldsymbol{H} / \hbar=\omega_{q} \sigma_{\boldsymbol{z}} / 2+u_{q} \sigma_{\boldsymbol{x}} / 2$.
■ Bloch sphere representation:
$\mathbb{D}=\left\{\left.\frac{1}{2}\left(\boldsymbol{I}+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}\right) \right\rvert\,(x, y, z) \in \mathbb{R}^{3}, x^{2}+y^{2}+z^{2} \leq 1\right\}$
With $\vec{M}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ Schrödinger eq. reads $\frac{d}{d t} \vec{M}=\left(u_{q} \vec{\imath}+\omega_{q} \vec{k}\right) \times \vec{M}$.

Summary: spin/spring composite system

Hilbert space
$\mathcal{H}=\left\{\sum_{n \geq 0} \psi_{\text {gn }}|g n\rangle+\psi_{\text {en }}|e n\rangle, \sum_{n}\left|\psi_{\text {gn }}\right|^{2}+\left|\psi_{\text {en }}\right|^{2}<+\infty\right\} \equiv \mathbb{C}^{2} \otimes L^{2}(\mathbb{R}, \mathbb{C})$.
Dispersive Hamiltonian $\left(\omega_{\text {eg }} \neq \omega_{c}\right)$

$$
\boldsymbol{H}_{\mathrm{disp}} / \hbar=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega_{\boldsymbol{c}} \boldsymbol{N}-\frac{\chi}{2} \boldsymbol{\sigma}_{\mathbf{z}} \boldsymbol{N}
$$

and propagator ($i \hbar \frac{d}{d t} \boldsymbol{U}=\boldsymbol{H} \boldsymbol{U}$ with $\boldsymbol{U}(0)=\boldsymbol{I}$):

$$
\begin{aligned}
e^{-i t H_{\text {disp }} / \hbar}=\boldsymbol{U}(t)=e^{i \omega_{\mathrm{eg}} t / 2} \mid & g\rangle\langle g| \otimes \exp \left(-i\left(\omega_{c}+\frac{\chi}{2}\right) t \boldsymbol{N}\right) \\
& +e^{-i \omega_{\mathrm{eg}} t / 2}|e\rangle\langle e| \otimes \exp \left(-i\left(\omega_{c}-\frac{\chi}{2}\right) t \boldsymbol{N}\right)
\end{aligned}
$$

Resonant Hamiltonian (Jaynes-Cummings) ($\omega_{\mathrm{eg}}=\omega_{c}=\omega$):

$$
\boldsymbol{H}_{\mathrm{JC}} / \hbar=\frac{\omega}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega \boldsymbol{N}+i \frac{\Omega}{2}\left(\boldsymbol{\sigma}_{\mathbf{-}} \boldsymbol{a}^{\dagger}-\boldsymbol{\sigma}_{+} \boldsymbol{a}\right) .
$$

with $\boldsymbol{U}(t)=e^{-i t H_{\mathrm{Jc}} / \hbar}=e^{-i \omega t\left(\frac{\sigma_{\mathbf{z}}}{2}+\boldsymbol{N}\right)} e^{\frac{\Omega t}{2}\left(\boldsymbol{\sigma} \cdot \mathbf{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)}$ where $\left(\theta=\frac{\Omega t}{2}\right)$

$$
\begin{aligned}
& e^{\theta\left(\sigma \cdot a^{\dagger}-\sigma_{+} \mathbf{a}\right)}=|g\rangle\langle g| \otimes \cos (\theta \sqrt{\boldsymbol{N}})+|e\rangle\langle e| \otimes \cos (\theta \sqrt{\boldsymbol{N}+\boldsymbol{I})} \\
&-\sigma_{+} \otimes \boldsymbol{a} \frac{\sin (\theta \sqrt{\boldsymbol{N}})}{\sqrt{\boldsymbol{N}}}+\boldsymbol{\sigma}_{-} \otimes \frac{\sin (\theta \sqrt{\boldsymbol{N}})}{\sqrt{\boldsymbol{N}}} \mathbf{a}^{\dagger}
\end{aligned}
$$

Classical Hamiltonian formulation of $\frac{d^{2}}{d t^{2}} x=-\omega^{2} x$

$$
\frac{d}{d t} x=\omega p=\frac{\partial \mathbb{H}}{\partial p}, \quad \frac{d}{d t} p=-\omega x=-\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right)
$$

Electrical oscillator:
Mechanical oscillator

LC oscillator:
Frictionless spring: $\frac{d^{2}}{d t^{2}} x=-\frac{k}{m} x$.

$$
\frac{d}{d t} I=\frac{V}{L}, \frac{d}{d t} V=-\frac{I}{C}, \quad\left(\frac{d^{2}}{d t^{2}} I=-\frac{1}{L C} I\right) .
$$

Harmonic oscillator ${ }^{4}$: quantization and correspondence principle

$$
\frac{d}{d t} x=\omega p=\frac{\partial \mathbb{H}}{\partial p}, \quad \frac{d}{d t} p=-\omega x=-\frac{\partial \mathbb{H}}{\partial x}, \quad \mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right)
$$

Quantization: probability wave function $|\psi\rangle_{t} \sim(\psi(x, t))_{x \in \mathbb{R}}$ with $|\psi\rangle_{t} \sim \psi(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ obeys to the Schrödinger equation ($\hbar=1$ in all the sequel)

$$
i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}|\psi\rangle, \quad \boldsymbol{H}=\omega\left(\boldsymbol{P}^{2}+\boldsymbol{X}^{2}\right)=-\frac{\omega}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega}{2} x^{2}
$$

where \boldsymbol{H} results from \mathbb{H} by replacing x by position operator $\sqrt{2} \boldsymbol{X}$ and p by momentum operator $\sqrt{2} \boldsymbol{P}=-i \frac{\partial}{\partial x}$. \boldsymbol{H} is a Hermitian operator on $L^{2}(\mathbb{R}, \mathbb{C})$, with its domain to be given.

PDE model: $i \frac{\partial \psi}{\partial t}(x, t)=-\frac{\omega}{2} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)+\frac{\omega}{2} x^{2} \psi(x, t), \quad x \in \mathbb{R}$.
${ }^{4}$ Two references: C. Cohen-Tannoudji, B. Diu, and F. Laloë. Mécanique Quantique, volume I\& II. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.

Oxford University Press, 2003.

Average position $\langle\boldsymbol{X}\rangle_{t}=\langle\psi| \boldsymbol{X}|\psi\rangle$ and momentum $\langle\boldsymbol{P}\rangle_{t}=\langle\psi| \boldsymbol{P}|\psi\rangle$:

$$
\langle\boldsymbol{X}\rangle_{t}=\frac{1}{\sqrt{2}} \int_{-\infty}^{+\infty} x|\psi|^{2} d x, \quad\langle\boldsymbol{P}\rangle_{t}=-\frac{i}{\sqrt{2}} \int_{-\infty}^{+\infty} \psi^{*} \frac{\partial \psi}{\partial x} d x .
$$

Annihilation \boldsymbol{a} and creation operators \boldsymbol{a}^{\dagger} (domains to be given):

$$
\boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right), \quad \boldsymbol{a}^{\dagger}=\boldsymbol{X}-i \boldsymbol{P}=\frac{1}{\sqrt{2}}\left(x-\frac{\partial}{\partial x}\right)
$$

Commutation relationships:

$$
[\boldsymbol{X}, \boldsymbol{P}]=\frac{i}{2} \boldsymbol{I}, \quad\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=\boldsymbol{I}, \quad \boldsymbol{H}=\omega\left(\boldsymbol{P}^{2}+\boldsymbol{X}^{2}\right)=\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{I}}{2}\right) .
$$

Set $\boldsymbol{X}_{\lambda}=\frac{1}{2}\left(e^{-i \lambda} \boldsymbol{a}+\boldsymbol{e}^{i \lambda} \mathbf{a}^{\dagger}\right)$ for any angle λ :

$$
\left[\boldsymbol{X}_{\lambda}, \boldsymbol{X}_{\lambda+\frac{\pi}{2}}\right]=\frac{i}{2} \boldsymbol{I} .
$$

Spectrum of Hamiltonian $\boldsymbol{H}=-\frac{\omega}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega}{2} x^{2}$:
$E_{n}=\omega\left(n+\frac{1}{2}\right), \psi_{n}(x)=\left(\frac{1}{\pi}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} e^{-x^{2} / 2} H_{n}(x), H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}$.

Spectral decomposition of $\mathbf{a}^{\dagger} \boldsymbol{a}$ using $\left[\mathbf{a}, \boldsymbol{a}^{\dagger}\right]=1$:
■ If $|\psi\rangle$ is an eigenstate associated to eigenvalue $\lambda, \boldsymbol{a}|\psi\rangle$ and $\mathbf{a}^{\dagger}|\psi\rangle$ are also eigenstates associated to $\lambda-1$ and $\lambda+1$.

- $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ is semi-definite positive.
- The ground state $\left|\psi_{0}\right\rangle$ is necessarily associated to eigenvalue 0 and is given by the Gaussian function $\psi_{0}(x)=\frac{1}{\pi^{1 / 4}} \exp \left(-x^{2} / 2\right)$.
$\left[\boldsymbol{a}, \boldsymbol{a}^{\dagger}\right]=1$: spectrum of $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ is non-degenerate and is \mathbb{N}.
Fock state with n photons (phonons): the eigenstate of $\boldsymbol{a}^{\dagger} \boldsymbol{a}$ associated to the eigenvalue $n\left(|n\rangle \sim \psi_{n}(x)\right)$:

$$
\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=n|n\rangle, \quad \mathbf{a}|n\rangle=\sqrt{n}|n-1\rangle, \quad \mathbf{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle .
$$

The ground state $|0\rangle$ is called 0 -photon state or vacuum state.
The operator \boldsymbol{a} (resp. \boldsymbol{a}^{\dagger}) is the annihilation (resp. creation) operator since it transfers $|n\rangle$ to $|n-1\rangle$ (resp. $|n+1\rangle$) and thus decreases (resp. increases) the quantum number n by one unit.

Hilbert space of quantum system: $\mathcal{H}=\left\{\sum_{n} c_{n}|n\rangle \mid\left(c_{n}\right) \in I^{2}(\mathbb{C})\right\} \sim L^{2}(\mathbb{R}, \mathbb{C})$.
Domain of \boldsymbol{a} and $\boldsymbol{a}^{\dagger}:\left\{\sum_{n} c_{n}|n\rangle \mid\left(c_{n}\right) \in h^{1}(\mathbb{C})\right\}$.
Domain of \boldsymbol{H} ot $\boldsymbol{a}^{\dagger} \boldsymbol{a}:\left\{\sum_{n} c_{n}|\eta\rangle \mid\left(c_{n}\right) \in h^{2}(\mathbb{C})\right\}$.

$$
h^{k}(\mathbb{C})=\left\{\left.\left(c_{n}\right) \in I^{2}(\mathbb{C})\left|\sum n^{k}\right| c_{n}\right|^{2}<\infty\right\}, \quad k=1,2 .
$$

Quantization of $\frac{d^{2}}{d t^{2}} x=-\omega^{2} x-\omega \sqrt{2} u,\left(\mathbb{H}=\frac{\omega}{2}\left(p^{2}+x^{2}\right)+\sqrt{2} u x\right)$

$$
\boldsymbol{H}=\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{\mathbf{l}}{2}\right)+u\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)
$$

The associated controlled PDE

$$
i \frac{\partial \psi}{\partial t}(x, t)=-\frac{\omega}{2} \frac{\partial^{2} \psi}{\partial x^{2}}(x, t)+\left(\frac{\omega}{2} x^{2}+\sqrt{2} u x\right) \psi(x, t) .
$$

Glauber displacement operator \boldsymbol{D}_{α} (unitary) with $\alpha \in \mathbb{C}$:

$$
\boldsymbol{D}_{\alpha}=e^{\alpha \mathbf{a}^{\dagger}-\alpha^{*} \boldsymbol{a}}=e^{2 i \Im \alpha \boldsymbol{X}-2 i \Re \alpha \boldsymbol{P}}
$$

From Baker-Campbell Hausdorf formula, for all operators \boldsymbol{A} and \boldsymbol{B},

$$
e^{\boldsymbol{A}} \boldsymbol{B} e^{-\boldsymbol{A}}=\boldsymbol{B}+[\boldsymbol{A}, \boldsymbol{B}]+\frac{1}{2!}[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]+\frac{1}{3!}[\boldsymbol{A},[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]]+\ldots
$$

we get the Glauber formula ${ }^{5}$ when $[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]=[\boldsymbol{B},[\boldsymbol{A}, \boldsymbol{B}]]=0$:

$$
e^{\boldsymbol{A}+\boldsymbol{B}}=e^{\boldsymbol{A}} e^{\boldsymbol{B}} e^{-\frac{1}{2}[\boldsymbol{A}, \boldsymbol{B}]}
$$

${ }^{5}$ Take s derivative of $e^{s(A+B)}$ and of $e^{s A} e^{s B} e^{-\frac{s^{2}}{2}[A, B]}$.

With $\boldsymbol{A}=\alpha \boldsymbol{a}^{\dagger}$ and $\boldsymbol{B}=-\alpha^{*} \boldsymbol{a}$, Glauber formula gives:

$$
\begin{aligned}
& \boldsymbol{D}_{\alpha}=e^{-\frac{|\alpha|^{2}}{2}} e^{\alpha \boldsymbol{a}^{\dagger}} e^{-\alpha^{*} \boldsymbol{a}}=e^{+\frac{|\alpha|^{2}}{2}} e^{-\alpha^{*} \boldsymbol{a}} \boldsymbol{e}^{\alpha \boldsymbol{a}^{\dagger}} \\
& \boldsymbol{D}_{-\alpha} \boldsymbol{a} \boldsymbol{D}_{\alpha}=\boldsymbol{a}+\alpha \boldsymbol{\text { and }} \quad \boldsymbol{D}_{-\alpha} \boldsymbol{a}^{\dagger} \boldsymbol{D}_{\alpha}=\boldsymbol{a}^{\dagger}+\alpha^{*} \boldsymbol{I} .
\end{aligned}
$$

With $\boldsymbol{A}=2 i \Im \alpha \boldsymbol{X} \sim i \sqrt{2} \Im \alpha x$ and $\boldsymbol{B}=-2 \Re \alpha \boldsymbol{P} \sim-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}$, Glauber formula gives ${ }^{6}$:

$$
\begin{aligned}
& \boldsymbol{D}_{\alpha}=e^{-i \Re \alpha \Im \alpha} e^{i \sqrt{2} \Im \alpha x} e^{-\sqrt{2} \Re \alpha \frac{\partial}{\partial x}} \\
& \left(\boldsymbol{D}_{\alpha}|\psi\rangle\right)_{x, t}=e^{-i \Re \alpha \Im \alpha} e^{i \sqrt{2} \Im \alpha x} \psi(x-\sqrt{2} \Re \alpha, t)
\end{aligned}
$$

Exercise: Prove that, for any $\alpha, \beta, \epsilon \in \mathbb{C}$, we have

$$
\begin{align*}
& \boldsymbol{D}_{\alpha+\beta}=e^{\frac{\alpha^{*} \beta-\alpha \beta^{*}}{2}} \boldsymbol{D}_{\alpha} \boldsymbol{D}_{\beta} \\
& \boldsymbol{D}_{\alpha+\epsilon} \boldsymbol{D}_{-\alpha}=\left(1+\frac{\alpha \epsilon^{*}-\alpha^{*} \epsilon}{2}\right) \boldsymbol{I}+\epsilon \boldsymbol{a}^{\dagger}-\epsilon^{*} \boldsymbol{a}+\boldsymbol{O}\left(|\epsilon|^{2}\right) \\
& \left(\frac{d}{d t} \boldsymbol{D}_{\alpha}\right) \boldsymbol{D}_{-\alpha}=\left(\frac{\alpha \frac{d}{d t} \alpha^{*}-\alpha^{*} \frac{d}{d t} \alpha}{2}\right) \boldsymbol{I}+\left(\frac{d}{d t} \alpha\right) \boldsymbol{a}^{\dagger}-\left(\frac{d}{d t} \alpha^{*}\right) \boldsymbol{a} \tag{a.}
\end{align*}
$$

[^1]Take $|\psi\rangle$ solution of the controlled Schrödinger equation $i \frac{d}{d t}|\psi\rangle=\left(\omega\left(\mathbf{a}^{\dagger} \boldsymbol{a}+\frac{1}{2}\right)+u\left(\boldsymbol{a}+\mathbf{a}^{\dagger}\right)\right)|\psi\rangle$. Set $\langle\mathbf{a}\rangle=\langle\psi| \mathbf{a}|\psi\rangle$. Then

$$
\frac{d}{d t}\langle\boldsymbol{a}\rangle=-i \omega\langle\boldsymbol{a}\rangle-i u .
$$

From $\boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P}$, we have $\langle\boldsymbol{a}\rangle=\langle\boldsymbol{X}\rangle+i\langle\boldsymbol{P}\rangle$ where $\langle\boldsymbol{X}\rangle=\langle\psi| \boldsymbol{X}|\psi\rangle \in \mathbb{R}$ and $\langle\boldsymbol{P}\rangle=\langle\psi| \boldsymbol{P}|\psi\rangle \in \mathbb{R}$. Consequently:

$$
\frac{d}{d t}\langle\boldsymbol{X}\rangle=\omega\langle\boldsymbol{P}\rangle, \quad \frac{d}{d t}\langle\boldsymbol{P}\rangle=-\omega\langle\boldsymbol{X}\rangle-u
$$

Consider the change of frame $|\psi\rangle=e^{-i \theta_{t}} \boldsymbol{D}_{\langle\mathbf{a}\rangle_{t}}|\chi\rangle$ with

$$
\theta_{t}=\int_{0}^{t}\left(\omega|\langle\boldsymbol{a}\rangle|^{2}+u \Re(\langle\boldsymbol{a}\rangle)\right), \quad D_{\langle\mathbf{a}\rangle_{t}}=e^{\langle\mathbf{a}\rangle_{t} \mathbf{a}^{\dagger}-\langle\boldsymbol{a}\rangle_{t}^{*} \boldsymbol{a}},
$$

Then $|\chi\rangle$ obeys to autonomous Schrödinger equation

$$
i \frac{d}{d t}|\chi\rangle=\omega\left(\boldsymbol{a}^{\dagger} \boldsymbol{a}+\frac{l}{2}\right)|\chi\rangle .
$$

The dynamics of $|\psi\rangle$ can be decomposed into two parts:

- a controllable part of dimension two for $\langle\boldsymbol{a}\rangle$
$■$ an uncontrollable part of infinite dimension for $|\chi\rangle$.

Coherent states

$$
|\alpha\rangle=\boldsymbol{D}_{\alpha}|0\rangle=e^{-\frac{|\alpha|^{2}}{2}} \sum_{n=0}^{+\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle, \quad \alpha \in \mathbb{C}
$$

are the states reachable from vacuum set. They are also the eigenstate of $\mathbf{a}: \mathbf{a}|\alpha\rangle=\alpha|\alpha\rangle$.
A widely known result in quantum optics ${ }^{7}$: classical currents and sources (generalizing the role played by u) only generate classical light (quasi-classical states of the quantized field generalizing the coherent state introduced here) We just propose here a control theoretic interpretation in terms of reachable set from vacuum.

[^2]
2-level system (spin-1/2)

The simplest quantum system: a ground state $|g\rangle$ of energy ω_{g}; an excited state $|e\rangle$ of energy ω_{e}. The quantum state $|\psi\rangle \in \mathbb{C}^{2}$ is a linear superposition $|\psi\rangle=\psi_{g}|g\rangle+\psi_{e}|e\rangle$ and obey to the Schrödinger equation (ψ_{g} and ψ_{e} depend on t).
Schrödinger equation for the uncontrolled 2-level system ($\hbar=1$) :

$$
\imath \frac{d}{d t}|\psi\rangle=\boldsymbol{H}_{0}|\psi\rangle=\left(\omega_{e}|e\rangle\langle e|+\omega_{g}|g\rangle\langle g|\right)|\psi\rangle
$$

where \boldsymbol{H}_{0} is the Hamiltonian, a Hermitian operator $\boldsymbol{H}_{0}^{\dagger}=\boldsymbol{H}_{0}$. Energy is defined up to a constant: \boldsymbol{H}_{0} and $\boldsymbol{H}_{0}+\varpi(t) \boldsymbol{I}(\varpi(t) \in \mathbb{R}$ arbitrary) are attached to the same physical system. If $|\psi\rangle$ satisfies $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}_{0}|\psi\rangle$ then $|\chi\rangle=e^{-i \vartheta(t)}|\psi\rangle$ with $\frac{d}{d t} \vartheta=\varpi$ obeys to $i \frac{d}{d t}|\chi\rangle=\left(\boldsymbol{H}_{0}+\varpi \boldsymbol{I}\right)|\chi\rangle$. Thus for any $\vartheta,|\psi\rangle$ and $e^{-i \vartheta}|\psi\rangle$ represent the same physical system: The global phase of a quantum system $|\psi\rangle$ can be chosen arbitrarily at any time.

Take origin of energy such that ω_{g} (resp. ω_{e}) becomes $-\frac{\omega_{e}-\omega_{g}}{2}$ (resp. $\frac{\omega_{e}-\omega_{g}}{2}$) and set $\omega_{\mathrm{eg}}=\omega_{e}-\omega_{g}$
The solution of $i \frac{d}{d t}|\psi\rangle=H_{0}|\psi\rangle=\frac{\omega_{\mathrm{eg}}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)|\psi\rangle$ is

$$
|\psi\rangle_{t}=\psi_{g 0} e^{\frac{i \omega_{\mathrm{eg}} t}{2}}|g\rangle+\psi_{e 0} e^{\frac{-i \omega_{\mathrm{eg}} t}{2}}|e\rangle .
$$

With a classical electromagnetic field described by $u(t) \in \mathbb{R}$, the coherent evolution the controlled Hamiltonian
$\boldsymbol{H}(t)=\frac{\omega_{\mathrm{eg}}}{2} \sigma_{\boldsymbol{z}}+\frac{u(t)}{2} \sigma_{\boldsymbol{x}}=\frac{\omega_{\mathrm{eg}}}{2}(|e\rangle\langle e|-|g\rangle\langle g|)+\frac{u(t)}{2}(|e\rangle\langle g|+|g\rangle\langle e|)$
The controlled Schrödinger equation $i \frac{d}{d t}|\psi\rangle=\left(\boldsymbol{H}_{0}+u(t) \boldsymbol{H}_{1}\right)|\psi\rangle$ reads:

$$
i \frac{d}{d t}\binom{\psi_{e}}{\psi_{g}}=\frac{\omega_{\mathrm{eg}}}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\psi_{e}}{\psi_{g}}+\frac{u(t)}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\psi_{e}}{\psi_{g}}
$$

The 3 Pauli Matrices ${ }^{8}$

$$
\sigma_{\boldsymbol{x}}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{\boldsymbol{y}}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{\boldsymbol{z}}=|e\rangle\langle e|-|g\rangle\langle g|
$$

${ }^{8}$ They correspond, up to multiplication by i, to the 3 imaginary quaternions.
$\sigma_{\boldsymbol{x}}=|e\rangle\langle g|+|g\rangle\langle e|, \sigma_{\boldsymbol{y}}=-i|e\rangle\langle g|+i|g\rangle\langle e|, \sigma_{\boldsymbol{z}}=|e\rangle\langle e|-|g\rangle\langle g|$ $\sigma_{\boldsymbol{x}}{ }^{2}=\boldsymbol{I}, \quad \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}=i \sigma_{\boldsymbol{z}}, \quad\left[\sigma_{\boldsymbol{x}}, \sigma_{\boldsymbol{y}}\right]=2 i \sigma_{\boldsymbol{z}}, \quad$ circular permutation \ldots

■ Since for any $\theta \in \mathbb{R}, e^{i \theta \sigma_{\boldsymbol{x}}}=\cos \theta+i \sin \theta \sigma_{\boldsymbol{x}}$ (idem for $\sigma_{\boldsymbol{y}}$ and $\boldsymbol{\sigma}_{\boldsymbol{z}}$), the solution of $i \frac{d}{d t}|\psi\rangle=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}|\psi\rangle$ is

$$
|\psi\rangle_{t}=e^{\frac{-i \omega_{\mathrm{eg}} t}{2}} \boldsymbol{\sigma}_{\boldsymbol{z}}|\psi\rangle_{0}=\left(\cos \left(\frac{\omega_{\mathrm{eg}} t}{2}\right) \boldsymbol{I}-i \sin \left(\frac{\omega_{\mathrm{eg}} t}{2}\right) \boldsymbol{\sigma}_{\boldsymbol{z}}\right)|\psi\rangle_{0}
$$

■ For $\alpha, \beta=\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \alpha \neq \beta$ we have

$$
\sigma_{\alpha} e^{i \theta \sigma_{\beta}}=e^{-i \theta \sigma_{\beta}} \sigma_{\alpha}, \quad\left(e^{i \theta \sigma_{\alpha}}\right)^{-1}=\left(e^{i \theta \sigma_{\alpha}}\right)^{\dagger}=e^{-i \theta \sigma_{\alpha}}
$$

and also

$$
e^{-\frac{i \theta}{2} \sigma_{\alpha}} \sigma_{\beta} e^{\frac{i \theta}{2} \sigma_{\alpha}}=e^{-i \theta \sigma_{\alpha}} \sigma_{\boldsymbol{\beta}}=\sigma_{\beta} e^{i \theta \sigma_{\alpha}}
$$

Density matrix and Bloch Sphere

We start from $|\psi\rangle$ that obeys $i \frac{d}{d t}|\psi\rangle=\boldsymbol{H}|\psi\rangle$. We consider the orthogonal projector on $|\psi\rangle, \rho=|\psi\rangle\langle\psi|$, called density operator. Then ρ is an Hermitian operator ≥ 0, that satisfies $\operatorname{Tr}(\rho)=1$, $\rho^{2}=\rho$ and obeys to the Liouville equation:

$$
\frac{d}{d t} \rho=-i[\boldsymbol{H}, \rho] .
$$

For a two level system $|\psi\rangle=\psi_{g}|g\rangle+\psi_{e}|e\rangle$ and

$$
\rho=\frac{I+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}}{2}
$$

where $(x, y, z)=\left(2 \Re\left(\psi_{g} \psi_{e}^{*}\right), 2 \Im\left(\psi_{g} \psi_{e}^{*}\right),\left|\psi_{e}\right|^{2}-\left|\psi_{g}\right|^{2}\right) \in \mathbb{R}^{3}$ represent a vector \vec{M}, the Bloch vector, that evolves on the unite sphere of $\mathbb{R}^{3}, \mathbb{S}^{2}$ called the Bloch Sphere since $\operatorname{Tr}\left(\rho^{2}\right)=x^{2}+y^{2}+z^{2}=1$. The Liouville equation with $\boldsymbol{H}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{Z}}+\frac{u}{2} \sigma_{\boldsymbol{X}}$ reads

$$
\frac{d}{d t} \vec{M}=\left(u \vec{i}+\omega_{\mathrm{eg}} \vec{k}\right) \times \vec{M}
$$

2-level system lives on \mathbb{C}^{2} with $\boldsymbol{H}_{q}=\frac{\omega_{\text {eg }}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}$ oscillator lives on $L^{2}(\mathbb{R}, \mathbb{C}) \sim I^{2}(\mathbb{C})$ with

$$
\begin{array}{r}
\boldsymbol{H}_{c}=-\frac{\omega_{c}}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\omega_{c}}{2} x^{2} \sim \omega_{c}\left(\boldsymbol{N}+\frac{l}{2}\right) \\
\boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a} \text { and } \boldsymbol{a}=\boldsymbol{X}+i \boldsymbol{P} \sim \frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)
\end{array}
$$

The composite system lives on the tensor product $\mathbb{C}^{2} \otimes L^{2}(\mathbb{R}, \mathbb{C}) \sim \mathbb{C}^{2} \otimes I^{2}(\mathbb{C})$ with spin-spring Hamiltonian

$$
\boldsymbol{H}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}} \otimes \boldsymbol{I}_{c}+\omega_{c} \boldsymbol{I}_{q} \otimes\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)+i \frac{\Omega}{2} \sigma_{\mathbf{x}} \otimes\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)
$$

with the typical scales $\Omega \ll \omega_{c}, \omega_{\text {eg }}$ and $\left|\omega_{c}-\omega_{\text {eg }}\right| \ll \omega_{c}, \omega_{\text {eg }}$. Shortcut notations:

$$
\boldsymbol{H}=\underbrace{\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}}_{\boldsymbol{H}_{q}}+\underbrace{\omega_{c}\left(\boldsymbol{N}+\frac{\boldsymbol{I}}{2}\right)}_{\boldsymbol{H}_{c}}+\underbrace{i \frac{\Omega}{2} \sigma_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)}_{\boldsymbol{H}_{\text {int }}}
$$

The Schrödinger system

$$
i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{\mathbf{I}}{2}\right)+i \frac{\Omega}{2} \boldsymbol{\sigma}_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)\right)|\psi\rangle
$$

corresponds to two coupled scalar PDE's:

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega_{\mathrm{eg}}}{2} \psi_{e}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}-i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{g} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega_{\mathrm{eg}}}{2} \psi_{g}+\frac{\omega_{c}}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}-i \frac{\Omega}{\sqrt{2}} \frac{\partial}{\partial x} \psi_{e}
\end{aligned}
$$

since $\boldsymbol{N}=\boldsymbol{a}^{\dagger} \boldsymbol{a}, \boldsymbol{a}=\frac{1}{\sqrt{2}}\left(x+\frac{\partial}{\partial x}\right)$ and $|\psi\rangle=\left(\psi_{e}(x, t), \psi_{g}(x, t)\right)$, $\psi_{g}(., t), \psi_{e}(., t) \in L^{2}(\mathbb{R}, \mathbb{C})$ and $\left\|\psi_{g}\right\|^{2}+\left\|\psi_{e}\right\|^{2}=1$.

The Schrödinger system

$$
i \frac{d}{d t}|\psi\rangle=\left(\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)+i \frac{\Omega}{2} \boldsymbol{\sigma}_{\boldsymbol{x}}\left(\boldsymbol{a}^{\dagger}-\boldsymbol{a}\right)\right)|\psi\rangle
$$

corresponds also to an infinite set of ODE's
$i \frac{d}{d t} \psi_{e, n}=\left((n+1 / 2) \omega_{c}+\omega_{\mathrm{eg}} / 2\right) \psi_{e, n}+i \frac{\Omega}{2}\left(\sqrt{n} \psi_{g, n-1}-\sqrt{n+1} \psi_{g, n+1}\right)$
$i \frac{d}{d t} \psi_{g, n}=\left((n+1 / 2) \omega_{c}-\omega_{\mathrm{eg}} / 2\right) \psi_{g, n}+i \frac{\Omega}{2}\left(\sqrt{n} \psi_{e, n-1}-\sqrt{n+1} \psi_{e, n+1}\right)$
where $|\psi\rangle=\sum_{n=0}^{+\infty} \psi_{g, n}|g, n\rangle+\psi_{e, n}|e, n\rangle, \psi_{g, n}, \psi_{e, n} \in \mathbb{C}$.

$$
\boldsymbol{H} \approx \boldsymbol{H}_{\mathrm{disp}}=\frac{\omega_{\mathrm{eg}}}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega_{c}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right)-\frac{\chi}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}\left(\boldsymbol{N}+\frac{\boldsymbol{l}}{2}\right) \quad \text { with } \chi=\frac{\Omega^{2}}{2\left(\omega_{c}-\omega_{\mathrm{eg}}\right)}
$$

The corresponding PDE is :

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega_{\mathrm{eg}}}{2} \psi_{e}+\frac{1}{2}\left(\omega_{c}-\frac{\chi}{2}\right)\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega_{\mathrm{eg}}}{2} \psi_{g}+\frac{1}{2}\left(\omega_{c}+\frac{\chi}{2}\right)\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}
\end{aligned}
$$

The propagator, the t-dependant unitary operator \boldsymbol{U} solution of $i \frac{d}{d t} \boldsymbol{U}=\boldsymbol{H} \boldsymbol{U}$ with $\boldsymbol{U}(0)=\boldsymbol{I}$, reads:

$$
\begin{aligned}
\boldsymbol{U}(t)=e^{i \omega_{\mathrm{eg}} t / 2} \exp & \left(-i\left(\omega_{c}+\chi / 2\right) t\left(\boldsymbol{N}+\frac{l}{2}\right)\right) \otimes|g\rangle\langle g| \\
& +e^{-i \omega_{\mathrm{eg}} t / 2} \exp \left(-i\left(\omega_{c}-\chi / 2\right) t\left(\boldsymbol{N}+\frac{1}{2}\right)\right) \otimes|e\rangle\langle e|
\end{aligned}
$$

The Hamiltonian becomes (Jaynes-Cummings Hamiltonian):

$$
\boldsymbol{H} \approx \boldsymbol{H}_{J C}=\frac{\omega}{2} \boldsymbol{\sigma}_{\mathbf{z}}+\omega\left(\boldsymbol{N}+\frac{\mathbf{I}}{2}\right)+i \frac{\Omega}{2}\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right) .
$$

The corresponding PDE is :

$$
\begin{aligned}
& i \frac{\partial \psi_{e}}{\partial t}=+\frac{\omega}{2} \psi_{e}+\frac{\omega}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{e}-i \frac{\Omega}{2 \sqrt{2}}\left(x+\frac{\partial}{\partial x}\right) \psi_{g} \\
& i \frac{\partial \psi_{g}}{\partial t}=-\frac{\omega}{2} \psi_{g}+\frac{\omega}{2}\left(x^{2}-\frac{\partial^{2}}{\partial x^{2}}\right) \psi_{g}+i \frac{\Omega}{2 \sqrt{2}}\left(x-\frac{\partial}{\partial x}\right) \psi_{e}
\end{aligned}
$$

Exercise: For $\boldsymbol{H}_{J C}=\frac{\omega}{2} \boldsymbol{\sigma}_{\boldsymbol{z}}+\omega\left(\boldsymbol{N}+\frac{1}{2}\right)+i \frac{\Omega}{2}\left(\boldsymbol{\sigma} \boldsymbol{a}^{\dagger}-\boldsymbol{\sigma}_{+} \boldsymbol{a}\right)$ show that the propagator, the t-dependant unitary operator \boldsymbol{U} solution of $i \frac{d}{d t} \boldsymbol{U}=\boldsymbol{H}_{J C} \boldsymbol{U}$ with $\boldsymbol{U}(0)=\boldsymbol{I}$, reads
$\boldsymbol{U}(t)=e^{-i \omega t\left(\frac{\sigma_{2}}{2}+\boldsymbol{N}+\frac{1}{2}\right)} e^{\frac{\Omega t}{2}\left(\sigma \cdot \mathbf{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)}$ where for any angle θ,

$$
\begin{aligned}
& e^{\theta\left(\boldsymbol{\sigma} \cdot \mathbf{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)}=|g\rangle\langle g| \otimes \cos (\theta \sqrt{\boldsymbol{N}})+|e\rangle\langle e| \otimes \cos (\theta \sqrt{\boldsymbol{N}+\boldsymbol{I})} \\
&-\sigma_{+} \otimes \boldsymbol{a} \frac{\sin (\theta \sqrt{\boldsymbol{N}})}{\sqrt{\boldsymbol{N}}}+\boldsymbol{\sigma} \otimes \frac{\sin (\theta \sqrt{\boldsymbol{N}})}{\sqrt{\boldsymbol{N}}} \mathbf{a}^{\dagger}
\end{aligned}
$$

Hint: show that

$$
\begin{aligned}
{\left[\frac{\sigma_{\mathbf{z}}}{2}+\boldsymbol{N}, \boldsymbol{\sigma} \cdot \boldsymbol{\cdot}^{\dagger}-\sigma_{+} \boldsymbol{a}\right] } & =0 \\
\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)^{2 k} & =(-1)^{k}\left(|g\rangle\langle g| \otimes \boldsymbol{N}^{k}+|\boldsymbol{e}\rangle\langle\boldsymbol{e}| \otimes(\boldsymbol{N}+\boldsymbol{I})^{k}\right) \\
\left(\boldsymbol{\sigma} \cdot \boldsymbol{a}^{\dagger}-\sigma_{+} \boldsymbol{a}\right)^{2 k+1} & =(-1)^{k}\left(\boldsymbol{\sigma} \otimes \boldsymbol{N}^{k} \mathbf{a}^{\dagger}-\sigma_{+} \otimes \boldsymbol{a} \boldsymbol{N}^{k}\right)
\end{aligned}
$$

and compute de series defining the exponential of an operator.

Ito stochastic calculus

Consider a stochastic differential equation (SDE) of state $X \in \mathbb{R}^{n}$:

$$
d X_{t}=F\left(X_{t}, t\right) d t+\sum_{\nu} G_{\nu}\left(X_{t}, t\right) d W_{\nu, t}
$$

driven by independent Wiener processes $W_{\nu, t}$. Roughly speaking for each $\nu, d W_{\nu, t}$ is a scalar random variable independent of X_{t} and t, following of Gaussian law of mean $\mathbb{E}\left(d W_{\nu, t}\right)=0$ and standard deviation $\sqrt{d t},\left(d W_{\nu, t}\right)^{2} \equiv d t, d W_{\nu, t} d W_{\nu^{\prime}, t} \equiv 0$ for $\nu \neq \nu^{\prime}$ and $d W_{\nu, t}$ is of order $\sqrt{d t}\left(d t d W_{\nu, t}\right.$ is of order $d t^{3 / 2}$).
These heuristic recipes underly the following Ito's rigorous computation rules: for $f_{t}=f\left(X_{t}\right)$ a C^{2} function of X, we have
$d f_{t}=\left(\left.\frac{\partial f}{\partial X}\right|_{X_{t}} F\left(X_{t}, t\right)+\left.\frac{1}{2} \sum_{\nu} \frac{\partial^{2} f}{\partial X^{2}}\right|_{X_{t}}\left(G_{\nu}\left(X_{t}, t\right), G_{\nu}\left(X_{t}, t\right)\right)\right) d t+\left.\sum_{\nu} \frac{\partial f}{\partial X}\right|_{X_{t}} G_{\nu}\left(X_{t}, t\right) d W_{\nu, t}$.
Furthermore

$$
\frac{d}{d t} \mathbb{E}\left(f_{t}\right)=\mathbb{E}\left(\left.\frac{\partial f}{\partial X}\right|_{X_{t}} F\left(X_{t}, t\right)+\left.\frac{1}{2} \sum_{\nu} \frac{\partial^{2} f}{\partial X^{2}}\right|_{X_{t}}\left(G_{\nu}\left(X_{t}, t\right), G_{\nu}\left(X_{t}, t\right)\right)\right) .
$$

Here $d f_{t}$ coincides with $f\left(X_{t}+d X_{t}\right)-f\left(X_{t}\right)$ up to terms of order strictly greater than one versus $d t$. For example, with $d x_{t}=-x_{t} d t+d W_{t}$ and $f(x)=x^{2}$ we have $d f_{t}=\left(x_{t}+d x_{t}\right)^{2}-x_{t}^{2}+o(d t)$ and $\left(x_{t}+d x_{t}\right)^{2}-x_{t}^{2}=2 x_{t} d x_{t}+\left(d x_{t}\right)^{2}$. Since $\left(d x_{t}\right)^{2}=\left(-x_{t} d t+d W_{t}\right)^{2}=\left(d W_{t}\right)^{2}+O\left(d t^{3 / 2}\right)=d t+O\left(d t^{3 / 2}\right)$ and $2 x_{t} d x_{t}=-2 x_{t}^{2} d t+2 x_{t} d W_{t}$, we have $d f_{t}=\left(-2 f_{t}+1\right) d t+2 x_{t} d W_{t}$

Assume that the density operator ρ on the Hilbert space \mathcal{H} is governed by the following SME

$$
\begin{aligned}
d \rho_{t} & =\left(-\frac{i}{\hbar}\left[\boldsymbol{H}, \boldsymbol{\rho}_{t}\right]+\boldsymbol{L} \boldsymbol{\rho}_{t} \boldsymbol{L}^{\dagger}-\frac{1}{2}\left(\boldsymbol{L}^{\dagger} \boldsymbol{L} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}^{\dagger} \boldsymbol{L}\right)\right) d t \\
& +\sqrt{\eta}\left(\boldsymbol{L} \boldsymbol{\rho}_{t}+\boldsymbol{\rho}_{t} \boldsymbol{L}^{\dagger}-\operatorname{Tr}\left(\left(\boldsymbol{L}+\boldsymbol{L}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) \boldsymbol{\rho}_{t}\right) d W_{t}
\end{aligned}
$$

with \boldsymbol{H} Hermitian operator, \boldsymbol{L} any measurement/decoherence operator and $\eta \in[0,1]$ detection efficiency attached to the measurement classical signal $d y_{t}=d W_{t}+\sqrt{\eta} \operatorname{Tr}\left(\left(\boldsymbol{L}+\boldsymbol{L}^{\dagger}\right) \boldsymbol{\rho}_{t}\right) d t$. From Ito rules, one gets the equivalent formulation, useful for positivity preserving numerical scheme:

$$
\rho_{t+d t}=\frac{\boldsymbol{M}_{d y_{t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}+(1-\eta) \boldsymbol{L} \rho_{t} \boldsymbol{L}^{\dagger} d t}{\operatorname{Tr}\left(\boldsymbol{M}_{d y_{t}} \boldsymbol{\rho}_{t} \boldsymbol{M}_{d y_{t}}^{\dagger}+(1-\eta) \boldsymbol{L} \rho_{t} \boldsymbol{L}^{\dagger} d t\right)}
$$

with

$$
\boldsymbol{M}_{d y_{t}}=\boldsymbol{I}-\left(\frac{i}{\hbar} \boldsymbol{H}+\frac{1}{2} \boldsymbol{L}^{\dagger} \boldsymbol{L}\right) d t+\sqrt{\eta} d y_{t} \boldsymbol{L} .
$$

[^0]: ${ }^{1}$ https://conferences.cirm-math.fr/1732.html
 https://sites.google.com/view/mcqs2018/cirm-school
 ${ }^{2}$ Slides based on a Master course given by M. Mirrahimi and P. Rouchon:
 http://cas.ensmp.fr/~rouchon/MasterUPMC/index.html

[^1]: ${ }^{6}$ Note that the operator $e^{-r \partial / \partial x}$ corresponds to a translation of x by r.

[^2]: ${ }^{7}$ See complement $B_{I I}$, page 217 of C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, 1989.

