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Dirac notations, spectral decomposition and trace

m Vectors of the Hilbert 7{ are denoted by ket: |¢), |g), |€), |n), |a). Usually their
norms are equal to one. ¢ = |+)T with T for Hermitian conjugate. If (|n)) is an
Hilbert basis |¢)) = >, ¥n|n) with ¢¥n € C, (¥| = 3=, 95 (nl and (7'|n) = ..

m Spectral decomposition of an Hermitian operator H = H' of : H = > APy
where v is the label attached to the real eigenvalue A\, and P, is the orthogonal
projector on the eigen-space attached to A, (3=, P, = land A, # X,/ for
v#v).

m A unitary operator U preserves the Hermitian product: UTU = UUT = I.
Typically e~tH/% for H Hermitian and t real is unitary. Usually 7 is set to 1 and H
is in pulsation unit (27 x frequency unit).

m Function of Hermitian operator: take A — f() a real function. For any Hermitian
operator H= 3", A\, P, one has f(H) £ 3" f()\,)P,. For any Hermitian
operator H, unitary operator U and function f: UTf(H)U = f(UTHU).

m Take a (trace-class) operator M on H: Tr (M) = 3~ ,(n|M|n) independent of the
chosen Hilbert basis (|n)). For operators Myg : H4 — Hpg and
Mps = Hp — Ha, Tr(MABMBA) =Tr (MBAMAB)- In particular
Te([9)(W]) = (Wl) = )12

m Density operator: an Hermitian operator p is a density operator on A if, and only
if, it is trace-class (important when # is of infinite dimension), non negative and
of trace one. The spectral decomposition, p = >, pPnltn) (¥n| With (|4n)) an
Hilbert basis of #, p, > 0 and Tr (p) = >, pn = 1, shows that p is a statistical
mixture of orthogonal states |¢n) (here pn is not necessarily different from p,
when n # n’). p is said pure when p, = 0 except for n = n: the pure state
p = |v¥r)(¢r| corresponds to the wave function |ys).



Tensor products, composite systems and partial trace

m Hilbert space H = Ha ® Hp of the bipartite system (A, B) with H 4 (resp. Hp)
Hilbert space for sub-system A (resp. B): H > |¢) = Z%,,B YnanglNang) with
(Ina)) and (|ng)) Hilbert basis for A and B, (|nang) £ |na) ® |ng)) Hilbert basis
of H: {nhniglnang) = (Mylna) (nglng) = Sy na O ng- With
[6) = >_n,,n5 Prang|Nang) the Hermitian product (s|g) = >, o ¥n,ng®nang is
independent of the chosen Hilbert basis for Aand B. If [¢) = |¢4) ® |¢g) and
|#) = [¢a) @ |¢5) then (Y|¢) = (Yalga) (¥slPs)-

B |¢) € H is said entangled if and only V| 4) € Ha and V|¢g) € Hp
[) # |1a) ® 1) (similar to functions of two variables f(xa, Xg) that are not the
product of two functions of one variables, f(xa, Xg) # fa(xa)fs(xg) for all f4 and
fg). Otherwise |¢) is said separable.

m For operators A on H,4 and B on Hg, their tensor product A ® B is an operator
of H defined by A ® B|y) = ZnA,nB Ynang A ® B(|nang)) with
A B(|nang)) = Alna) @ B|ng). Thus A® B(|4) ® [vs)) = Alia) © Blus).
By a slight abuse of notation, A ® B is denoted by AB.

m Any operator A on H 4 admits an direct extension on H, corresponding to A® Ig.
Thus A® Ig(|va) ® |¥B)) = (Alva)) ® |¢g). Most of the time, , A® Ig is
denoted by A.

m Partial trace: for any (trace-class) operator p on H is attached a (trace-class)
operator pg on Hg, denoted by Tra (p), obtained by tracing over A and
characterized by the identity Tr 4 ) (/4 ® Bp) = Trg (Bpg) for any (bounded)
operator B on Hg. The map (super-operator) Tra( ) : p — pg is linear, trace
preserving and completely positive (quantum channel see Nielsen-Chuang
book).



Models of open quantum systems are based on three features®

Schradinger: wave funct. |¢)) € H or density op. p ~ [¢)(¢)]

d . d .

Entanglement and tensor product for composite systems (S, M):
m Hilbert space H = Hs @ Hu
m Hamiltonian H = Hs @ Iy + Hint + Is @ Hy
m observable on sub-system M only: O = Is ® Opy.
Randomness and irreversibility induced by the measurement of
observable O with spectral decomp. >° A, P,:

B measurement outcome . with proba.
P, = (¥|P,|v) = Tr(pP,) depending on |¢), p just before
the measurement

m measurement back-action if outcome p = y:

Pyly) P p :PyPPy
VWP ) T T (pPy)

3S. Haroche, J.M. Raimond: Exploring the Quantum: Atoms, Cavities and
Photons. Oxford University Press, 2006.
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Summary: quantum harmonic oscillator (spring system)

m Hilbert space:
H={ S taln), (n)nzo € P(C)} = L3(R,C)

m Quantum state space:
D={peL(H),p' =p,Tr(p)=1,p>0}.

m Operators and commutations:
aln) = +/n|n-1),af|n) = v/n+1in+1);
N = a'a, N|n) = n|n);
[a,a'] =1, af(N) = f(N + Da;
D, =g —'a . D_o8Dy =a+al. o O !
a=X+iP=-". (x+ L), X, Pl =ul)2.

)

2)

)

10)

m Hamiltonian: H/h = wca'a+ uc(a+ a’). @,

(assomated classical dynamics:

% = wep, dt = —WeX — \@Uc)-

m Classical pure state = coherent state |«)
X— a2
aeC: |a)y= Zn>0 (e laf?/2 a7 ) |n); |y = #e“/ﬁxgae_( ERe)
ala) = ala), Da|0) = |a).



Summary: 2-level system, i.e. a qubit (half-spin system)

m Hilbert space:
H=C2= {cg|g> + Cel€), Cg, Ce € (C}.

m Quantum state space:
D ={pe L(H),p' =p,Tr(p)=1,p>0}.

m Operators and commutations:

o = |g)(el, o = o = [e){g] u — |c)
ox = 0.+ o, = [g)(e| + |e)(gl; q ® |
O'y:io'-_i0'+:i|g><e|_i|e><g|; \W/) a4,
oz = oy0. — 0.0, = |e)(e| — [9)(g[; A4

|2)

ox® = I, oxoy = ioy, [ox, 0y] = 2ioy, ...

m Hamiltonian: H/h = wqoz/2 + Ugox /2.

m Bloch sphere representation:
D= {%(I—FXO’X—FyO'y-I-ZO'z) | (x,y.2) €R3, x2 4 y2 + 22 <1
With M = x7'+ y7+ zk Schrédinger eq. reads S M = (ug7+ wgk) x M.



Summary: spin/spring composite system

Hilbert space
M= {ano Ygnlgn) + venlen), 3=, [Ygnl + [venl? < +oo} =C?® (R, C).
Dispersive Hamiltonian (weg # we)

HdlSp/h_ 90'2+ch* 2 UzN
and propagator (IH%U = HU with U(0) = I):
e~ M/t — U(t) = “'/2|g) (9| ® exp (—i(we + ¥)tN)
+ e w=!/2|g) (6| @ exp (—i(we — %)tN)
Resonant Hamiltonian (Jaynes-Cummings) (weg = we = w):

Hyc/h = 307 +wN + i%(a’.aJr — o,a).
. ; 2 Q
with U(t) — g itHic/h — e—lwt(%+N)e?t(a.aT_o'+a) where (0 = %)

gl(=a'~ea) _ |9y (g| @ cos(0v/N) + |€)(e| ® cos(0v/N + I)
sm(O\F) sin(6v/N)
ooRra——— /N +o® ~UN a'



Harmonic oscillator

Classical Hamiltonian formulation of g—;x = —w?x
d o o OH d o o OH w2 2
ax_wp_ap, P = wX = X’ ]I-]I_2(p + Xx°).

Electrical oscillator:

Mechanical oscillator

k
m

—=x
) LC oscillator:
Frictionless spring: %x = —kx. ,
at' = L dt C \de LC



Harmonic oscillator*: quantization and correspondence principle

d, _ __ OH dp_ _ _OH _ 2 2

Quantization: probability wave function |¢); ~ (¥(X, t))xer With
[) ~ (., 1) € L2(R, C) obeys to the Schrédinger equation
(7 = 1in all the sequel)
. d _ o ) 2\ w 82 w 2
/a\w =H|y), H=w(P"+ X°)= ~ 5 9x2 + 5 X
where H results from H by replacing x by position operator
V2X and p by momentum operator V2P = —i.2.. His a
Hermitian operator on L?(R, C), with its domain to be given.

H w 2 w
PDE model: i%5(x, 1) = —52-5(x, 1) + §x%(x, 1), X €R.

4Two references: C. Cohen-Tannoudiji, B. Diu, and F. Lalo&. Mécanique
Quantique, volume 1& Il. Hermann, Paris, 1977.
M. Barnett and P. M. Radmore. Methods in Theoretical Quantum Optics.
Oxford University Press, 2003.



Harmonic oscillator: annihilation and creation operators

Average position (X), = (¢| X)) and momentum (P), = (| P|¢):

+oo . o
M= [ xvpax. Bl=—2 [ v Dla

Annihilation a and creation operators a' (domains to be given):
0 0
-1 i T X _— -1 _
a=X+iP= <X+6>’ a=X-iP= f<x ax>
Commutation relationships:
; I
[X,P]=1I, [a,a']=1, H=wPP+X?)=uw <afa + 2) .
Set X, = } (e~a+ e*a') for any angle X:

.

[0 Xg) = 4



Harmonic oscillator: spectral decomposition and Fock states

Spectrum of Hamiltonian H = — 8)(2 +4x2

E. — 1 _ 1 1/4 1 _X2/2H ” B N 2 d" 2
r=wtnig) w0 = (1) e 0, () = (1) e

0 2nn!

Spectral decomposition of a'a using [a,a'] = 1:

m If |b) is an eigenstate associated to eigenvalue ), a|v)) and af|¢))
are also eigenstates associatedto A — 1 and A\ + 1.

m a'ais semi-definite positive.

m The ground state |¢y) is necessarily associated to eigenvalue 0
and is given by the Gaussian function o(x) = —5 exp(—x?/2).



Harmonic oscillator: spectral decomposition and Fock states

[a,a’] = 1: spectrum of a'a is non-degenerate and is N.

Fock state with n photons (phonons): the eigenstate of afa associated to the
eigenvalue n (|n) ~ ¥n(x)):

a'aln)=nln), aln)y=+n|n—1), a'ln)=vn+1|n+1).

The ground state |0) is called 0-photon state or vacuum state.

The operator a (resp. a') is the annihilation (resp. creation) operator since it
transfers |n) to |[n — 1) (resp. |n+ 1)) and thus decreases (resp. increases)
the quantum number n by one unit.

Hilbert space of quantum system: % = {3, ¢a|n) | (¢n) € P(C)} ~ L%(R,C).
Domain of aand a': {3°, ¢a|n) | (¢a) € h'(C)}.
Domain of H ot a'a: {3, ca|n) | (¢n) € P?(C)}.

H(C)={(c)) € () | D_nMleaf < o0},  k=1,2.



Harmonic oscillator: displacement operator

Quantization of & x = —w?x — wyv2u, (H = £(p? + x2) + V2uXx)
|
H=uw (a*a+ 2> + u(a+a').

The associated controlled PDE

.0 0?
(,;f (x,t) = —%T):ﬁ(x, t)+ (%xz + \/éux) ¥(x,1).

Glauber displacement operator D,, (unitary) with o € C:
D. = eaaffa*a _ eZiSaX72i9?aP
From Baker-Campbell Hausdorf formula, for all operators A and B,
e"Be ™ = B+ [A B] + 5[A [A Bl + 5[A [A A B]] + ...
we get the Glauber formula® when [A, [A, B]] = [B,[A, B]] =0

1
eAB _ oA oB o~ 3[ABl

5Take s derivative of A8 and of 54 e°8 *?[A Bl



Harmonic oscillator: identities resulting from Glauber formula

With A = aa’ and B = —a*a, Glauber formula gives:

_laf a' ,—a*a +@ —a*aoal
D,=¢e 2 e *“?=¢e"2 ¢ e

D_.,aD,=a+al and D_,a'D,=a'+ "l
With A = 2iSaX ~ ivV2Sax and B = —21RaP ~ —v2Ra2., Glauber
formula gives®:

D, — e RaSa glV2Sax g—V2Ra gy

(DaW)>)X,t _ efi%a%a ei\/é%axw(x . \/§§ROL, t)

Exercise: Prove that, for any «, 3, ¢ € C, we have

o B—aB*
Da_,_,g =e 2 DuDB

D...D_, = (1 + %) I+eal —ea+ O(e)?)

a _ (e%a"—a"ga d N (9 -
(dtDO‘> D_, _( 5 )H— (dta> a dta a.

—rd/ox

8Note that the operator e corresponds to a translation of x by-r.



Harmonic oscillator: lack of controllability

Take |¢) solution of the controlled Schrédinger equation
idly) = (w(afa+ }) + u(a+ ah))|y). Set (a) = (v|al). Then
d
dt
From a = X + iP, we have (a) = (X) + i (P) where
(X) = (Y| Xy € Rand (P) = (¢|P|y) € R. Consequently:
d d
G X =w(P), S (P)=-—wiX)-u

Consider the change of frame |¢) = e—"afD<a>[ [x) with

(@) = —iw (@) — iu.

t
0; = / (w| (a) |2 + U@?((&})) , D<a>t = e(ﬂ%a*—(a)fa’
0
Then |x) obeys to autonomous Schrédinger equation
. d
i &|X> =w(a'a+1)[x).
The dynamics of |¢)) can be decomposed into two parts:

m a controllable part of dimension two for (a)
m an uncontrollable part of infinite dimension for |x).



Harmonic oscillator: coherent states as reachable ones from |0)

Coherent states

2 4o
a n

) = Dal0) =€ 2 ) 2in), acC

n=0

are the states reachable from vacuum set. They are also the
eigenstate of a: ala) = a|a).

A widely known result in quantum optics’: classical currents
and sources (generalizing the role played by u) only generate
classical light (quasi-classical states of the quantized field
generalizing the coherent state introduced here)

We just propose here a control theoretic interpretation in terms
of reachable set from vacuum.

"See complement By, page 217 of C. Cohen-Tannoudji, J. Dupont-Roc,
and G. Grynberg. Photons and Atoms: Introduction to Quantum
Electrodynamics. Wiley, 1989.



2-level system (spin-1/2)

e) The simplest quantum system: a ground
state |g) of energy wy; an excited state |e) of

U energy we. The quantum state |¢) € C?is a
linear superposition [¢) = 1b4|g) + ve|€) and

|9)

obey to the Schrédinger equation (g and e

depend on ).
Schroédinger equation for the uncontrolled 2-level system

(h=1):

zaW) = Holy)) = (wele) (el + wglg)(gl) [¥)

where Hj is the Hamiltonian, a Hermitian operator H(T) = H,.
Energy is defined up to a constant: Hy and Hy + w(t)l (w(t) € R
arbitrary) are attached to the same physical system. If |) satisfies
i) = Hol) then [x) = e~ O]y) with 49 = w obeys to

i4|x) = (Ho + wl)|x). Thus for any ¥, [¢) and e~"?|¢) represent the
same physical system: The global phase of a quantum system |¢))
can be chosen arbitrarily at any time.



The controlled 2-level system

Take origin of energy such that wg (resp. we) becomes —<°5¢
(resp. “*5*) and set weg = we — wg
The solution of ig|¢) = Hohb) = 52 (le)(el — lg){gN)lv) is

—iwegt

()t = tgoe 2 1) + e 2 |€).

With a classical electromagnetic field described by u(t) € R,
the coherent evolution the controlled Hamiltonian

H(t) = “0 X0 0, = 259 16) el 1) 1)+ A 1e) 01+ ) )

The controlled Schrédinger equation i%w) = (Ho + u(t)Hq)|y)
readS'

576 I
g 2 \0 -1 g 2 1.0/ \Wg/)"
The 3 Pauli Matrices®

ox = |e)(gl+19)(el, oy = —ile)(gl+ilg){el, oz = |e)(e] —|g)(g]

8They correspond, up to multiplication by /, to the 3 imaginary quaternions.




Pauli matrices and some formula

ox = |e)(g| + 19)(el, oy = —ile)(g| + i|g)(el, oz = |e)(e| — |9)(9|

ox? =1, oyoy =ioy, [ox,0y]=2ioy, circular permutation ...

m Since for any 6 € R, €9 = cos ¢ + isin oy (idem for oy
and oz), the solution of i & |¢) = “2oy|y) is

) = e_iﬁeg’az|¢>0 — <cos <w29t> I—isin (w;-,,t) Uz) 110

m Foroa,B8=x,y,z, a # 3 we have

. . . -1 ) 1 .
Ou eleo’g — e*lgo'ﬁ Oa, <e/aaa) — (eleaa> — efIHO'a.
and also

0 0 ) )
9_%00‘ O_Be%aa _ e—l@aa o5 = age’e"‘*



Density matrix and Bloch Sphere

We start from |¢) that obeys i%]z@ = H|y). We consider the
orthogonal projector on |¢), p = |¥)(v|, called density operator.
Then p is an Hermitian operator > 0, that satisfies Tr(p) = 1,
p? = p and obeys to the Liouville equation:

d .
gt = . pl.
For a two level system |¢)) = 1¢|g) + ¥e|€) and

I+ xox + yoy + zoy

N 2
where (X, y,2) = (2R(vgv5), 23(4gt3), [Vel® — 1hg[?) € R®
represent a vector M, the Bloch vector, that evolves on the
unite sphere of R3, S? called the Bloch Sphere since
Tr (p?) = x? + y2 + 22 = 1. The Liouville equation with
H = *20; + Jox reads

e



Composite system: 2-level and harmonic oscillator

Weg

2-level system lives on C2 with Hy = “2o;
oscillator lives on L2(R, C) ~ 2(C) with

We 82 We 2 !
a Ho= 5 ga t X ~we(N+3)

N=afaanda=X+iP~ %(XJF%)
The composite system lives on the tensor product
C? ® L3(R,C) ~ C2 ® 2(C) with spin-spring Hamiltonian

with the typical scales Q < we, weg aNd |we — weg| K we, Weg-
Shortcut notations:

H=""2o,+ws (N+1)+ilox(a —a)
——
Hq Hc Hmt




The spin-spring PDE

The Schrédinger system
d vt A
IEW} =| oz twc N+ > +izox(a’ — a) | [4)

corresponds to two coupled scalar PDE’s:

2 . } &P 20,
o =g (¥ g ) vem v

&P 20,
i~ 79 _ _ Weg we (42 2
ot T 2¢9+2<X ax2)¢g Jaox'e

since N = a'a, a= _5 (x + 5;) and [¢) = (ve(X, ), g (x, 1)),
Yg(- 1), ve(, 1) € LA(R,C) and [[4g|? + [[ve]® = 1.




The spin-spring ODE’s

The Schrédinger system

i91) = (o + e (N + 5) + 1%ox(al — ) )
corresponds also to an infinite set of ODE’s
S0 = (120w + wog/2Woan + 1% (Vtignt — VITF T gt
S g = (1 1/2)c — g/2)gn + 18 (VAtbent — VITH 1 ot

where [¢) = Zﬁiﬁ wg,n|gv n + 7J’e,n|e7 ny, Yg,n, Yen € C.



Dispersive case: approximate Hamiltonian for Q < |we — weg.

H@Hdisp:%Uerwc(NJré)—%gz(NJr%) Withx:z( Q2

wc—weg)

The corresponding PDE is :

e weg 1. Xy .2 O
ot = T Vet plwe = )X = Fig)ve
a'l)[)g - _Weg 1 X 2 . 82
Tot = Vot ple ) el

The propagator, the t-dependant unitary operator U solution of
i%U = HU with U(0) = I, reads:

U(t) = e“='/2 exp (—i(we + x/2)t(N + 1)) @ |g)(g]
+ e et/2exp (—i(we — x/2)H(N + 1)) @ |e)(e|



Resonant case: approximate Hamiltonian for we = weg = w.

The Hamiltonian becomes (Jaynes-Cummings Hamiltonian):
| ;
Hx~H)c = %oz +w (N—|— 2) +i$(oa’ - o,a).

The corresponding PDE is :



Jaynes-Cummings propagator

Exercise: For Hyc = $0; +w (N + §) + i$(c.a" — o,a) show that the
propagator, the t-dependant unitary operator U solution of
i4U = HycU with U(0) = I, reads

Ciwt( 2 1
Ut =e ' t< 2tz ) F(@a'-2a) where for any angle 0,
ef(=a'~2a) _ |9\ (g| ® cos(9VN) + |e)(e| ® cos(9v/N + 1)
o, © aSNOVN) sin(6v/'N) fow sin(6v/'N) 4t
VN VN
Hint: show that
[Z+N, aa' —o,a] =0
(~1)* (9} (gl & N* + |e) (] & (N + 1))
(~1)¢ (@ N'a' — o 0 aN*)

(o'_aJr - 0'+a) 2k

(cr_aT B 0_+a)2k+1

and compute de series defining the exponential of an operator.



Ito stochastic calculus

Consider a stochastic differential equation (SDE) of state X € R":

aXe = F(X;, )dt + > Gu (X, t)dW,. 1,

driven by independent Wiener processes W, ;. Roughly speaking for each v, dW, ; is
a scalar random variable independent of X; and t, following of Gaussian law of mean
E (dW,,;) = 0 and standard deviation v/dt, (dW, )? = dt, dW, ;dW,,, ; = 0 for v # v/
and dW, ¢ is of order \/dft (dtdW, ; is of order dt3/2).

These heuristic recipes underly the following lto’s rigorous computation rules: for

fy = f(X;) a C? function of X, we have

of 1 o2f of
o, = (ax [ FOO0+ 537 T, (G(X 1), Gu (X, r))) A3 53, G (Ko DM

v

Furthermore
d of 1 92f
E]E(ft) =E <8X)XtF(Xt’ t) + 3 EU: ﬁ‘x,(ey(xt’ ), Gu (X, t))) .

Here df; coincides with f(X; + dX;) — f(X;) up to terms of order strictly greater than
one versus dt. For example, with dx; = —x;dt + dW; and f(x) = x? we have

dfy = (x; + dx;)? — x2 + o(dt) and (x; + dx;)? — x2 = 2x,dx; + (dx;). Since
(dxp)? = (—xpdt + dW;)2 = (dW;)2 + O(dtP/2) = dt + O(dt?/?) and

2xidx; = —2x2dt + 2x;dW;, we have df; = (—2f; + 1)dt + 2x;dW,.



Positivity preserving formulation of a stochastic master equation (SME)

Assume that the density operator p on the Hilbert space # is
governed by the following SME

i 1
o= (~4IH.l + Lokl — 5(LLp+ piLiL) ) ot
i (Lo + ekt =T (L4 Lpy) p,) AW,

with H Hermitian operator, L any measurement/decoherence
operator and n € [0, 1] detection efficiency attached to the

measurement classical signal dy; = dW; + /n Tr ((L + LT)p,> dt.

From Ito rules, one gets the equivalent formulation, useful for
positivity preserving numerical scheme:

Moy, p My, + (1 —n)Lp,L' ot

Tr (May,p,Mly, + (1 = 1)LpyL o)

Ptiat =

with
Mgy, =1 — (+H+ SLTL)dt + /ndyiL.
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