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Aztec diamond

A domino tiling of an Aztec diamond shape corresponds to a dimer
configuration on the Aztec graph



Two Periodic Weighting

The two-periodic weighting of the Aztec diamond is defined in the
following way. For a two-colouring of the faces, the edge weights around
a particular coloured face alternate between a and 1. E.g. for a size 4
Aztec diamond
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Random tiling of a two-periodic Aztec diamond



Aztec diamond height function
To each tiling of an Aztec diamond we can associate a height function.
The heights sit on the faces of the Aztec graph. The height differences
between two faces are given by

• +3 (−3) if we cross a dimer with a white vertex to the right (left)

• +1 (−1) if we do not cross a dimer and have a white vertex to the
left (right)
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Two-periodic Aztec diamond height function

Picture by B. Young



Two-periodic Aztec diamond height function

Picture by V. Beffara



Kasteleyn Matrix

Let ν(e) be the weights. We choose a Kasteleyn sign, s(e), |s(e)| = 1,
for each edge with certain properties, and then define the Kasteleyn
matrix K with elements

K(bi ,wj) = s(biwj)ν(biwj).

For the Aztec diamond graph we can take

K(b,w) =

 ν(bw) if e = bw is horizontal
iν(bw) if e = bw is vertical
0 otherwise (i.e. no edge between b and w)



Kasteleyn’s theorem

Let K be a Kasteleyn matrix

Theorem (Kasteleyn)

det(K) = SZ ,

where Z is the partition function, and |S | = 1.

It follows from Kasteleyn’s theorem that

Theorem (Montroll-Potts-Ward, Kenyon)
If ei = (bi ,wi ), then the probability that e1, . . . , em belong to a dimer
cover is

P(e1, . . . , em) = det
(
K(bi ,wi )K−1(wi , bj)

)
1≤i,j≤m

This means that the dimers form a determinantal point process with
correlation kernel K (ei , ej) = K(bi ,wi )K−1(wi , bj), ei = biwi .
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Phases
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The curve in the picture is a degree 8 curve with two real components.
We get three regions which are called solid, liquid and gas.



Phases

Kenyon, Okounkov and Sheffield have characterized the different limiting
translation invariant Gibbs measures that are possible for bipartite
dimer models on the plane.

There are three classes of Gibbs measures, solid, liquid and gas, defined
via the infinite, limiting inverse Kasteleyn matrices K−1

solid, K−1
liquid and

K−1
gas.



Phases

Kenyon, Okounkov and Sheffield have characterized the different limiting
translation invariant Gibbs measures that are possible for bipartite
dimer models on the plane.

There are three classes of Gibbs measures, solid, liquid and gas, defined
via the infinite, limiting inverse Kasteleyn matrices K−1

solid, K−1
liquid and

K−1
gas.

Correlations between dominos decay polynomially with distance in the
liquid region, and exponentially in the gas region.



Liquid-gas boundary

We now have two types of boundaries, the liquid-solid boundary and the
liquid-gas boundary.
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Liquid-gas boundary
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What can we say about the edge fluctuations at the liquid-gas boundary?



Liquid-gas boundary

What can we say about the edge fluctuations at the liquid-gas boundary?

At the liquid-solid boundary we would expect to see the Airy process.

At the liquid-gas boundary the situation is less clear. How should we even
define this boundary microscopically?



Formula for the inverse Kasteleyn matrix in the
two-periodic case
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The coordinate system that we use is indicated in the figure.



The inverse Kasteleyn Matrix
Theorem (Chhita-J. based on Chhita-Young)
Consider an Aztec diamond of size n = 4m with the two-periodic
weighting and let Km be its Kasteleyn matrix. Then,

K−1
m ((x1, x2), (y1, y2)) = K−1

gas((x1, x2), (y1, y2))−
4∑

i=1

Bi ((x1, x2), (y1, y2)),

where K−1
gas((x1, x2), (y1, y2)) is the inverse Kasteleyn matrix for a whole

plane gas phase, and B1, . . . ,B4 are related by a symmetry with B1,
which has the form

B1(x , y) =
1

(2πi)2

∫
|ω1|=r

dω1

ω1

∫
|ω2|=1/r

dω2
Yε1,ε2 (ω1, ω2)

ω2 − ω1

Hx1+1,x2 (ω1)

Hy1,y2+1(ω2)
.

Here Yε1,ε2 (ω1, ω2) is a complicated non-asymptotic factor,

Hx1,x2 (ω) =
ω2mG (ω)2m−x1/2

G (1/ω)2m−x2/2
, G (ω) =

1√
2c

(ω −
√
ω2 + 2c),

and c = a/(1 + a2) with 0 < c < 1/2.



Airy kernel point process

The extended Airy point process is a determinantal point process on
parallel lines {βq} × R, 1 ≤ q ≤ L2 in R2. We can think of it as a
random measure µAi defined via a Laplace transform. Let Ap,
1 ≤ p ≤ L1, be disjoint intervals in R, wp,q ∈ C,

E
[

exp

( L2∑
p=1

L1∑
q=1

wp,qµAi ({βq} × Ap)

)]
= det

(
I + (eΨ − 1)KextAi

)
L2({β1,...,βq}×R)

,

where

Ψ(x) =
L1∑
q=1

L2∑
p=1

wp,qI{βq}×Ap
(x).
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Recall that the extended Airy kernel is given by

KextAi(τq, ξ1; τ2, ξ2) = −φτ1,τ2 (ξ1, ξ2) + K̃extAi(τ1, ξ1; τ2, ξ2),

where

K̃extAi(τ1, ξ1; τ2, ξ2) =

∫ ∞
0

e−λ(τ1−τ2)Ai (ξ1 + λ)Ai (ξ2 + λ) dλ.



Random measure

Height differences between two points in a vicinity of the liquid gas
boundary are due to two effects:

• Small and basically independent height fluctuations due to the
”surrounding gas phase”.

• Long distance correlated effects due to the large scale structures
that we see in the figure.

• By taking suitable averages of height differences we could hope to
eliminate the small scale gas effects. This is the idea behind the
definition of a certain random measure.



Random measure

Consider a two-periodic Aztec diamond of size n = 4m.

We want to imbed the intervals Ap as discrete intervals in the Aztec
diamond.z
Consider only one interval, A = [al , ar ]. We want to imbed
M = [(logm)4] copies of it a certain distance apart.



Random measure

Consider only one interval, A = [al , ar ]. We want to imbed
M = [(logm)4] copies of it a certain distance apart.
Define for s ∈ Z, 1 ≤ k ≤ M = [(logm)4]

zk(s) =
(
4[m(1 + ξ)]− 2[β2λ1(2m)1/3] + s +

1

2

)
(1, 1)

− 2[βλ2(2m)2/3 + kλ2(logm)2](−1, 1).

These are points sitting at the midpoints of edges. We then have the
discrete lines, 1 ≤ k ≤ M,

Lm(k) = {zk(s) ; s ∈ Z},

and Lm is the union of all of them.



Random measure

Define for s ∈ Z, 1 ≤ k ≤ M = [(logm)4]

zk(s) =
(
4[m(1 + ξ)]− 2[β2λ1(2m)1/3] + s +

1

2

)
(1, 1)

− 2[βλ2(2m)2/3 + kλ2(logm)2](−1, 1).

We then have the discrete lines, 1 ≤ k ≤ M,

Lm(k) = {zk(s) ; s ∈ Z},
and Lm is the union of all of them.
Imbed A in Lm(k) as a discrete interval,

Ik = {zk(s) ; 2[alλ1(2m)1/3]− 1 ≤ s < 2[arλ1(2m)1/3] + 1}.
M
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Ij,2

Ij,M



Random measure

I

F+(I)

F−(I)

a

a

The height change along a discrete interval

∆h(I ) = h(F+(I ))− h(F−(I )).



Random measure
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The height change along a discrete interval

∆h(I ) = h(F+(I ))− h(F−(I )).

Random measure:

µm({β} × A) =
1

4M

M∑
k=1

∆h(Ik).



Random measure

Random measure:

µm({β} × A) =
1

4M

M∑
k=1

∆h(Ik).

Theorem
The random measure µm converges weakly to µAi

For one interval we need to prove

lim
m→∞

E
[
ewµm(A)

]
= E

[
ewµAi (A)

]
,

for w ∈ C, |w | < R.



Particle process

x(z′) ∈ W0

x(z) ∈ W1

a y(z) ∈ B1y(z′) ∈ B0

z

z′

In the figure we see an a-face.

z , z ′ ∈ Lm

There is a parity: ε(z ′) = 0, crossing the dimer (x(z ′), y(z ′)) gives a
positive height change; ε(z) = 1, crossing the dimer (x(z), y(z)) gives a
negative height change.



Particle process

x(z′) ∈ W0

x(z) ∈ W1

a y(z) ∈ B1y(z′) ∈ B0

z

z′

In the figure we see an a-face.

z , z ′ ∈ Lm

There is a parity: ε(z ′) = 0, crossing the dimer (x(z ′), y(z ′)) gives a
positive height change; ε(z) = 1, crossing the dimer (x(z), y(z)) gives a
negative height change.
Particle at z if and only if dimer covering (x(z), y(z))

Since the dimers form a determinantal process so do the particles. Kernel,

Km(z , z ′) = aiK−1
m (x(z ′), y(z)), z , z ′ ∈ Lm.



Height differences in terms of particle process

Indicator function for a discrete interval

Ik(z) =

{
1 if z ∈ Ik

0 if z /∈ Ik .

The height difference along Ik can be written

1

4
∆h(Ik) =

∑
i

(−1)ε(zi )Ik(zi ),

where the sum is over all particles. Note that we are counting particles
with a sign factor.
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Height differences in terms of particle process

By the definition of the random measure we get

E
[
ewµm(A)

]
= E

[
e

1
M

∑
i ψ(zi )

]
= det

(
I + (e

1
M ψ − 1)Km

)
`2(L)

,

where

ψ(z) =
M∑
k=1

(−1)ε(z)Ik(z).

Use the cumulant expansion,

log det
(
I + (e

1
M ψ − 1)Km

)
`2(L)

=
∞∑
s=1

1

Ms

s∑
r=1

(−1)s

r

∑
`1+···+`r=s

`i≥1

tr (ψ`1Km . . . ψ
`rKm)

`1! . . . `r !



Asymptotics for the inverse Kasteleyn matrix at the
liquid-gas boundary

Let x = (x1, x2) be a white vertex and y = (y1, y2) a black vertex.
Scaling around a point at the liquid-gas boundary:

(x1, x2) = (4[ρm] + 2[c1ξ1m
1/3](1, 1)− 2[c2τ1m

2/3](−1, 1),

(y1, y2) = (4[ρm] + 2[c1ξ2m
1/3](1, 1)− 2[c2τ2m

2/3](−1, 1).
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Asymptotics

K−1
m (x , y) = K−1

gas(x , y)−(pre-factor)K̃extAi(τ1, ξ1+τ 2
1 ; τ2, ξ2+τ 2

2 )m−1/3(1+o(1))

as m→∞.



Thank you for listening!


