# Near-extreme eigenvalues of random matrices and systems of coupled Painlevé II equations

### Tom Claeys

UCLouvain (Belgium)

Based on joint work with Antoine Doeraene

**CIRM** Luminy

March 2, 2017





Tom Claeys (UCLouvain)

Near-extreme eigenvalues of random matrices

 Consider the Airy ensemble or Airy point process characterized by correlation functions

$$\rho_k(x_1,\ldots,x_k) = \det \left( \mathcal{K}^{\mathrm{Ai}}(x_i,x_j) \right)_{i,j=1,\ldots,k},$$

where  $K^{Ai}$  is the Airy kernel

$$\mathcal{K}^{\mathrm{Ai}}(x,y) = \frac{\mathrm{Ai}(x)\mathrm{Ai}'(y) - \mathrm{Ai}'(x)\mathrm{Ai}(y)}{x-y}$$

- distributions of individual eigenvalues are well understood
- what about distributions of quantities involving more than 1 eigenvalue, such as spacing distributions?

This process appears as limiting process for

- **largest eigenvalues** in many random matrix ensembles as the size goes to infinity
- lengths of first rows of **random partitions** of *n* following the Plancherel measure
- random tilings
- non-intersecting Brownian paths
- We order the random points as

 $\zeta_1 > \zeta_2 > \zeta_3 > \dots$ 

(the largest particle exists almost surely)

## Distribution of largest values

The distribution of the largest particle is given by the Fredholm determinant

$$\mathbb{P}\left(\zeta_1 < x
ight) = \det\left(1 - \left.\mathcal{K}^{\operatorname{Ai}}\right|_{(x,+\infty)}
ight)$$

The distribution of the k-th largest particle ζ<sub>k</sub> is generated by the Fredholm determinant

$$F(x;s) := \det \left(1 - (1 - s) \kappa^{\operatorname{Ai}} \Big|_{(x,+\infty)}\right) = \mathbb{E} \left(s^{n_{(x,+\infty)}}\right)$$

It is given by

$$\mathbb{P}\left(\zeta_k < x\right) = \sum_{j=0}^{k-1} \frac{1}{j!} \frac{d^j}{ds^j} \left. F(x;s) \right|_{s=0}$$

▶ The Fredholm determinants  $F(x; s) = \det \left(1 - (1 - s) K^{Ai} \Big|_{(x, +\infty)}\right)$ can be expressed in terms of solutions to the **Painlevé II equation** (*Tracy-Widom '93*):

$$F(x;s) = \exp\left(-\int_{x}^{+\infty} (\xi - x)q^2(\xi;s)d\xi\right)$$

where q is the **Ablowitz-Segur** (for  $s \neq 0$ ) or **Hastings-McLeod** (for s = 0) solution of Painlevé II characterized by

$$q_{xx} = xq + 2q^3, \qquad q(x;s) \sim \sqrt{1-s} \operatorname{Ai}(x), \ x \to +\infty$$

# Joint distributions

- What can we say about the distribution of quantities involving more than one particle? For instance
  - distribution  $\mathbb{P}(\zeta_k \zeta_\ell < x)$  of the spacing between  $\zeta_k$  and  $\zeta_\ell$ ,  $k < \ell$ ,
    - $k = 1, \ell = 2$ : see (Bornemann-Forrester-Witte '12, Perret-Schehr '14, Deift-Trogdon '16)
  - distribution ℙ(ζ<sub>1</sub> + ζ<sub>2</sub> + ... + ζ<sub>k</sub> < x) of the sum of the k largest particles,</li>
  - joint distribution of k particles

$$\zeta_{i_1} > \ldots > \zeta_{i_k}$$

• distribution of **truncated linear statistics** (*Grabsch-Majumdar-Texier* '16)

$$\sum_{j=1}^k f(\zeta_j)$$

# Generating function

Distributions of quantities involving k particles \(\zeta\_{i\_1}, \dots, \zeta\_{i\_k}\) are generated by Fredholm determinants with k discontinuities of the form

$$F(x_1,...,x_k;s_1,...,s_k) = \det\left(1 - \sum_{j=1}^k (1-s_j)\chi_{(x_j,x_{j-1})}K^{Ai}\chi_{(x_j,x_{j-1})}\right)$$

where

- $+\infty =: x_0 > x_1 > x_2 > \ldots > x_k$
- $\chi_A$  is the characteristic function of the set A
- $s_1, \ldots, s_k \in [0, 1]$
- ► Our goal: find a Tracy-Widom type expression for this Fredholm determinant F(x̄; s̄) for general k, in terms of Painlevé type ODEs

## Main result

### Theorem (Claeys-Doeraene, in progress)

$$F(\vec{x};\vec{s}) = \prod_{j=1}^{k} \exp\left(-\int_{0}^{+\infty} \xi u_{j}^{2}(\xi;\vec{x},\vec{s})d\xi\right)$$

and  $u_1, \ldots, u_k$  solve the system of k ODEs

$$u_j''(x) = (x + x_j)u_j(x) + 2u_j(x)\sum_{i=1}^k u_i^2(x), \quad j = 1, \dots, k$$

with asymptotic behaviour

$$u_j(x) \sim \sqrt{s_{j+1} - s_j} \operatorname{Ai}(x + x_j), \quad x \to +\infty$$

where we write  $s_{k+1} = 1$ .

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

#### Some remarks

- system of equations depends on x<sub>1</sub>,..., x<sub>k</sub>, relevant solutions depend on s<sub>1</sub>,..., s<sub>k</sub>
- for k = 1, the system reduces to the (shifted) Painlevé II equation

$$u_1'' = (x + x_1)u_1 + 2u_1^3, \quad u_1(x) \sim \sqrt{1 - s_1} \mathrm{Ai} \, (x + x_1), \quad x \to +\infty$$

 $q(x; s) = u_1(x - x_1; s)$  is the Ablowitz-Segur/Hastings-McLeod solution, and we recover the standard Tracy-Widom formula

- If s<sub>j-1</sub> < s<sub>j</sub>, u<sub>j</sub>(x) is real-valued for real x; if s<sub>j-1</sub> > s<sub>j</sub>, u<sub>j</sub>(x) is purely imaginary for real x
- if  $s_1 < s_2 < \ldots < s_k$ , all  $u_j$ 's are real, and then

$$F(\vec{x};\vec{s}) = \exp\left(-\int_0^{+\infty} \xi \|\vec{u}(\xi)\|^2 d\xi\right),\,$$

with

$$u_j''(x) = (x + x_j)u_j(x) + 2u_j(x) \|\vec{u}(x)\|^2, \quad j = 1, \dots, k$$

with  $\|.\|$  the 2-norm of the vector  $\vec{u} = (u_1, \ldots, u_k)$ .

 If the s<sub>j</sub>'s are increasing, the system of coupled Painlevé II equations is a traveling wave reduction of the defocusing vector nonlinear Schrödinger equation

$$i\vec{q}_t = \vec{q}_{xx} - x\vec{q} - 2\vec{q}||\vec{q}||^2, \qquad \vec{q} = (q_1, \dots, q_k)$$

- for k = 2, this is called the Manakov system
- If a solution  $\vec{q}(x,t)$  has the form  $q_j(x,t) = u_j(x)e^{-ix_jt}$ , then  $\vec{u}$  has to satisfy the system of coupled Painlevé II equations

$$u_j''(x) = (x + x_j)u_j(x) + 2u_j(x)\|\vec{u}(x)\|^2, \quad j = 1, \dots, k$$

We have

$$F(x_1,\ldots,x_k;s_1,\ldots,s_k) = \mathbb{E}\left(\prod_{j=1}^k s_j^{n_{(x_j,x_{j-1})}}\right)$$

▶ Joint distribution of *k* particles  $\zeta_{i_1} > \ldots > \zeta_{i_k}$ :

$$\mathbb{P}\left(\zeta_{i_1} < x_1, \dots, \zeta_{i_k} < x_k\right)$$
$$= \sum \frac{1}{j_1! \dots j_k!} \left. \frac{\partial^{j_1 + \dots + j_k}}{\partial s_1^{j_1} \dots \partial s_k^{j_k}} F(x_1, \dots, x_k; s_1, \dots, s_k) \right|_{\vec{s}=0}$$

where the sum is taken over all  $j_1, \ldots, j_k$  such that

$$j_1 < i_1, \quad j_1 + j_2 < i_2, \quad \dots, \quad j_1 + \dots + j_k < i_k$$

# Example 1: gap probability

► The probability of having no particles in a finite interval (x<sub>2</sub>, x<sub>1</sub>) is given by

$$F(x_1, x_2; 1, 0) = \exp\left(\int_0^{+\infty} \xi |u_1(\xi)|^2 d\xi\right) \exp\left(-\int_0^{+\infty} \xi |u_2(\xi)|^2 d\xi\right)$$

with

$$u_j''(x) = (x + x_j)u_j(x) + 2u_j(x)\sum_{i=1}^k u_i(x)^2, \quad j = 1, 2$$

and

$$u_{1,2}(x)^2 \sim \mp \operatorname{Ai}(x+x_{1,2})^2, \quad x \to +\infty$$

- ► Thinned Airy ensemble is the process obtained by removing each particle independently with probability s ∈ (0,1) (Bohigas-de Carvalho-Pato '09, Bothner-Buckingham '17)
  - interpret remaining particles as observed, removed as unobserved
  - interpolates between Airy (s = 0) and Poisson process ( $s \rightarrow 1$ )
- Distribution of the largest particle ζ<sub>1</sub>, conditioned on the position of the largest observed particle ξ<sub>1</sub> being less than y can be expressed in terms of F(x, y; 0, s)

# Example 2: thinning

▶ Distribution of the largest particle ζ<sub>1</sub>, conditioned on the position of the largest observed particle ξ<sub>1</sub> being less than y can be expressed in terms of F(x, y; 0, s): if y < x,</p>

$$\mathbb{P}\left(\zeta_1 < x | \xi_1 < y\right) = \frac{F(x, y; 0, s)}{F^{\mathrm{TW}}(y; s)}$$
$$= \frac{1}{F^{\mathrm{TW}}(y; s)} \exp\left(-\int_0^{+\infty} \xi u_1(\xi)^2 d\xi\right) \exp\left(-\int_0^{+\infty} \xi u_2(\xi)^2 d\xi\right)$$

with

$$\begin{split} & u_1(\xi)^2 \sim s \operatorname{Ai}(\xi+x)^2, & \xi \to +\infty \\ & u_2(\xi)^2 \sim (1-s) \operatorname{Ai}(\xi+y)^2, & \xi \to +\infty \end{split}$$

# Example 3: first spacing

• Distribution of the **first spacing**  $\zeta_1 - \zeta_2$ :

$$\mathbb{P}\left(\zeta_1-\zeta_2>\sigma\right)=\int_{\mathbb{R}}v(\zeta+\sigma,\zeta)\mathsf{F}^{\mathrm{TW}}(\zeta;0)d\zeta$$

where

$$v(x_1, x_2) = \int_{\mathbb{R}} \xi \left. \frac{-\partial^2}{\partial s_2 \partial x_1} \left( u_1^2(\xi; x_1, x_2; 0, s_2) + u_2^2(\xi; x_1, x_2; 0, s_2) \right) \right|_{s_2 = 0} d\xi$$

- different expressions in terms of Hastings-McLeod solution to Painlevé II equation and associated  $\psi$ -functions (fundamental solutions to the Lax pair for Painlevé II), obtained by *Bornemann-Forrester-Witte '12*, *Perret-Schehr '14*
- related to limit distribution of first halting time for the Toda algorithm applied to random matrices (*Deift-Trogdon '16*)

• Distribution of the sum  $\zeta_1 + \ldots + \zeta_k$ : for k = 2,

$$\mathbb{P}\left(\zeta_1+\zeta_2<\sigma
ight)=\int_{\mathbb{R}} v(\sigma-\zeta,\zeta) \mathcal{F}^{\mathrm{TW}}(\zeta;0) d\zeta$$

- limit distribution of sum of *k* first components of a random partition w.r.t. **Plancherel measure**
- limit distribution of maximal sum of lengths of *k* disjoint increasing subsequences of a random permutation (*Baik-Deift-Johansson '99, Borodin-Okounkov-Olshanski '00, Okounkov '00, Johansson '01*)

Step 1: approximate the Airy ensemble by the **GUE** for large size n

• Fredholm determinant as limit of Hankel determinants

$$F(\vec{x};\vec{s}) = \lim_{n \to +\infty} \frac{H_n(w_{n,\vec{x},\vec{s}})}{H_n(e^{-\frac{n}{2}x^2})}$$

where

$$H_n(w) = \det\left(\int_{\mathbb{R}} \xi^{j+k} w(\xi) d\xi
ight)_{j,k=0}^{n-1}$$

and the weights are given by

$$w_{n,\vec{x},\vec{s}}(\xi) = s_j e^{-\frac{n}{2}\xi^2}, \quad \xi \in \left(2 + x_j n^{-2/3}, 2 + x_{j-1} n^{-2/3}\right), \ j = 1, \dots, k+1$$

with

$$x_0 = +\infty, \quad x_{k+1} = -\infty, \quad s_{k+1} = 1$$

Step 2: differential identities for  $H_n(w_{n,\vec{x},\vec{s}})$  with respect to  $\lambda_j = 2 + x_j n^{-2/3}$ 

$$\frac{\partial}{\partial \lambda_j} \ln H_n(w_{n,\vec{x},\vec{s}})$$
  
=  $(s_j - s_{j-1})e^{-\frac{n}{2}\lambda_j^2}\frac{\kappa_{n-1}}{\kappa_n} \left(p'_n(\lambda_j)p_{n-1}(\lambda_j) - p_n(\lambda_j)p'_{n-1}(\lambda_j)\right)$ 

in terms of orthogonal polynomials  $p_k$  with respect to  $w_{n,\vec{x},\vec{s}}$  and leading coefficients  $\kappa_k$ 

- Step 3: Riemann-Hilbert analysis to obtain large n asymptotics for orthogonal polynomials
  - requires local approximation in the vicinity of the edge 2, where all discontinuities  $\lambda_j$  lie
  - local approximation requires a model Riemann-Hilbert problem (generalization of *Xu-Zhao '11*)
  - Lax pair associated to RH problem  $\longrightarrow$  compatibility conditions lead to system of coupled Painlevé II equations
  - asymptotics for  $p_n(\lambda_j)$  involve  $u_j(0; \vec{x}, \vec{s})$

- Step 4: Substitute asymptotics for orthogonal polynomials in the differential identity and integrate the differential identity
  - starting point of integration λ<sub>1</sub> = λ<sub>2</sub> = ... = λ<sub>k</sub> = +∞ (explicit formula for Hankel determinant: Selberg integral)
  - first decrease  $\lambda_k$ , then  $\lambda_{k-1}$ , and so on
  - this explains appearance of integrals

$$\int_{0}^{+\infty} \xi u_{k}^{2}(\xi;\vec{x},\vec{s})d\xi + \ldots + \int_{0}^{+\infty} \xi u_{1}^{2}(\xi;\vec{x},\vec{s})d\xi$$

- Various asymptotic regimes
  - large gap asymptotics for  $F(\vec{x}; \vec{s})$  where some of the  $x_j$ 's tend to  $-\infty$
- Other point processes
  - Bessel  $\longrightarrow$  systems of coupled Painlevé III equations?
  - sine  $\longrightarrow$  systems of coupled Painlevé V equations?