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Abstract

The Kontsevich integral is a matrix integral (aka ”Matrix Airy function”) whose
logarithm, in the appropriate formal limit, generates the intersection numbers on
Mg,n. In the same formal limit it is also a particular tau function of the KdV
hierarchy; truncation of the times yields thus tau functions of the first Painlevé
hierarchy. This, however is a purely formal manipulation that pays no attention to
issues of convergence.
The talk will try to address two issues: Issue 1: how to make an analytic sense of the
convergence of the Kontsevich integral to a tau function for a member of the Painlevé
I hierarchy? Which particular solution(s) does it converge to? Where (for which range
of the parameters)?
Issue 2: it is known that (in fact for any β) the correlation functions of K points in the
GUEβ ensemble of size N are dual to the correlation functions of N points in the
GUE4{β of size K. For β “ 2 they are self-dual.
Consider β “ 2: this duality is lost if the matrix model is not Gaussian; however we
show that the duality resurfaces in the scaling limit near the edge (soft and hard) of
the spectrum.
In particular we want to show that the correlation functions of K points near the edge
of the spectrum converge to the Kontsevich integral of size K as N Ñ8.
This line of reasoning was used by Okounkov in the GUE2 for his ”edge of the
spectrum model”. This is based on joint work with Mattia Cafasso (Angers).
Time permitting I will discuss a work-in-progress with G. Ruzza (SISSA) extending
these results to the generating function of open intersection numbers.
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Based on

1 M. B. M. Cafasso, The Kontsevich matrix integral: convergence to the Painlevé
hierarchy and Stokes’ phenomenon , arXiv:1603.06420

2 M. B. M. Cafasso, Universality of the matrix Airy and Bessel functions at spectral
edges of unitary ensembles, arXiv:1610.06108

3 M.B., B. Dubrovin, D. Yang, Correlation functions of the KdV hierarchy and
applications to intersection numbers over Mg,n , Physica D, 2016.

4 M. B. G. Ruzza, “something something... Penner model ... something
something”, in progress.
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Dramatis Personæ

The main actor: Kontsevich (Penner) matrix integral

ZPn px;Y q :“

ż

Hn

dMdetpM ` iY qKe
Tr

ˆ

iM
3

3
´YM2`ixM

˙

ş

Hn
dMe´Tr pYM2q

“

“

C

detpM ` iY qKe
Tr

ˆ

iM
3

3
`ixM

˙

G

GUEpY q

Y “ diag
`

y1, . . . , yn
˘

; <pyjq ą 0.

The main goal

Understand what happens as nÑ8 in analytic way.

Introduced by Kontsevich (’92) to prove Witten’s conjecture (’90).

With the addition of blue term it is currently proposed as generalized tool to
study moduli space of open Riemann surfaces.

It is called Matrix Airy function; a sort of unitary model with external source.
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Moduli Spaces of Riemann surfaces

Mg,n :“

"

equiv. classes of R. S of genus g with n marked points

*

[Deligne–Mumford]

A point in Mg,m is a Riemann surface (algebraic curve) with n points, up to
biholomorphic equivalence.

dimC Mg,m “ 3g´ 3`m (an ”orbifold”). Nonetheless differential geometry and
integration on Mg,m is possible.

There are “tautological” line bundles Lj , whose fiber at the point rCs is T ‹pjC. As
with any line bundle, one can associate a “curvature form”, the Chern class of Lj
which we denote ψj . They are two–forms; to integrate over Mg,m we need
3g ´ 3`m (dimRMg,m “ 6g ´ 6` 2m).

Intersection numbers

A

τk00 τk11 . . .
E

:“

ż

Mg,m

ψ`11 ^ ¨ ¨ ¨ ^ ψ`mm

kj “ 7 of times j appears as exponent
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Conjecture (Witten, ’91)

FWittenpT0, T1, . . . , q :“
ÿ

k1,k2,...

A

τk00 τk11 . . . τ
k`
` . . .

E

Mg,m
m“

ř

kj,

3g´3“
ř

pj´1qkj

8
ź

j“0

T
kj
j

kj !

as a formal Taylor series, defines a τ–function of the KdV hierarchy;

τp~T q “ eF
Wittenp~T q , UpT0, T1, . . . q :“

B2F p~T q

BT 2
0

solves

$

&

%

BU

BT1
“ U

BU

BT0
`

1

12

B3U

BT 3
0

(Korteweg-deVries equation)

UpT0, 0, . . . , q “ T0.

ÿ

kě0

Tk`1
B

BTk
ln τp~T q `

T 2
0

2
” 0 (String equation)

Remark

The above statement is completely formal; the series for F does not converge. It is
useful to recursively compute the coefficients and hence the intersection numbers.
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Kontsevich’s Proof ’92 (doctoral dissertation!)

Introduce the Miwa variables1

Tj “ TjpY q :“ ´p2j ´ 1q!!
n
ÿ

`“1

1

y2j`1
`

“ ´p2j ´ 1q!! Tr
1

Y 2j`1

Theorem (Kontsevich’92)

FKontn pY q “
ÿ

k1,k2,¨¨¨ě0

Cnp~kq
8
ź

j“0

T
kj
j

kj !
y` Ñ8 , pTjpY q Ñ 0q

For each ~k the coefficients Cnp~kq converge (actually, stabilize)

lim
nÑ8

Cnp~kq “
A

τk00 τk11 . . . τ
k`
` . . .

E

Mg,m
m“

ř

kj,

3g´3“
ř

pj´1qkj

I.e. limnÑ8 FKont
n pY q “ FWittenpT q.

1They are not independent!
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Finite n results: Isomonodromic system
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Finite n results: Isomonodromic system

Spoiler Alert

The ZKont
n pY, xq is an isomonodromic tau function in the sense of Jimbo-Miwa-Ueno

(’80).

Apλ;x, ~yq “

„

0 i
´i

`

λ` x
2
´ upx; ~yq

˘

0



`

n
ÿ

j“1

Ajpx; ~yq

λ´ y2
j

,

Upλ;x, ~yq “

„

0 i
´i pλ´ 2upx; ~yqq 0



Dependence of u,Aj ’s on x, ~y is determined by the isomonodromic condition

BxA´ BλU ` rA,Us ” 0 ,
BλkAj

λ´ λj
´
BλjAk

λ´ λj
`

„

Aj

λ´ λj
,

Ak

λ´ λk



” 0

Bλ
Ak

λ´ λk
´ BλkA`

„

Ak

λ´ λk
, A



” 0 ,
BxAk

λ´ λk
´ BλkU `

„

Ak

λ´ λk
, U



” 0.
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1

2yk
BykF

Kont
n px; ~yq “ res

λ“y2
k

TrA2 dλ ; B2
xF

Kont
n px; ~yq “ upx;~λq `

x

2

Remark

The gap probability of Airy’s point field (Tom’s talk yesterday) is also a tau function
of a system of the same form (but with monodromy around the poles).
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Asymptotics: Formal statements
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Reduction of KdV: the first Painlevé hierarchy I

Choose N ě 2 and set Tj “ 0 j ě N ` 1. Then Witten’s formal generating function
is ln τpT1, . . . , TN q becomes a (formal) solution of the N -th member of the first
Painlevé hierarchy.

(String equation)` (KdV)` (Reduction) “ N -th member of Painlevé hierarchy

12 / 33



Reminder of the Korteweg deVries hierarchy

We use different scaling and labelling

t2j`1 “ ´
2

2j`1
3 pTj ´ δj,1q

p2j ` 1q!!
, x :“ t1;

Define recursively the following differential polynomials (Lenard–Magri)

B

Bx
Ln`1rus “

ˆ

1

4

B3

Bx3
` upxq

B

Bx
`

1

2
uxpxq

˙

Lnrus, L0rus “ 1, Lnr0s “ 0 (1)

The KdV hierarchy

Bu

Bt2n`1
“ 2

B

Bx
Ln`1rus, n P Zě0; u “ up~tq, ~t “ pt1, t3, t5, . . .q. (2)

and the String equation takes the form

ÿ

`ě0

p2`` 1qt2``1L`rus ` x ” 0 , u “ 2B2
x ln τp~tq
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Painlevé I hierarchy

Special case tj “ δj,2N`1t2N`1 ` δj,1x

p2N ` 1qt2N`1LN rupx; tqs ` upx; tq ` x “ 0 , upx, tq “ 2B2
x ln τpx; tq.

Example

For N “ 2, 3 the equation reads

N “ 2;
5

8
t5

´

u
2
` 3u

2
¯

` u` x “ 0

N “ 3;
7

32
t7

´

u
p4q
` 10uu

2
` 5pu

1
q
2
` 10u

3
¯

` u` x “ 0 .

The case N “ 2 above is, up a scaling the standard first Painlevé 1 equation U2 ` 3U2
“ X.

14 / 33



The problem

It is hard to make non-formal sense of convergence statement;

Can we fix Tj “ 0 for j ě N? In this case we have seen that the KdV hierarchy
reduces to the N -th member of the Painlevé I hierarchy. But what does it mean
to fix infinitely tj “ 0 if they are not independent?

If we prove convergence, what analytic solutions of PIN we can get? (i.e.; which
solutions of PIN are relevant for enumerative geometry?).

Are they uniquely determined? In which region of the parameters the
convergence is guaranteed?

Our answer

We provide a (almost) complete answer for the case t2N`1 “ t, t0 “ x and all other
tj “ 0.
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The case N “ 2 (Painlevé I)

Caveat

Not the way we state in the paper but equivalent!

Problem

Choose Ypnq sequence of diagonal matrices so that Tr pYpnq
´2J´1q Ñ tδJ,2 and

ZKont
n px;Ypnqq Ñ τpx, tq

The poles of the Lax matrix Apλ;x, ~ypnqq will distribute themselves in such a way that
–uniformly over compact sets of λ P C;

lim
nÑ8

Apλ;x, ~ypnqq “ AIpλ;x, tq lim
nÑ8

Upλ;x, ~ypnqq “ UIpλ;x, tq

AIpλ;x, tq “ λ2

„

0 0

´ 5i
2
t 0



` λ

„

0 5it
2

´5itupx, tq ´ i 0



`A0

UIpλ;x, tq “

„

0 i
´ipλ´ 2uq 0


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How to choose the sequence

Caveat

For technical reasons, n is a multiple of 2N ` 1 “ 5.

Let Pr be the r-th Padé approximant to e´z

e´z “
Prpzq

Prp´zq
`Opz2r`1q, z Ñ 0.

Zero distribution is known [SaffVarga78]; all in the region <z ą 0

µ

1` 2
3n

Figure: The zeroes of Pnp2nzq for
n “ 70.

2nµ

2n` 4
3

θ0

Figure: The poles of the Padé
approximation are within the shaded
sectorial annulus.
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Set

Y “ ty1, . . . , ynu “
 

y : Prpty
5q “ 0

(

, n “ 5r.

Theorem

For N “ 2 the Kontsevich’s tau function converges as nÑ8 to the tau function
τpx; tq of the tritronquée solution of PI equation The particular solution
upx; tq “ ´2B2

x ln τpx; tq has no poles for |t| sufficiently small within the sector
| argptq| ă π

2

5

8
t
`

u2 ` 3u2
˘

` u` x “ 0

Nonlinear Stokes

For N ě 2 there are several tronquée solution that have the same asymptotic
behaviours; i.e. the Witten tau function is a formal asymptotic expansion of several
possible analytic (tronquée) tau functions.

We need to describe which Tronquée solution; Ñ Riemann–Hilbert problem (i.e.
associated linear ODE).
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About the proof

The proof is a based on a formulation in terms of a Riemann–Hilbert problem and
rigorous asymptotic analysis.

A proof working for the general PIN and for the full sequence n requires to study the
zeros/poles of the Padé approximations of

exp

˜

N
ÿ

`“0

t2``1z
2``1

¸

“
Pnpzq

Pnp´zq
`Opz2n`1q.
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Part II: The universality of the (Kontsevich’s) Airy and the Bessel Matrix
integrals in Random Matrix Theory.
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Duality in Gaussian Integrals

Brezin-Hikami (2000) duality formula for characteristic functions

1

Zn

ż

Hn
dM

k
ź

i“1

detpλi ´Mqe
´n

2
TrM2`N TrMA

“

“
1

Zk

ż

Hk
dB

n
ź

j“1

detpaj ´ iBqe
´n

2
Tr pB´iΛq2 .

This formula exchanges k-points correlation functions on nˆ n matrices with
n-points correlation functions on k ˆ k matrices: note that here both the models
are Gaussian with external potentials A :“ diagpa1, . . . , anq and
Λ :“ diagpλ1, . . . , λkq.

Okounkov-Pandharipande (’01) used this to show the appearance of the
Kontsevich model at the edge of the spectrum in GUE.

The duality exists for Gaussian models in arbitrary β ensemble (not just Unitary
(β “ 2) Symplectic (β “ 4) and Orthogonal (β “ 1). (Desrosiérs ’09)

Problem

The results are only for Gaussian models. ....Or are they?
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The models

Unitary Matrix Model Laguerre Matrix Model

dµpMq9 dMe´nTrV pMq dµpMq9 dMpdetMqνe´nTrV pMq

M P Hn M P Hě0
n

lim inf
|x|Ñ8

V pxq

ln |x|
“ `8

lim inf
xÑ`8

V pxq

ln |x|
“ `8

inf
xPR`

V pxq ą ´8

In either cases, in the limit nÑ8, the spectral density becomes confined; we are
interested at the edges

-2 -1 1 2

0.1

0.2

0.3

0.4

N=20
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Averages of characteristic functions (a.k.a. ”correlators”)

Soft Edge Case:
C

2S
ź

j“1

e´
n
2
V pξjq detpξj ´Mq

G

Hn

,

here the average is taken with respect to the measure dµpMq “ e´nTrV pMqdM
on the space of nˆ n Hermitian matrices.

Hard Edge Case:

C

2S
ź

j“1

ξ
ν
2
j e´

n
2
V pξjq detpξj ´Mq

˘1

G

H`n

,

here the average is taken with respect to the measure
dµpMq “Mνe´nTrV pMqdM on the space of nˆ n semi–positive definite
Hermitian matrices, and Repνq ą ´1.

Studied by Fyodorov-Strahov (’03), Baik-Deift-Strahov (’03), Akemann-Fyodorov
(’03); formulas exist involving Orthogonal Polynomials of Christoffel–Uvarov type.
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Universal Edge-of-the-spectrum Matrix models: soft edge

Theorem (Universality of the Matrix Airy (Kontsevich) function)

Let V pxq generic; a right endpoint of the support of the equilibrium measure. Let

ξj “ a` C´1n´
2
3 y2
j , j “ 1 . . . , 2S. Then

lim
nÑ8

CS
2
n

2S2

3

n`S´1
ź

`“n

h`

C

2S
ź

j“1

e´
n
2
V pξjq detpξj ´Mq

G

Hn

“

“

ź

jăk

pyj ` ykq
2S
ź

j“1

yj
´ 1

2

22SπS
e´

2
3

TrY 3
ZKont2S pY q,

where Y “ diagpy1, . . . , y2Sq and

ZKont2S pY q “

ż

H2S

dHe
Tr

ˆ

iH
3

3
´Y H2

˙

ş

H2S
dHe´Tr pY H2q

.
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Universal Edge-of-the-spectrum Matrix models: hard edge

Theorem (Universality of the Matrix Bessel J,K functions)

Let V pxq be a regular potential and let ξj “ C´1n´2yj , j “ 1, . . . , 2S. Then

lim
nÑ8

CS
2
n2S2

n`S´1
ź

`“n

h`

C

2S
ź

j“1

ξ
ν
2
j e´

n
2
V pξjq detpξj ´Mq

G

H`n

“

“
detpY q

ν
2 p2πqK

πSp2S´1q

ż

CUE2S,pγ

pdetHqν´1e Tr p´Y H`H´1q dH

p2iπq2S

where Y “ diagpy1, . . . , y2Sq. Similarly ξj “ ´Cn´2yj , yj R R´:

lim
nÑ8

¨

˝

n´1
ź

`“n´S

h`

˛

‚ CS
2
n2S2

C

2S
ź

j“1

peiπξjq
´ ν

2 e
n
2
V pξjq

detpξj ´Mq

G

H`n

“

“
detpY q

ν
2 p2πqS

πSp2S´1q

ż

H`
2S

pdetHqν´1e Tr p´Y H´H´1q dH.

25 / 33



About the Penner–Kontsevich

On formal level: Painlevé hierarchy allows to extract explicit formulæ for intersection
numbers (joint with Dubrovin, Yang ’16)

F
WK

n pλ1, . . . , λnq :“
8
ÿ

~kPNn
xτk1 . . . τkny

p2k1 ` 1q!!

λk1`1
1

¨ ¨ ¨
p2kn ` 1q!!

λkn`1
n

, n ě 1

Recipe

Take matrix solution of Airy equation (bare problem)a;

d

dλ
Ψpλq “

„

0 1
λ 0



Ψpλq

Define the Master Matrix (asymptotic series at λ “ 8)

Mpλq :“
?
λΨpλqσ3Ψ´1pλq “

“

¨

˚

˚

˚

˚

˚

˚

˝

´

8
ÿ

g“1

p6g ´ 5q!!

2 ¨ 24g´1 ¨ pg ´ 1q!
λ´3g`2 ´

8
ÿ

g“0

p6g ´ 1q!!

24g ¨ g!
λ´3g

8
ÿ

g“0

6g ` 1

6g ´ 1

p6g ´ 1q!!

24g ¨ g!
λ´3g`1

8
ÿ

g“1

p6g ´ 5q!!

2 ¨ 24g´1 ¨ pg ´ 1q!
λ´3g`2

˛

‹

‹

‹

‹

‹

‹

‚

.

aNumerical normalizations are incorrect
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Then

F1pλq “
1

2
Tr

`

Ψ´1pλqΨ1pλqσ3

˘

´ λ

Fnpλ1, . . . , λnq “ ´
1

n

ÿ

rPSn

Tr pMpλr1 q ¨ ¨ ¨Mpλrn qq
śn
j“1pλrj ´ λrj`1 q

´ δn,2
λ1 ` λ2

pλ1 ´ λ2q2

n ě 2.
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Penner-Kontsevich model
(Work-in-progress with G. Ruzza, SISSA)

Similar ideology leads to a 3ˆ 3 isomonodromic system; nÑ8 limit leads to
Painlevé type RHP and bare system

d

dλ
Ψpλq “

»

–

0 1 0
0 0 1

k ` 1 λ 0

fi

flΨpλq

FW-PpT0, T1{2, . . . , q :“
ÿ

k0,k1{2k1,¨¨¨ě0

ÿ

bě0

C

ź

`ě0

τ
k`
` σ

k
`` 1

2
`

G

Mg,m,b

Kb
ź

jP 1
2
N

T
kj
j

kj !

where b=number of boundaries.
Identification of which isomonodromic system is relevant for this model allows explicit
formulæ for the intersection numbers.

Example

The one–point function

F
KP

1 pλq :“
ÿ

kPN

ÿ

bě0

xτkyMg,n,b
Kb p2k ` 1q!!

λk`1

expressible in terms of nested sums of combinations of factorials.
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Thank you!
If time permits... some details on the proof
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A large determinant I

Kontsevich proved (it is not hard) that

Znpx;Y q “ 2nπ
n
2 e

2
3

TrY 3`xTrY
det

”

Aipj´1qpy2
k ` xq

ı

k,jďn

śn
j“1pyjq

1
2

ś

jăkpyj ´ ykq
<yj ą 0.

We need a suitable extension (not the analytic continuation!) when some yj ’s are
negative; the extension must admit a regular asymptotic expansion as yj Ñ8 in
given sectors. This is a multi-dimensional Stokes’ phenomenon.

e
2
3
y3`xyAipy2 ` xq “

e
4
3
y3`2xy

2
?
π
?
y
p1`Opy´3qq, | arg λ| ă π

Y “ Y0 \ Y1 \ Y2
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A large determinant II

Znpx;Yp0q,Yp1q,Yp2qq “ Cn
e
2
3

TrY 3`xTrY

ś

jăkpyj ´ ykq
det

»

—

—

—

—

—

—

–

”

Ai
pk´1q
0 py2

j ` xq
ı

yjPYp0q

1ďkďn
”

Ai
pk´1q
1 py2

j ` xq
ı

yjPYp1q

1ďkďn
”

Ai
pk´1q
2 py2

j ` xq
ı

yjPYp2q

1ďkďn

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Aispλq :“ Aipωsλq , ω :“ e
2iπ
3 .

These determinants admit all a regular asymptotic expansion (the same expansion!) if
Sa Q yj Ñ8, argpyjq P Sa.

argS0 : ; argS1 : argS2 :
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Some idea of the proof: How RHP can help

It is a RHP in the auxiliary plane λ “ y2; define

dpλq :“ e2gpλq “

n1
ź

j“1

yj `
?
λ

yj ´
?
λ

n2
ź

j“1

yj ´
?
λ

yj `
?
λ
. <y1,...,n1 ă 0; <yn1`1,...,n ą 0

Problem

Find a 2ˆ 2 matrix valued Γ “ Γnpλ; Λq such that it satisfies the jump conditions

Γ`pλq “ Γ´pλqMnpλq , λ P $0,˘

Mnpλq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1` dpλqe´
4
3
λ

3
2 ´2xλ

1
2
σ` λ P $0 :“ eiθ0R`

1` 1
dpλq

e
4
3
λ

3
2 `2xλ

1
2
σ´ λ P $˘ :“ eiθ˘R`

iσ2 λ P R´

Γpλq “ λ´
σ3
4

1` iσ1
?

2

˜

1`
apnqpx; Λq
?
λ

σ3 `Opλ´1q

¸
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The matrix

Ψ “ Ψpλ;x,Λq :“ Γnpλqe
´ϑpλ;xqσ3D´1pλq

Dpλq :“

»

—

—

—

—

–

n2
ź

j“1

pyj `
?
λq

n1
ź

j“1

p´yj ´
?
λq 0

0

n2
ź

j“1

pyj ´
?
λq

n1
ź

j“1

p´yj `
?
λq

fi

ffi

ffi

ffi

ffi

fl

satisfies the system of “monodromy preserving” deformation in the sense of [Jimbo
Miwa, Ueno, ’80]

A couple of remarks

1 For n “ 0 the RHP is the familiar RHP for the so–called Airy parametrix; the

corresponding Tau function is easily computed as τ0 “
x3

12
; this gives the correct

“initial condition” for the WK KdV tau function. Dressing

2 The choice of poles is such that

dpλq Ñ etλ
2N`1

2
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