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Abstract

The Kontsevich integral is a matrix integral (aka " Matrix Airy function”) whose
logarithm, in the appropriate formal limit, generates the intersection numbers on
Mg.n. In the same formal limit it is also a particular tau function of the KdV
hierarchy; truncation of the times yields thus tau functions of the first Painlevé
hierarchy. This, however is a purely formal manipulation that pays no attention to
issues of convergence.

The talk will try to address two issues: Issue 1: how to make an analytic sense of the
convergence of the Kontsevich integral to a tau function for a member of the Painlevé
| hierarchy? Which particular solution(s) does it converge to? Where (for which range
of the parameters)?

Issue 2: it is known that (in fact for any ) the correlation functions of K points in the
GU Eg ensemble of size N are dual to the correlation functions of N points in the
GUEyg of size K. For B = 2 they are self-dual.

Consider 8 = 2: this duality is lost if the matrix model is not Gaussian; however we
show that the duality resurfaces in the scaling limit near the edge (soft and hard) of
the spectrum.

In particular we want to show that the correlation functions of K points near the edge
of the spectrum converge to the Kontsevich integral of size K as N — c0.

This line of reasoning was used by Okounkov in the GUE> for his "edge of the
spectrum model”. This is based on joint work with Mattia Cafasso (Angers).

Time permitting | will discuss a work-in-progress with G. Ruzza (SISSA) extending
these results to the generating function of open intersection numbers.
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DRAMATIS PERSONAE
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Understand what happens as n — o0 in analytic way.

o Introduced by Kontsevich ('92) to prove Witten's conjecture ('90).

o With the addition of blue term it is currently proposed as generalized tool to
study moduli space of open Riemann surfaces.

o It is called Matrix Airy function; a sort of unitary model with external source.




MOoODULI SPACES OF RIEMANN SURFACES

Mg = { equiv. classes of R. S of genus g with n marked points}

[Deligne-Mumford]

@ A point in ﬂg,m is a Riemann surface (algebraic curve) with n points, up to
biholomorphic equivalence.

o dime Mg,m = 3g — 3 +m (an "orbifold”). Nonetheless differential geometry and
integration on My ., is possible.

o There are “tautological” line bundles £;, whose fiber at the point [C] is T C. As
with any line bundle, one can associate a “curvature form", the Chern class of £;
which we denote v;. They are two—forms; to integrate over My ., we need
39 — 3+ m (dimg Mg m = 6g — 6 + 2m).

INTERSECTION NUMBERS
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CoNJECTURE (WITTEN, '91)
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REMARK

The above statement is completely formal; the series for F' does not converge. It is
useful to recursively compute the coefficients and hence the intersection numbers.




KONTSEVICH’S PROOF '92 (DOCTORAL DISSERTATION!)

Introduce the Miwa variables!
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THEOREM (KONTSEVICH92)
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For each k the coefficients Cp, () converge (actually, stabilize)
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FINITE n RESULTS: ISOMONODROMIC SYSTEM

The ZK°" (Y, z) is an isomonodromic tau function in the sense of Jimbo-Miwa-Ueno
('80).
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Dependence of u, A;'s on x, 4 is determined by the isomonodromic condition
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REMARK

The gap probability of Airy’s point field (Tom’s talk yesterday) is also a tau function
of a system of the same form (but with monodromy around the poles).




Asymptotics: Formal statements
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REDUCTION OF KDV: THE FIRST PAINLEVE HIERARCHY I

Choose N > 2 and set T; = 0 j > N + 1. Then Witten's formal generating function
is In7(Th,...,TNn) becomes a (formal) solution of the N-th member of the first
Painlevé hierarchy.

(String equation) + (KdV) + (Reduction) = N-th member of Painlevé hierarchy




REMINDER OF THE KORTEWEG DEVRIES HIERARCHY

We use different scaling and labelling

5 —05,1)

s x = 11;
(25 + 1! !

tojy1 = —

Define recursively the following differential polynomials (Lenard—Magri)

3
Lol = (§ g @)+ (@) Lalid, Lolul =1, £a0] =0 (1)

0 0
7u=2—£n+1[u], ne€Zso; u=u(t), t=(t1,ts,ts,...). (2)
5t2n+1 ox

and the String equation takes the form

D@+ Vtaep1Le[u] +2=0,  u=202In7(F)
£=0




PAINLEVE | HIERARCHY

SPECIAL CASE t; = 6 ontitan+1 + 6512

N + Dty y 1 Enu(m; t)] +u(z;t) +2 =0, wu(zx,t) = 202 In7(x; t).

EXAMPLE

| A\

For N = 2, 3 the equation reads
5 " 2
N =2; gts(u +3u)+u+m=0

7
N = 3; 337 (u(4) + 10uu” + 5(u’)? + 10u3) futz=0.

The case N = 2 above is, up a scaling the standard first Painlevé 1 equation U” + 3U? = X.




THE PROBLEM

o It is hard to make non-formal sense of convergence statement;

o Can we fix T; = 0 for j = N7 In this case we have seen that the KdV hierarchy
reduces to the N-th member of the Painlevé | hierarchy. But what does it mean
to fix infinitely ¢t; = O if they are not independent?

o If we prove convergence, what analytic solutions of Ply we can get? (i.e.; which
solutions of Ply are relevant for enumerative geometry?).

o Are they uniquely determined? In which region of the parameters the
convergence is guaranteed?

We provide a (almost) complete answer for the case ton 41 = t,t0 = = and all other
t; = 0.
J




THE CASE N = 2 (PAINLEVE 1)

Not the way we state in the paper but equivalent!

PROBLEM

Choose Y(,,) sequence of diagonal matrices so that Tr (Y(n)*wfl) — td,2 and
ngont(:c; Y(n)) - T(:Cv t)

The poles of the Lax matrix A()\;z, §(,)) will distribute themselves in such a way that
—uniformly over compact sets of A € C;
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How TO CHOOSE THE SEQUENCE

For technical reasons, n is a multiple of 2N + 1 = 5.

Let P, be the r-th Padé approximant to e™*
-z _ P7(Z)

Pr(—2)

Zero distribution is known [SaffVarga78]; all in the region Rz > 0

+ 0¥, 2z -o.

2n+§

Froorper The varcee of P (99 ~) fAr

FIGURE: The poles of the Padé 7/33



Set

Y={y1,-..,yn} ={y: Pr(ty®) =0} , n=5nr

THEOREM

For N = 2 the Kontsevich's tau function converges as n — o0 to the tau function
7(x;t) of the tritronquée solution of PI equation The particular solution

u(x;t) = —202 In7(x;t) has no poles for |t| sufficiently small within the sector
larg(t)] < 5

gt(u”+3u2)+u+x=0

NONLINEAR STOKES

For N > 2 there are several tronquée solution that have the same asymptotic
behaviours; i.e. the Witten tau function is a formal asymptotic expansion of several
possible analytic (tronquée) tau functions.

We need to describe which Tronquée solution; — Riemann—Hilbert problem (i.e.
associated linear ODE).



ABOUT THE PROOF

The proof is a based on a formulation in terms of a Riemann—Hilbert problem and
rigorous asymptotic analysis.

A proof working for the general PI and for the full sequence n requires to study the
zeros/poles of the Padé approximations of

exp (JZV: tze+1z2£+1> — feld + O(z* T,
=0 Pn(-2)




Part 1l: The universality of the (Kontsevich's) Airy and the Bessel Matrix
integrals in Random Matrix Theory.

J
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DUALITY IN GAUSSIAN INTEGRALS

o Brezin-Hikami (2000) duality formula for characteristic functions

1 k

L dAM 1—[ det(; — M)e*% Tr M?+NTr MA _
Zn Jn,, i=1
L f s Ly — L Tr (B—iA)?
= — dB det(a; — iB)e™ 2 Tr(B=iA)"
Ak Hi ]ljl !

This formula exchanges k-points correlation functions on n x n matrices with
n-points correlation functions on k x k matrices: note that here both the models
are Gaussian with external potentials A := diag(ai,...,ay) and
A = diag(A1,..., k).

o Okounkov-Pandharipande ('01) used this to show the appearance of the
Kontsevich model at the edge of the spectrum in GUE.

o The duality exists for Gaussian models in arbitrary 3 ensemble (not just Unitary
(B = 2) Symplectic (8 = 4) and Orthogonal (8 = 1). (Desrosiérs '09)

The results are only for Gaussian models. ....Or are they?




THE MODELS

Unitary Matrix Model Laguerre Matrix Model
dp(M)ocdMe™ T VD | g (M)oc dM (det M)¥ e~ T V(M)
M e H, Me HZY
\%
V(z) lim inf (2) =+
lim inf =400 z—+w In |z
|z]—o0 In |z inf V(z) > -
TeR

In either cases, in the limit n — 00, the spectral density becomes confined; we are
interested at the edges

n-N=40 0=




AVERAGES OF CHARACTERISTIC FUNCTIONS (A.K.A. ”CORRELATORS”

e Soft Edge Case:
25
Ilegv@°®u@—hﬂ> :
j=1 Hn

here the average is taken with respect to the measure du(M) =e™" Te V(M) qpg
on the space of n x n Hermitian matrices.

e Hard Edge Case:

25,
3 —2V(E, +1
ngz@@ij%> ,
Jj=1 HE
here the average is taken with respect to the measure

du(M) = M¥e Tt VM) AL on the space of n x n semi—positive definite
Hermitian matrices, and Re(v) > —1.

Studied by Fyodorov-Strahov ('03), Baik-Deift-Strahov ('03), Akemann-Fyodorov
('03); formulas exist involving Orthogonal Polynomials of Christoffel-Uvarov type. J




UNIVERSAL EDGE-OF-THE-SPECTRUM MATRIX MODELS: SOFT EDGE

THEOREM (UNIVERSALITY OF THE MATRIX AIRY (KONTSEVICH) FUNCTION)

Let V(z) generic; a right endpoint of the support of the equilibrium measure. Let
2
§=a+C'n7"5y? j=1...,25. Then

2
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UNIVERSAL EDGE-OF-THE-SPECTRUM MATRIX MODELS: HARD EDGE

THEOREM (UNIVERSALITY OF THE MATRIX BESSEL J, K FUNCTIONS)

Let V(z) be a regular potential and let £; = C~1n=2y;, j=1,...,25. Then
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ABOUT THE PENNER-KONTSEVICH

On formal level: Painlevé hierarchy allows to extract explicit formulae for intersection
numbers (joint with Dubrovin, Yang '16)

Z - )@kt DU @2k o+ DY

- Tk s
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EV O, ) = n>1
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o Take matrix solution of Airy equation (bare problem)?;

d
dX

\I/()\):[ g (1) ]xp(x)

o Define the Master Matrix (asymptotic series at A = o)

M) = VATA)oz ¥~ (N) =
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?Numerical normalizations are incorrect
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PENNER-KONTSEVICH MODEL

(WORK-IN-PROGRESS WITH G. Ruzza, SISSA)

Similar ideology leads to a 3 x 3 isomonodromic system; n — oo limit leads to
Painlevé type RHP and bare system

B 0 1 0
YO = 0 0 1 |¥W
E+1 X 0

k, 1 T
A k L+ 5
P T S S ([ ) e
ko.k1/2k1,+20b>0 \£=0

where b=number of boundaries.

Identification of which isomonodromic system is relevant for this model allows explicit
formulae for the intersection numbers.

The one—point function

RO DRIV < (il

k+1
keNb=0 A

expressible in terms of nested sums of combinations of factorials.




Thank you!

If time permits... some details on the proof
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A LARGE DETERMINANT I

Kontsevich proved (it is not hard) that

det [Ai(jfl) (2 + z)] IT7-4 (yj)%

k,j<n
Hj<k:(yj - yk)

n 2 3
Zn(z;Y) = 2" w2 es Y FeTry Ry, > 0.

We need a suitable extension (not the analytic continuation!) when some y;’s are
negative; the extension must admit a regular asymptotic expansion as y; — 0 in
given sectors. This is a multi-dimensional Stokes’ phenomenon.

9 3 o5y’ +2ay
e3YV A2 4 2) = ———— (1 + O™ 3)), |arg)| <7
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A LARGE DETERMINANT II

[Aigk*”(y;. + a:)]

yjey(o)
2Try34zTry N lsk<n
Zalw; O, 90,30 20, S gt | [ATV @ )], 0
Hj<k(yj = Yk) =y I<k<n
(A Vw2 + o), e
1<k<n
2im

Aig(N) := Ai(w®N), w:i=e 3 .

These determinants admit all a regular asymptotic expansion (the same expansion!) if
Sa 3y; — 0, arg(y;) € Sa.

arg80:® ;arg Sy ¢ @ argSa : @



SOME IDEA OF THE PROOF: How RHP CAN HELP

It is a RHP in the auxiliary plane A = y?; define

yi + VA 3y
1_[ z H s §Ry1,“.,n1 < 0; %ynlﬁ—l,m,n >0

d(A) = J ly]-i-f

j=1Yi —

PROBLEM

Find a 2 x 2 matrix valued I" = ', (A; A) such that it satisfies the jump conditions

Li(A) =T-(N)Mn(X), Xewo+

4,3 5 :
1+ d()\)e7§>‘2721/\2 o+ Aewp:=ePR,

_ 3 1 )
Mn(2) = 1+ —d(& e3AZH2022 5 A€ wy = eWLRy
’io‘z AeR_
o3 1+ io07 al™ (z; A) 1
LA =Xx"1 AF o3 + O(A
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The matrix
( ) —9( )\z)o'gD ()\)

U =T\ z,A) =
H Yj + \f n 0
D) = | 77 - ns n
0 [T =vX [[(=ui+vN
j=1 j=1

satisfies the system of “monodromy preserving” deformation in the sense of [Jimbo

Miwa, Ueno, '80]

@ For n = 0 the RHP is the familiar RHP for the so—called Airy parametrix; the
-z this gives the correct

corresponding Tau function is easily computed as 7o = T5;
initial condition” for the WK KdV tau function. Dressing

@ The choice of poles is such that
2N+1

d(\) — e




