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Suppose (T ,X , µ) is an ergodic probability measure preserving
transformation and φ : X ∈ R is a non-integrable non-negative
function.
Let

Sn :=
n∑

i=1

φ ◦ T i

be the Birkhoff sum.

A natural question is the rate of growth of Birkhoff sums of
non-integrable functions.



Proposition (Aaronson (1977))

For any sequence b(n) > 0, if limn→∞
b(n)
n =∞ then either

lim sup
Sn
b(n)

=∞ a.e.

or

lim inf
Sn
b(n)

= 0 a.e.



A useful result, due again to Aaronson, states:

Proposition

If a(x) is increasing, limx→∞
a(x)
x = 0 and∫

a(φ(x))dµ <∞

then for µ a.e. x

lim
n→∞

a(Sn)

n
= 0

This result gives bounds on lim sup Sn.



The relation between Birkhoff sums and extreme values, such as
the maxima, is investigated in the topic of trimmed Birkhoff sums.
In this approach the time series
{φ(x), φ(Tx), φ(T 2x), . . . , φ(T nx)} is rearranged into increasing
order {φ(T i0x) ≤ φ(T i1x) ≤ φ(T i2x) ≤ . . . φ(T inx)} so that
φ(T inx) = Mn(x).
We will this denote this rearrangement by
{Mn

0 (x),Mn
1 (x), . . . ,Mn

n (x)} so that Mn(x) = Mn
n (x).



Almost sure limit theorems for trimmed sums involve two
sequences of constants a(n),b(n) so that the scaled truncated sum

1

a(n)

n−b(n)∑
j=0

Mn
j

satisfies a strong law of large numbers.
Recent work of Aaronson and Nakada (2003) and Schindler (2015),
give precise information on the limiting behavior and choice of
constants a(n),b(n) is given for certain dynamical systems.
Trimmed results make clear the relations between large extremal
values of the time series and the behavior of the Birkhoff sum.



Aaronson, Kosloff and Weiss (2016) and Kosloff (2016) have
interesting recent results on trimmed symmetric Birkhoff sums in
the setting of infinite ergodic theory (when the underlying
probability space has infinite measure).



Let
Mn := max{φ(x), φ(Tx), φ(T 2x), . . . , φ(T nx)}

be the sequence of successive maxima Mn(x) observed along a
trajectory.
In extreme value theory literature the observables considered are
often of form

φ(x) = − log d(x , q)

or
φ(x) = d(x , q)−k (k > 0)

.
Dynamical Borel-Cantelli lemmas have been used to give
information on the almost sure behavior of the maxima Mn for
certain classes of observables on a variety of chaotic dynamical
systems (T ,X , µ).



For many hyperbolic dynamical systems there is no almost sure
limit for Mn

a(n) , in the case φ(x) = d(x , q)−k , k > 0, even if k is

such that φ is integrable (so that a strong law of large numbers
does hold for the Birkhoff sum).



Proposition (Holland, N., Török (2016))

Suppose that (T ,X , µ) has an invariant ergodic measure µ which
is absolutely continuous with respect to Lebesgue measure m.
Suppose there exists C > 0 and 0 < θ < 1 such that for all φ of
bounded variation and all ψ ∈ L1(m) we have:∣∣∣∣∫ φ · ψ ◦ f jdµ−

∫
φdµ

∫
ψdµ

∣∣∣∣ ≤ Cθj‖φ‖BV ‖ψ‖L1(m),

Assume for a point q ∈ X, 0 < dµ
dm (q) <∞. Then if

φ(x) = d(x , q)−k ( k > 0 ) for any monotone sequence
b(n)→∞, either

lim sup
n→∞

Mn(x)

b(n)
= 0 a.e., or lim sup

n→∞

Mn(x)

b(n)
=∞ a.e. (1)



We consider the observable

φ(x) = d(x , q)−k

over chaotic dynamical systems (T ,X , µ) for values of k which
ensure that

∫
φdµ =∞.

Most of our results generalize in an obvious way to a wider class of
functions, for example those for which µ(φ > t) = L(t)

tγ where
0 < γ < 1 and L(t) is a slowly varying function, as long as the sets
(φ > t) for large t correspond to sets which are topological balls.



Dynamical Borel Cantelli Lemmas

Assume (T ,X , µ) is an ergodic dynamical system and X is a
measure and metric space with a Riemannian metric d .
Let B(q, r) := {x : d(q, x) < r} denote the ball of radius r about
a point q.
Suppose that Bj is a sequence of nested sets in X based about a
point q. Define

En =
n∑

j=1

µ(Bj)

We say that the Strong Borel Cantelli (SBC) property holds for
(Bj) if for µ a.e. x ∈ X

n∑
j=1

1Bj
◦ T j(x) = En + o(En)



In the literature we often have a better estimate of the error term
and, for any δ > 0,

n∑
j=1

1Bj
◦ T j(x) = En + O(E

1/2+δ
n ) (∗)

If (∗) holds we say that the sequence (Bj) satisfies the QSBC
property, or quantitative Strong Borel Cantelli property.
If T j(x) ∈ Bj infinitely often for µ a.e. we say that the sequence
(Bj) has the Borel-Cantelli property.



Examples of systems for which the QSBC property has been proved
for balls nested at points q in phase space include Axiom A
diffeomorphisms (Chernov and Kleinbock (2001)), uniformly
partially hyperbolic systems preserving a volume measure with
exponential decay of correlations (Dolgopyat (2004)), uniformly
expanding C 2 maps of the interval (Phillipp (1967)), and
Gibbs-Markov type maps of the interval (Kim (2007)).



For intermittent type maps with an absolutely continuous invariant
probability measure the work of Kim (2007) and Gouëzel (2007)
gives a fairly complete picture: the Borel-Cantelli property holds
for nested balls except those based at the indifferent fixed point.



Other results on dynamical Borel-Cantelli lemmas include work on
one-dimensional maps modeled by Young towers with exponential
decay of correlations (Gupta , N. and Ott (2010)) and general
systems under mixing conditions (Haydn, N., Persson and Vaienti
(2013)).
Relevant work in hyperbolic settings includes that of Galatolo and
Kim (2007),Luzia (2014), Maucourant (2006) and Jaerisch,
Kesseböhmer and Stratmann (2013).



Theorem

Suppose that (T ,X , µ) is an ergodic dynamical system with
dim(X ) = D. Let φ(x) = d(x , q)−k for some distinguished point
q. Suppose 0 < C1 <

dµ
dm (q) < C2 and that the QSBC property

holds for nested balls about q.
If k > D then for any ε > 0

(a) lim sup
Sn

nk/D [log(n)]k/D+ε
= 0

and for any ε > 0

(b) lim inf
Sn(e(log n)

1
2 +ε

)

nk/D
=∞



Remark

Recent work of Tanja Schindler (2015) on trimmed Birkhoff sums
has shown that for Gibbs-Markov maps of the unit interval the
limit infimum estimate d can be improved to

lim inf
Sn(log log n)k−1+ε

nk
=∞

.
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Intermittent maps.

Theorem

Suppose (Tα, [0, 1], µα) is a Liverani-Saussol-Vaienti map with
0 ≤ α < 1. Let q ∈ [0, 1] and φ(x) = d(x , q)−k with k ≥ 1.
Define Sn =

∑n
j=1 φ ◦ T j . Then if q 6= 0, for any ε > 0

lim inf
Sn(e(log n)

1
2 +ε

)

nk
=∞

and

lim sup
Sn

nk [log(n)]k+ε
= 0

In particular

lim
n→∞

log Sn
log n

= k



Theorem

If q = 0 then for any ε > 0

lim inf
Sn

nk+α−ε =∞

and

lim sup
Sn

nk+α+ε
= 0

In particular

lim
n→∞

log Sn
log n

= k + α



Liverani-Saussol-Vaienti Map.
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Exponential decay of correlations: hyperbolic systems.

Assumption (A): For all Lipschitz functions φ, ψ on X there exist
constants C , 0 < θ < 1 (independent of φ, ψ) such that

| φ ψ ◦ T kdµ−
∫
φdµ

∫
ψdµ| < Cθk‖φ‖Lip‖ψ‖Lip.

Under assumptions (A), if dµ
dm ∈ Lp, p > 1, Haydn, N., Persson and

Vaienti showed:
Suppose µ(Bi ) ≥ C logβ i

i for some β > 0, then if En =
∑n

j=1 µ(Bj)
for µ a.e. x ∈ X .

n∑
j=1

1Bj
◦ T j(x) = En + O(E

1/2+ε
n )

for any ε > 0.
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Theorem

Suppose a dynamical system (T ,X , µ) satisfies (A), dµ
dm ∈ Lp(m),

for p > 1 and q ∈ X has density satisfying h(x) ∼ Cd(q, x)−β,
1 > β > 0. Suppose also dim(X ) = D. Then if φ(x) = d(x , q)−k ,
k ≥ D − β,

lim sup
Sn

nk/(D−β)[log(n)]k+ε
= 0

and

lim inf
Sn(e [log(n)]

1
2 +ε

)

nk/(D−β)
=∞

for any ε > 0. Hence

lim n→∞ log Sn
log n

=
k

D − β



Corollary

Suppose T (x) = 4x(1− x) is a unimodal map of the interval [0, 1].
Let φ(x) = d(x , q)−2, then if q = 0 or q = 1

lim
n→∞

log(Sn)

log n
= 4

while if q ∈ (0, 1)

lim
n→∞

log(Sn)

log n
= 2
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Open problems.

Use techniques from trimmed sums on Gibbs-Markov maps to
improve estimates, perhaps by Towers and induction?


