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Hitting Times to Shrinking Balls

Dynamical system f : X 	, with invariant measure µ.

Nested sequence of subsets of X, (Ur)r≥0, with ∩rUr = {z}.
For x ∈ X, define the first hitting time to Ur:

τr(x) = inf{n ≥ 1 : fn(x) ∈ Ur}.

Q. How does µ(τr > t) depend asymptotically on r and t?

To derive an exponential Hitting Time Statistics (HTS) law, one
sets t = s

µ(Ur)
for some s > 0, and considers the limit

lim
r→0

µ(τr > s/µ(Ur)),

which in may cases for typical z, converges to e−s. Can rewrite as

lim
r→0
−1

s
logµ(τr > s/µ(Ur)) = 1.
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HTS for (Nonuniformly) Expanding Maps

More generally, the limit depends on z: For nonperiodic z, it is 1,
while for periodic z there is a correction depending on the period.

This quantity is also connected to Return Time Statistics and
Extreme Value Theory, where it is called the extremal index. This
has been studied in many systems, starting with [Galves, Schmitt
’90].

Nonuniformly expanding maps via inducing [Bruin, Saussol,
Troubetzkoy, Vaienti ’03] ,[Holland, Nicol, Török ’12], ,
[Hayden, Winterberg, Zweimüller ’14]

Multimodal maps with a.c.i.p. [Bruin, Todd ’09]

α-mixing processes [Abadi, Saussol ’11]

Manneville-Pomeau maps [Freitas, Freitas, Todd, Vaienti ’16]

Connection with spectral perturbation [Keller ’12]
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Escape Rates for Open Systems

From the point of view of open systems, one fixes r and declares
the set Ur ⊂ X to be a hole: Once trajectories enter Ur, they are
not allowed to exit.
For x ∈ X, define the escape time

er(x) = inf{n ≥ 0 : fn(x) ∈ Ur}

The exponential escape rate from the open system is defined to be

− log λr = lim
t→∞
−1

t
logµ(er > t), when the limit exists.

While er(x) and τr(x) are different when x ∈ Ur, there is a simple
connection between them:

{x ∈ X : τr(x) = t} = f−1
(
{x ∈ X : er(x) = t− 1}

)
Due to the invariance of µ, we have µ(τr > t) = µ(er > t− 1), so
that the escape rate can be defined in terms of τr as well.
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Derivative of the Escape Rate

Taking a nested sequence of sets Ur as before with ∩rUr = {z},
we can ask how the escape rate scales with the size of the hole,

lim
r→0

− log λr
µ(Ur)

In some cases with exponential escape rates, this limit has been
shown to equal the extremal index from the HTS.

Full one-sided shifts [Bunimovich, Yurchenko ’11]

Spectral approach applied to piecewise expanding maps
[Keller, Liverani ’09]

Finite alphabets & conformal repellers [Ferguson, Pollicott ’12]

Nonuniformly expanding maps via inducing schemes [D., Todd
’16], [Pollicott, Urbanski ’16]
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Goal of Present Project

Both HTS and escape rate asymptotic are special cases of

− 1

µ(Ur)

1

t
logµ(τr > t).

Open system: First limit t→∞, then r → 0.

HTS: Set t = s/µ(Ur) and take diagonal limit r → 0.

Two Goals:

View these expressions as two paths in a two-dimensional
parameter space that allows us to move naturally between the
two limits.

Determine conditions under which the limits yield the same
value and when a phase transition occurs in moving from one
to the other.

Note: HTS holds much more generally than the escape rate law.
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A Family of Paths in Parameter Space

For α, s ∈ (0,∞), set t = sµ(Ur)
−α. Define

Lα,s(z) := lim
r→0

−1

sµ(Ur)1−α logµ(τr > sµ(Ur)
−α).

-
t→∞

-t→∞

PPPPPPPPPPPPq

t = sµ(Ur)
−1

→∞

?

r → 0

?

r → 0

α =∞

α = 0

α = 1

α = 1: Diagonal limit for HTS.

α =∞: Escape rate asymptotic,

lim
r→0

lim
t→∞
− 1

µ(Ur)

1

t
logµ(τr > t).

α = 0: Reversed limits, lim
t→∞

lim
r→0
− 1

µ(Ur)

1

t
logµ(τr > t).

Limit for α 6= 1 more delicate than for α = 1.
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First Setting: Uniformly (Piecewise) Expanding Maps

Setting: f : I 	, satisfying:

∃Z = {Zi}i, countable collection of intervals on which f is
continuous and monotonic; set D = I \ (∪iZi);

∃ nonatomic Borel probability measure mϕ, conformal with

respect to potential ϕ, i.e.
dmϕ

d(mϕ◦f) = eϕ, and mϕ(D) = 0.

Define transfer operator Lϕψ(x) =
∑

y∈f−1x

ψ(y)eϕ(y).

(P1) (Bounded distortion) ∃Cd > 0 s.t.
|eSnϕ(x)−Snϕ(y) − 1| ≤ Cd|fnx− fny|, whenever f ix, f iy lie
in same element of Z for all i = 0, 1, . . . n− 1;

(P2)
∑

Z∈Z supZ e
ϕ <∞;

(P3) ∃n0 ∈ N s.t. supI e
Sn0ϕ < infI\D Ln0

ϕ 1;

(P4) ∀ intervals J ⊂ I \D, ∃N s.t. infI\D LN
ϕ 1J > 0.

ϕ is a contracting potential: satisfies conditions of [Rychlik ’83].
(P4) is the covering property; (P1) used for perturbation argument.

Mark Demers Hitting Times and Escape Rates



Perturbations of Lϕ
Under (P1)-(P4), Lϕ : BV 	 has a spectral gap.

∃ unique invariant measure µϕ = gmϕ, g ∈ BV , g > 0.
[Rychlik ’83], [Liverani, Saussol, Vaienti ’98]

We want to consider perturbations of Lϕ from the point of view of
open systems.

Fix z ∈ I, nested sequence of open sets (Ur)r≥0, ∩rUr = {z}.
Define punctured transfer operator

L̊nϕ,Urψ = Lnϕ(ψ · 1I̊n−1
r

)

where I̊n−1
r = ∩n−1

i=0 f
−i(I \ Ur).

We have
∫
L̊nϕ,Urψ dmϕ =

∫
I̊n−1 ψ dmϕ.

L̊ϕ,Ur is not a small perturbation of Lϕ in BV , but can be
small as operator BV → L1(mϕ) if we have uniform
Lasota-Yorke inequalities [Keller, Liverani ’99].
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Perturbations of Lϕ: Assumptions on z

(P3) =⇒ ∃n1 ∈ N s.t. (2 + 2Cd) sup
I
eSn1ϕ < 1.

Let Znr be the intervals of monotonicity of fn|I̊n−1
r

.

(U1) (Large images) ∃c0, r0 > 0 such that

inf
r∈[0,r0]

inf{mϕ(fn1(J)) : J ∈ Zn1
r } ≥ c0.

(U2) If z is periodic with prime period p, assume g is continuous at
z and fp is monotonic at z.

Define Icont = {z ∈ I : fk is continuous at z for all k ∈ N}.
Note that mϕ(Icont) = 1 since mϕ(D) = 0.
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Piecewise Expanding Maps: Same Law Across All Paths

Theorem 1

Suppose (f, ϕ) satisfies (P1)-(P4). Let z ∈ Icont and (Ur)r≥0 be a
nested sequence of intervals such that ∩rUr = {z}, satisfying (U1)
and in the periodic case, (U2). Then ∀s > 0, ∀α ∈ [0,∞],

Lα,s(z) := lim
r→0

−1

sµϕ(Ur)1−α logµϕ(τr > sµϕ(Ur)
−α)

=

{
1, if z is not periodic

1− eSpϕ(z), if z has prime period p
.

Proof relies on proving that L̊ϕ,Ur has a uniform spectral gap for r
sufficiently small. The case α =∞ then follows by checking the
conditions in [Keller, Liverani ’09]. Then Lα,s(z) for α ∈ [0,∞)
uses additional estimates on the continuity of the spectral
projectors of the relevant transfer operators.
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Piecewise Expanding Maps: Some Examples

Ex 1: Lasota-Yorke map of the interval

Z finite, f |Z satisfies |Df | ≥ λ > 1 and |D2f | ≤ C, for each
Z ∈ Z.

ϕ = − log |Df |, mϕ = Lebesgue measure.

Theorem 1 applies as long as we choose a sequence (Ur)r≥0

satisfying (U1), (U2).

Ex 2: Gauss map, f(x) = 1/x (mod 1)

Z = {Zj}j≥1, Zj = ( 1
j+1 ,

1
j ).

ϕ = − log |Df |, mϕ = Lebesgue.

(P1) fails since distortion is only Hölder with exponent 1/2;
however, the potential is monotonic on each branch and so
still contracting, (P2)-(P4) still hold.

If we choose n1 s.t. 4|eSn1ϕ|∞ < 1, then (U1) holds as long
as z is not an endpoint of Zn1 . Theorem 1 then applies.
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Piecewise Expanding Maps: Some Examples

Ex 3: Mixing Gibbs-Markov maps with large images

Z is countable, but is a Markov partition for f : Each image
f(Z) is a union of Z ′ ∈ Z. |f ′| ≥ λ > 1 on each Z ∈ Z.

(BIP) ∃ finite set {Zj}j∈J ⊂ Z s.t. ∀Z ∈ Z, ∃j, k ∈ J s.t.
f(Zj) ⊇ Z and f(Z) ⊇ Zk.

ϕ is (uniformly) Lipschitz continuous on elements of Z and
admits a nonatomic Borel probability measure mϕ with
mϕ(∪Z∈ZZ) = 1.

Then (f, ϕ) satisfies (P1)-(P4), so Theorem 1 applies as long
as we choose z satisfying (U1) and (U2).
Notice (U1) is satisfied as long as we do not choose z to be
an endpoint of Zn1 .
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Second Setting: Induced Maps

Consider cases in which f : I 	 does not satisfy (P1)-(P4), but
one can define an induced map F to an interval Y ⊂ I which does.

Formal assumptions:

For a potential ϕ, f admits a conformal probability measure
mϕ, and a unique invariant measure µϕ, abs. cont. w.r.t. mϕ.

For z ∈ I and a sequence of sets (Ur)r≥0, assume we can
choose Y ⊂ I with µϕ(Y ) > 0 and Ur ⊂ Y such that first
return map F = fRY : Y 	 and induced potential
Φ =

∑RY −1
i=0 ϕ ◦ f i satisfy (P1)-(P4).

Define:

µY = 1
µϕ(Y )µϕ|Y ;

RY,n =
∑n−1

i=0 RY ◦ F i, time of nth return to Y ;

Au(ε) =
{
y ∈ Y : ∃n ≥ u s.t.

∣∣∣RY,n(y)− n
µϕ(Y )

∣∣∣ > nε
}

;

Ycont = {y ∈ Y : F k is continuous at y for all k ∈ N}.
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Induced Maps: Exponential Large Deviations

Standing assumptions:

f : I 	 is as above;

∃Y ⊂ I and z ∈ Ycont such that F = fRY satisfies (P1)-(P4);

the sequence of sets (Ur)r≥0 satisfies (U1), and if z is
periodic, (U2) as well.

Theorem 2

If for all ε > 0 sufficiently small, there exists c(ε) > 0 such that
µY (Au(ε)) ≤ e−c(ε)u for all large u, then for all α ∈ [0,∞],

Lα,s(z) := lim
r→0

−1

sµϕ(Ur)1−α logµϕ(τr > sµϕ(Ur)
−α)

=

{
1, if z is not periodic

1− eSpϕ(z), if z has prime period p (for f)
.
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Induced Maps: Subexponential Large Deviations

Theorem 3

Under the hypotheses of Theorem 2:

a) If ∃γ ∈ (0, 1) s.t. for any small ε > 0, there exist C, c(ε) > 0
s.t. µY (Au) ≤ Cec(ε)uγ for all large u, then for α < 1

1−γ ,

Lα,s(z) =

{
1, if z is not periodic

1− eSpϕ(z), if z has prime period p
. (1)

b) If ∃γ ∈ (0, 1) and C, c > 0 such that µY (RY ≥ u) ≥ Ce−cuγ

for all large u, then Lα,s(z) = 0 for all α > 1
1−γ .

c) If both µY (Au) and µY (RY ≥ u) decay superpolynomially in
u, but more slowly than any stretched exponential, then (1)
holds if α ≤ 1 and Lα,s(z) = 0 if α > 1.

Remark: Theorems 2 and 3 also hold with µY (τr > sµϕ(Ur)
−α) in

place of µϕ(τr > sµϕ(Ur)
−α) in the definition of Lα,s(z).
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Phase Transition in the Stretched Exponential Case

In many applications, the exponent γ governing the stretched
exponential decay of µY (RY ≥ u) matches that of µY (Au(ε)), so
items (a) and (b) of Theorem 3 describe complementary cases.

For such maps, one has a phase transition at the path
t = sµϕ(Ur)

−α when α = 1
1−γ .

t→∞

t→∞

r → 0 r → 0

α =∞

α = 0

α = 1
1−γ

For α < 1
1−γ , Lα,s(z) = either 1 or 1− eSpϕ(z).

For α > 1
1−γ , Lα,s(z) = 0.
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Applications of Inducing: Stretched Exponential

Ex 1: Generalized Farey maps

Choose countable partition of I = [0, 1], {An}n∈N, of intervals
labelled in increasing order from right to left with |An| = an.

Set tn =
∑∞

k=n ak and for x ∈ [0, 1], define

f(x) =


(1− x)/a1 if x ∈ A1

an−1(x− tn+1)/an + tn if x ∈ An, n ≥ 2
0 if x = 0

{An}n≥1 is a Markov partition for f with f(An) = An−1,
n ≥ 2, and f(A1) = I.

ϕ = − log |Df |, m = Lebesgue is invariant measure for f
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Applications of Inducing: Stretched Exponential

Ex 1: Generalized Farey maps (continued)

F = first return map to Y = A1 satisfies (P1)-(P4).

m(RY ≥ u) is determined by {tn}n∈N, which we choose to
decay at a stretched exponential rate.

F piecewise linear, so m is a Markov measure. Follows from
[Gantert, Ramanan, Rembart ’14] that if m(RY ≥ u) is
stretched exponential with exponent γ ∈ (0, 1), then so is
m(Au(ε)) for all ε sufficiently small.

Thus Theorem 3(a) and (b) holds for this class of maps:
Lα,s(z) equals the usual HTS law for α < 1

1−γ and

Lα,s(z) = 0 for α > 1
1−γ .
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Applications of Inducing: Exponential Case

C3 unimodal map f : I 	 with nonflat critical point c s.t.

Orb(c) = {fn(c) : n ≥ 1} is nowhere dense

f is topologically mixing;

f has negative Schwarzian.

Under these conditions, given z ∈ I, one can generically find an
interval Y containing z such that F = fRY is Gibbs-Markov.

Ex 1: Collet-Eckmann Case

|Dfn(f(c))| grows exponentially in n;

ϕt = −t log |Df |: there is a unique equilbrium state µt for
each t in a neighborhood of [0, 1].

RY has exponential tails and exponential large deviations
w.r.t. µt, and so the HTS law for Lα,s(z) holds for all
α ∈ [0, 1] and all t in a neighborhood of [0, 1].
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Applications of Inducing: Exponential Case

Ex 2: Non-Collet-Eckmann Case

Unique equilibrium state µt for ϕt = −t log |Df |, for
t ∈ (t0, 1) and some t0 < 0 [Przytycki, Rivera-Letelier ’11].
Conditions (P1)-(P4) hold for F = fRY .
RY has exponential tails and exponential large deviations
w.r.t. µt, so HTS law for Lα,s(z) holds for all α ∈ [0, 1] and
t ∈ (t0, 1).

Ex 3: Lipschitz Potentials

ϕ is Lipschitz continuous and hyperbolic, i.e.
supx∈I

1
nSnϕ(x) < P (ϕ), where P (ϕ) is variational pressure.

(This follows, for example if one merely assumes
|Dfn(f(c))| → ∞ [Li, Rivera-Letelier ’14].)
Then F = fRY satisfies (P1)-(P4) and RY has exponential
tails and exponential large deviations w.r.t. the unique
equilibrium state µϕ.
The HTS law for Lα,s(z) holds for all α ∈ [0, 1].
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Open Questions and Next Steps

(Q1) What about the case of polynomial tails for RY and
polynomial large deviations?
Our proof gives that the HTS law holds for β < α ≤ 1 for
some β depending on the polynomial rate, and for α = 0.
Moreover, Lα,s(z) = 0 for all α > 1.
What about α ∈ (0, β)?

(Q2) Our results for inducing schemes assume that F is a first
return map. What about induced maps that are not first
return maps?
[D., Todd ’16] uses Young towers (not first return) to prove
the case α =∞ for some multimodal maps and geometric
potentials ϕt = −t log |Df |, for t near 1. Would be
interesting to generalize results about Lα,s(z) more fully for
general inducing schemes that are not first returns.
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