The Dolgopyat inequality for non-Markov maps in
BV.

Henk Bruin (University of Vienna)

joint work with

Dalia Terhesiu (University of Exeter)

Luminy, February 2017



Dolgopyat inequality for the twisted transfer operator

» F:[0,1] — [0, 1] is expanding non-Markov interval map;
>  is a piecewise C? roof function:

» L is the transfer operator, with twisted version
Lsv = L(e°?v), s=o+ib.

Theorem: Under appropriate assumptions (to be discussed later)
there exist A,bp > 1 and ¢, € (0, 1) such that

1516 <"

for all |o| < e, |b| > by and n > Alog |b|, where || ||, is a weighted
version of the BV-norm.



Previous results

The tool (cancellation mechanism) comes from Chernov and Dol-
gopyat's work to prove exponential mixing for certain Anosov flows.

» Baladi & Vallée [2005] for general setting of suspension
semiflows over p.w. C2 Markov maps with p.w. C' roof.

» Avila, Gouézel & Yoccoz [2006] for Teichmiiller flows.

» Aratjo & Melbourne [2015] for suspension semiflows over p.w.
C1*@ Markov maps with p.w. C! roof (to treat the Lorenz
flow).

» Eslami [2015] stretched exponential mixing for skew-products
on T? with non-Markov p.w. C1*® base map and p.w. C? roof.

» Butterley & Eslami [2015] exponential mixing for skew-
products on the torus with non-Markov base map with finitely
many branches and p.w. C? roof.



The map F

Let F: Y — Y be an AFU map for Y = [0,1], i.e.:
» Uniformly expanding: |F'| > po > 1,
» Adler’s distortion condition: |F”|/|F’|? uniformly bounded.

» possibly non-Markov, countably many branches, but with
Finite image partition: Let a be the partition into maximal
intervals of continuity. Then

X1 :=U{0Fa: a € a} is a finite set.
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Let F: Y — Y be an AFU map for Y = [0,1], i.e.:
» Uniformly expanding: |F'| > po > 1,
» Adler’s distortion condition: |F”|/|F’|? uniformly bounded.

» possibly non-Markov, countably many branches, but with
Finite image partition: Let a be the partition into maximal
intervals of continuity. Then

X1 :=U{0Fa: a € a} is a finite set.

Therefore F" has a finite image partition too, and
n—1
X, =U{0F"a:a€ a,}, ap = \/ Fa
i=0

has cardinality #X, < n #Xi.



Roof function ¢

Let H, be the collection of inverse branches of F".

Let ¢ : Y — R be piecewise C! such that
> SUPhett; SUPxedom(h) (¢ © h)'(X)] < oc.
» There is g9 > 0 such that
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Roof function ¢

Let H, be the collection of inverse branches of F".

Let ¢ : Y — R be piecewise C! such that

> SUPheryy SUPxedom(h) |( 0 h) (X)] < oc.
» There is g9 > 0 such that

sup sup W (x)]e50%°h>) <
x€Y heHy,xedom(h)

This is used for “moving the contour to Rs > 0" (to prove
exponential mixing). Without it, one can work on imaginary

axis in renewal theory context to prove polynomial mixing.



Transfer operator £

The transfer operator associated to F is
L: LYY, Leb) — L1(Y,Leb).
For s =0 +ib e C, let Ls be the twisted version of L:

Llv = Z eS|y o h, n>1,
heHn

for v, = 27:_01900 Fi

For s =0 € R, L, has a positive leading eigenfunction f,.



BV functions

Let Varyv be the total variation of v: Y — C.

For b € R define the norm

1
vl]|p = ——Varyv + ||v]|5.
Ivlls = 1 g Varvy + IVl

Throughout we will work with the Banach space

B={v:Y —=C:|v|p < oo}



Dolgopyat inequality

Theorem: Under the above + additional assumptions, including
UNI, there exist A, by > 1 and £, € (0, 1) such that

1£30 < A"

for all |o] <€, |b| > by and n > Alog |b].



Dolgopyat inequality

Theorem: Under the above + additional assumptions, including
UNI, there exist A, by > 1 and £, € (0, 1) such that

1£30 < A"

for all |o] <€, |b| > by and n > Alog |b].

Corollary: For every w € (0,1) there exists by such that
(1 = L) lp < |b.

for all |o| < € and |b| > by.
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1. We use an iterate k large enough to kill various constants;
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Additional assumptions

1. We use an iterate k large enough to kill various constants;

2. Let Py be the image partition of FX. Assume

in Leb >C_k/4,
min Leb(p) > Cpy

where C depends on the leading eigenfunction £, of L,.
This is trivially satisfied if F is Markov.
For x — x (mod 1), it holds for all 5 except for dimy < 1.

3. UNI: For some particular constant D > 0, and some fixed
multiple ng of k:

Vp € P 3h1, hy € Hp, |r%1; |77/),(X)| >D

for ¥ = pn,, © h1 — @n,, © ho.



Line of proof

v

Analyze jump-sizes and how discontinuities are created and
propagated;

v

Cancellation lemma within a particular cone of pairs (u, v);

v

Invariance of the cone.

» L2 contraction in the cone.

v

From outside the cone: exponential contraction to the cone

v

Version of the Lasota-Yorke inequality.



Jump-sizes

The non-Markov map F generates discontinuities at certain points
x € Y with jump-size defined as

Size v(x) := lim sup [v(€) — v(¢)).
070 re(x—8x+9)
Definition: v : Y — C has exponentially decreasing jump-sizes if
Size v(x) < Copo_j/4
if x € Xj\ Xj_1 and v is continuous at every x ¢ U;X;.

(Recall: |F’| > po and G is fixed in the proof.)



Jump-sizes

For \,, f, eigenvalue resp. eigenfunction of L, let

1
; Ls(fyv)
be the normalized version of L5, s = o + ib.

Proposition: Take k large such that the additional assumptions 1 &
2 hold, and n = 2k. If u, v with |v| < u have exponentially
decreasing jump-sizes, then

sup ulp

: ~n . An 1 —Jj/4 Fn
Size LI u(x) , Size LIv(x) < 2 M m CPOJ/ £7u(x)

for each x € X; \ Xj_1, j > k.



The cone

Define Osc;v = SUPy el lv(x) = v(y)| and

Ei(u) ::Zpaj/4 Z lim sup (&)

>k xe(X\X;_1)nie £

as intended upper bound of the sum of jumps-sizes on /.

Coneb::{(u,v) 0<u,0<|v[<u,

u, v have exponentially decreasing jump-sizes
and Oscyv < Cy|b|Leb(/)sup u|; + G2E/(u)

for all intervals | C single atom of Pk}.

(G and G are fixed in the proof.)



Invariance of the cone

Lemma: Assume |b| > 2, ng a large multiple of k. Then Coney, is
invariant under
(u;v) = (£5°(xu), £5°v),

where x = x(b, u,v) € CL(Y,[0,1]) comes from the “cancellation
lemma”.



BV functions outside the cone.

Functions in the cone have discontinuties only in U;X;.
BV functions can have discontinuities at x ¢ U;Xj, but their
jump-sizes descrease exponentially under iteration of £7°.



BV functions outside the cone.

Functions in the cone have discontinuties only in U;X;.
BV functions can have discontinuities at x ¢ U;Xj, but their
jump-sizes descrease exponentially under iteration of £7°.

Proposition: There exists € € (0, 1) such that for all s = o + ib,
0<o0<e¢, |bl > by, and all v € BV satisfying

Varyv < G (b2 pg"™/* |[v],
there exists a pair (Umng; Wmn,) € Conep, such that

I£27V — Winng lloc < 2Ca p~™ [b] [|v]] o0

where HWmI‘IQHOO < ||VHOO



Lasota-Yorke

The spaces (BV, L) form an adapted pair, but for unbounded roof
function ¢, the operator Ls : LY — 11 is not bounded when
R(s) = o > 0. Therefore, the usual Lasota-Yorke inequality fails.

Proposition: Choose k sufficiently large. Define

Ny = /\ééz/)\g Ao leading eigenvalue of L.

Then there exist £ > 0 and ¢ > 0 such that for all s = o + ib with
|o| <eand beR,

Vary (£2%v) < pg ™ *Varyv + c(1 + [B)AZ(|[v]|so | v]I1) /2,

for all v € BV(Y) and all n > 1.
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