$\alpha\text{-deformations}$ of an infinite class of continued fraction transformations

Thomas A. Schmidt Oregon State University

2 February 17

$\alpha\text{-deformations}$ of an infinite class of continued fraction transformations

Thomas A. Schmidt Oregon State University

2 February 17

2 Main results

- Tree of words
- 5 Group identities and sketch of proofs

- Thanks to organizers!
- Joint with Kari Calta (Vassar College) and Cor Kraaikamp (TU Delft)

- Thanks to organizers!
- Joint with Kari Calta (Vassar College) and Cor Kraaikamp (TU Delft)

Fix $n \ge 3$. Let $\nu = \nu_n = 2\cos \pi/n$ and $t = 1 + \nu$.

Let G_n be generated by

$$A = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} \nu & 1 \\ -1 & 0 \end{pmatrix}, C = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix},$$
(1)

and note that C = AB.

Fix $\alpha \in [0,1]$ and define

$$\mathbb{I}_{\alpha} := \mathbb{I}_{n,\alpha} = \left[\left(\alpha - 1 \right) t, \alpha t \right).$$

Of endpoints

 $\ell_0 := \ell_0(\alpha) = (\alpha - 1)t$

and

 $r_0 := r_0(\alpha) = \alpha t$

Let

$$T_{\alpha} = T_{n,\alpha} : x \mapsto A^{k} C' \cdot x, \qquad (2)$$

any 2 × 2 matrix
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 acts on reals by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax+b}{cx+d}$, and

• l > 0 is minimal such that $C' \cdot x \notin \mathbb{I}$ Thus, rotate until exit \mathbb{I} .

• $k = -\lfloor (C' \cdot x)/t + 1 - \alpha \rfloor$. Then, translate back into I.

Let

$$T_{\alpha} = T_{n,\alpha} : x \mapsto A^{k} C' \cdot x, \qquad (2)$$

any 2 × 2 matrix
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 acts on reals by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax+b}{cx+d}$, and

• l > 0 is minimal such that $C' \cdot x \notin \mathbb{I}$ Thus, rotate until exit \mathbb{I} .

• $k = -\lfloor (C' \cdot x)/t + 1 - \alpha \rfloor$. Then, translate back into I.

Theorem

For $n \geq 3$, the set of $\alpha \in (0,1)$ such that there exists $i = i_{\alpha}, j = j_{\alpha}$ with

$$T_{n,\alpha}^{i}(r_{0}(\alpha)) = T_{n,\alpha}^{j}(\ell_{0}(\alpha))$$

is of full Lebesgue measure.

Call the set of these α the synchronization set for *n*.

Theorem

For $n \ge 3$, the synchronization set is the union of intervals, $\mathscr{J}_{k,v} = [\zeta_{k,v}, \eta_{k,v})$ with $k \in \mathbb{Z} \setminus \{0\}$ and $v \in \mathcal{V}$, a tree of words defined below. The complement of the union of the $[\zeta_{k,v}, \eta_{k,v}]$ is a measure zero Cantor set.

• Let
$$R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. For $M \in SL_2(\mathbb{R})$ and an interval \mathbb{I}_M , let
 $\mathcal{T}_M(x, y) := \begin{pmatrix} M \cdot x, RMR^{-1} \cdot y \end{pmatrix}$ for $x \in \mathbb{I}_M, y \in \mathbb{R}$.

• Thus, $T_M(x, y) = (M \cdot x, -1/(M \cdot (-1/y))).$

• The measure μ on \mathbb{R}^2 given by

$$d\mu = \frac{dx \, dy}{(1+xy)^2}$$

2-D set up

• Let
$$R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. For $M \in SL_2(\mathbb{R})$ and an interval \mathbb{I}_M , let $\mathcal{T}_M(x,y) := \begin{pmatrix} M \cdot x, RMR^{-1} \cdot y \end{pmatrix}$ for $x \in \mathbb{I}_M, \ y \in \mathbb{R}$.

• Thus, $T_M(x, y) = (M \cdot x, -1/(M \cdot (-1/y))).$

• The measure μ on \mathbb{R}^2 given by

$$d\mu = \frac{dx \, dy}{(1+xy)^2}$$

2-D set up

• Let
$$R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. For $M \in SL_2(\mathbb{R})$ and an interval \mathbb{I}_M , let $\mathcal{T}_M(x,y) := \begin{pmatrix} M \cdot x, RMR^{-1} \cdot y \end{pmatrix}$ for $x \in \mathbb{I}_M, \ y \in \mathbb{R}$.

• Thus, $T_M(x, y) = (M \cdot x, -1/(M \cdot (-1/y))).$

• The measure μ on \mathbb{R}^2 given by

$$d\mu = \frac{dx \, dy}{(1+xy)^2}$$

2-D set up

• Let
$$R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. For $M \in SL_2(\mathbb{R})$ and an interval \mathbb{I}_M , let $\mathcal{T}_M(x,y) := \begin{pmatrix} M \cdot x, RMR^{-1} \cdot y \end{pmatrix}$ for $x \in \mathbb{I}_M, \ y \in \mathbb{R}$.

- Thus, $T_M(x, y) = (M \cdot x, -1/(M \cdot (-1/y))).$
- The measure μ on \mathbb{R}^2 given by

$$d\mu = \frac{dx \, dy}{(1+xy)^2}$$

Each T_{α} is piecewise Möbius — there is a partition into subintervals, $\mathbb{I}_{\alpha} = \bigcup_{\beta} K_{\beta}$, such that $T_{\alpha}(x) = M_{\beta} \cdot x$ for all $x \in K_{\beta}$.

For $x \in K_{\beta}$ and $y \in \mathbb{R}$ let

$$\mathcal{T}_{\alpha}(x,y) = \mathcal{T}_{M_{\beta}}(x,y) = \left(M_{\beta} \cdot x, RM_{\beta}R^{-1} \cdot y\right).$$

For $k \in \mathbb{N}$ and $v \in \mathcal{V}$ (defined below), let $\mathscr{J}_{k,v} = [\zeta_{k,v}, \eta_{k,v})$.

Theorem

Fix $n \geq 3, k \in \mathbb{N}, v \in \mathcal{V}$ and $\alpha \in (\zeta_{k,v}, \eta_{k,v})$.

There is a connected union of finitely many rectangles $\Omega_{n,\alpha}$ upon which $\mathcal{T}_{n,\alpha}$ is bijective, up to μ -measure zero.

Furthermore, this gives the natural extension of $T_{n,\alpha}$.

Moreover, the collection of heights (top and bottoms) of the rectangles comprising $\Omega_{n,\alpha}$ depends only on (n, k, v).

For $k \in \mathbb{N}$ and $v \in \mathcal{V}$ (defined below), let $\mathscr{J}_{k,v} = [\zeta_{k,v}, \eta_{k,v})$.

Theorem

Fix $n \geq 3, k \in \mathbb{N}, v \in \mathcal{V}$ and $\alpha \in (\zeta_{k,v}, \eta_{k,v})$.

There is a connected union of finitely many rectangles $\Omega_{n,\alpha}$ upon which $\mathcal{T}_{n,\alpha}$ is bijective, up to μ -measure zero.

Furthermore, this gives the natural extension of $T_{n,\alpha}$.

Moreover, the collection of heights (top and bottoms) of the rectangles comprising $\Omega_{n,\alpha}$ depends only on (n, k, v).

One $\Omega_{n,\alpha}$

Figure : The domain $\Omega_{3,0.14}$, with blocks \mathcal{B}_i (projecting to cylinders for T_{α}), and their images, both denoted by *i*. Here $R_{k,\nu} = AC$ and $L_{k,\nu} = A^{-1}CA^{-2}CA^{-2}CA^{-1}CA^{-1}$, and α is an interior point of $\mathcal{J}_{1,1}$.

Figure : Schematic representation of cylinders for three values of α (here n = 3). For the bottom two, (k, l) denotes $\Delta_{\alpha}(k, l)$.

Fix *n*. Let $S = S_n$ be given as $S : \bigcup_{\alpha \in [0,1]} \{ r_0(\alpha) \} \times \mathbb{I}_{\alpha} \to \bigcup_{\alpha \in [0,1]} \{ r_0(\alpha) \} \times \mathbb{I}_{\alpha}$

 $(r_0(\alpha), y) \mapsto (r_0(\alpha), T_{\alpha}y)$

Recall that $r_0(\alpha) = \alpha t$ and $\ell_0(\alpha) = (\alpha - 1)t = r_0(\alpha) - t$.

Fix *n*. Let $S = S_n$ be given as $S : \bigcup_{\alpha \in [0,1]} \{r_0(\alpha)\} \times \mathbb{I}_{\alpha} \to \bigcup_{\alpha \in [0,1]} \{r_0(\alpha)\} \times \mathbb{I}_{\alpha}$ $(r_0(\alpha), y) \mapsto (r_0(\alpha), T_{\alpha}y)$

Recall that $r_0(\alpha) = \alpha t$ and $\ell_0(\alpha) = (\alpha - 1)t = r_0(\alpha) - t$.

Cylinders, a global perspective

Figure : The unions of the various cylinders for the $T_{n,\alpha}$ form cylinders for S_n . Each \mathbb{I}_{α} is given as a vertical fiber, with its left endpoint $\ell_0(\alpha) = \alpha t - t$ at the bottom and its right endpoint $r_0(\alpha) = \alpha t$ at the top. Here: n = 3.

Discovering synchronization

Figure : The graph of $x \mapsto T_{3,\alpha}(x-t)$, with $x = \alpha t$, thus the values of $\ell_1(\alpha)$. In red that of $x \mapsto T_{3,\alpha}(x)$; the red curves give $r_1(\alpha)$. (Here $t = t_3 = 2$.) Gray vertical lines demarcate natural partition; to left of leftmost gray vertical line " C^2 never appears."

Discovering synchronization, 2

Figure : Zoom in on first red branch in the "no C^{2n} zone. Red gives the single branch of $y = r_1(\alpha)$ while blue colors the two branches of $y = \ell_4(\alpha)$ for *x*-range plotted. The *x*-axis is shown as a dotted line.

• In the previous figure, find

$$r_1 = \boxed{r_{j-1} = C^{-1}A^{-1}C \cdot \ell_{i-1}} = C^{-1}A^{-1}C \cdot \ell_4$$

holds for $\alpha \in \mathscr{J}_{1,1}$.

• For some u, $r_j = A^u C \cdot r_{j-1} = A^{u-1} C \cdot \ell_{i-1}$

This gives ℓ_i because we are in region of "no C²" and there is a unique translation of C · ℓ_{i-1} into I_α.

• In the previous figure, find

$$r_1 = \boxed{r_{j-1} = C^{-1}A^{-1}C \cdot \ell_{i-1}} = C^{-1}A^{-1}C \cdot \ell_4$$

holds for $\alpha \in \mathscr{J}_{1,1}$.

• For some u, $r_j = A^u C \cdot r_{j-1} = A^{u-1} C \cdot \ell_{i-1}$

$$= \ell_i$$
.

This gives *l_i* because we are in region of "no *C*²" and there is a unique translation of *C* · *l_{i-1}* into I_α.

• In the previous figure, find

$$r_1 = \boxed{r_{j-1} = C^{-1}A^{-1}C \cdot \ell_{i-1}} = C^{-1}A^{-1}C \cdot \ell_4$$

holds for $\alpha \in \mathscr{J}_{1,1}$.

• For some u, $r_j = A^u C \cdot r_{j-1} = A^{u-1} C \cdot \ell_{i-1}$

 $= \ell_i$.

This gives *l_i* because we are in region of "no *C*²" and there is a unique translation of *C* · *l_{i-1}* into I_α.

In the previous figure, find

$$r_1 = \boxed{r_{j-1} = C^{-1}A^{-1}C \cdot \ell_{i-1}} = C^{-1}A^{-1}C \cdot \ell_4$$

holds for $\alpha \in \mathscr{J}_{1,1}$.

• For some u, $r_j = A^u C \cdot r_{j-1} = A^{u-1} C \cdot \ell_{i-1}$

 $= \ell_i$.

This gives ℓ_i because we are in region of "no C²" and there is a unique translation of C · ℓ_{i-1} into I_α.

Relation reveals further digits of r_0 at right endpoint

At the right endpoint of $\mathcal{J}_{k,v}$, relation gives

$$r_{j-1} = C^{-1}A^{-1}C \cdot r_0$$
 or $C^{-1}AC \cdot r_{j-1} = r_0$

• Since
$$r_1 = A^k C \cdot r_0$$
,

$$r_j = r_1$$

and

۲

$$r_j = A^{k+1}C \cdot r_{j-1}$$

Relation reveals further digits of r_0 at right endpoint

At the right endpoint of $\mathcal{J}_{k,v}$, relation gives

$$r_{j-1} = C^{-1}A^{-1}C \cdot r_0$$
 or $C^{-1}AC \cdot r_{j-1} = r_0$

• Since
$$r_1 = A^k C \cdot r_0$$
,

$$r_j = r_1$$

and

۲

$$r_j = A^{k+1} C \cdot r_{j-1}$$

Relation reveals further digits of r_0 at right endpoint

At the right endpoint of $\mathcal{J}_{k,v}$, relation gives

$$r_{j-1} = C^{-1}A^{-1}C \cdot r_0$$
 or $C^{-1}AC \cdot r_{j-1} = r_0$

• Since
$$r_1 = A^k C \cdot r_0$$
,

$$r_j = r_1$$

and

۲

$$r_j = A^{k+1}C \cdot r_{j-1}$$

Period of $r_0(\eta_{k,\nu})$ — only k, k+1 as digits

In parameter region where "C² does not appear". Use simplified digits, for α ∈ 𝓕_{k,ν},

$$r_0(\alpha) = \underbrace{k^{c_1}, (k+1)^{d_1}, \cdots, (k+1)^{d_{s-1}}, k^{c_s}}_{d(k,v), v=c_1d_1\cdots c_{s-1}d_{s-1}c_s}, \cdots$$

• At right endpoint $\eta_{k,v}$ find periodic

 $r_0(\alpha) = d(k, v), k+1, k^{c_1-1}, (k+1)^{d_1}, \cdots, (k+1)^{d_{s-1}}, k^{c_s}$

Period of $r_0(\eta_{k,\nu})$ — only k, k+1 as digits

In parameter region where "C² does not appear". Use simplified digits, for α ∈ 𝓕_{k,ν},

$$r_0(\alpha) = \underbrace{k^{c_1}, (k+1)^{d_1}, \cdots, (k+1)^{d_{s-1}}, k^{c_s}}_{d(k,v), v=c_1d_1\cdots c_{s-1}d_{s-1}c_s}, \cdots$$

• At right endpoint $\eta_{k,v}$ find periodic

 $r_0(\alpha) = d(k, v), \overline{k+1, k^{c_1-1}, (k+1)^{d_1}, \cdots, (k+1)^{d_{s-1}}, k^{c_s}}$

For each s>1 and each word $v=c_1d_1\cdots c_{s-1}d_{s-1}c_s$, define

$$u' = \begin{cases}
1(c_1 - 1)d_1c_2 \cdots c_{s-1}d_{s-1}c_s & \text{if } c_1 \neq 1, \\
(d_1 + 1)c_2 \cdots c_{s-1}d_{s-1}c_s & \text{otherwise.}
\end{cases}$$

(When v = c with c > 1 then let v' = 1(c - 1), and when v = 1 then v' = 1.)

Set

- $\Theta_{-1}(c_1) = c_1 + 1$
- $\Theta_q(1)=1q1$ for $q\geq 1$
- For c>1, set $\Theta_q(c)=c[1(c-1)]^q1c$ for any $q\geq 0$.
- Recursively ... Suppose v = Θ_p(u) = uv["] for some p ≥ 0 and some suffix v["]. Then define for any q ≥ 0

 $\Theta_q(v) = v(v')^q v''.$

This is a palindrome; it is shortest "self-dominant" word extending $v(v')^q$ which is larger than $v(v')^{\infty}$.

• Let \mathcal{V} be the tree of all words obtained starting from v = 1.

- Set
 - $\Theta_{-1}(c_1) = c_1 + 1$
 - $\Theta_q(1)=1q1$ for $q\geq 1$
 - For c>1, set $\Theta_q(c)=c[1(c-1)]^q1c$ for any $q\geq 0.$
- Recursively ... Suppose v = Θ_p(u) = uv" for some p ≥ 0 and some suffix v". Then define for any q ≥ 0

 $\Theta_q(v) = v(v')^q v''.$

This is a palindrome; it is shortest "self-dominant" word extending $v(v')^q$ which is larger than $v(v')^\infty$.

• Let \mathcal{V} be the tree of all words obtained starting from v = 1.

- Set
 - $\Theta_{-1}(c_1) = c_1 + 1$
 - $\Theta_q(1)=1q1$ for $q\geq 1$
 - For c>1, set $\Theta_q(c)=c[1(c-1)]^q1c$ for any $q\geq 0.$
- Recursively ... Suppose v = Θ_p(u) = uv" for some p ≥ 0 and some suffix v". Then define for any q ≥ 0

 $\Theta_q(v) = v(v')^q v''.$

This is a palindrome; it is shortest "self-dominant" word extending $v(v')^q$ which is larger than $v(v')^{\infty}$.

• Let \mathcal{V} be the tree of all words obtained starting from v = 1.

Figure : Each vertex of the directed tree \mathcal{V} has countably infinite valency. A small portion of \mathcal{V} with a hint of the derived words map, \mathscr{D} .

Partioning with the $\mathcal{J}_{k,v}$

For $k \in \mathbb{N}, v \in \mathcal{V}$, let

 $\mathscr{I}_{k,v} = \{ \alpha \mid r_0(\alpha) \text{ has digits } d(k,v) \}$

This is partitioned

$$\mathscr{I}_{k,v} = \mathscr{J}_{k,v} \cup \bigcup_{q=q'}^{\infty} \mathscr{I}_{k,\Theta_q(v)},$$

where q' = 0 unless $v = c_1$, in which case q' = -1.

Partioning with the $\mathcal{J}_{k,v}$

For $k \in \mathbb{N}, v \in \mathcal{V}$, let

 $\mathscr{I}_{k,v} = \{ \alpha \mid r_0(\alpha) \text{ has digits } d(k,v) \}$

This is partitioned

$$\mathscr{I}_{k,v} = \mathscr{J}_{k,v} \cup \bigcup_{q=q'}^{\infty} \mathscr{I}_{k,\Theta_q(v)},$$

where q' = 0 unless $v = c_1$, in which case q' = -1.

Figure : A non-full branch. Here n = 3, v = 111 and k = 1; we have that $\omega_{1,111}$ is determined by the fixed point of $R_{1,11}$. The labels L, R mark respectively the curves $y = L_{1,111} \cdot r_0(\alpha)$, $y = R_{1,111} \cdot r_0(\alpha)$ where $\alpha = x/2 = x/t_{3,3}$. Red gives of $y = r_3(\alpha)$, while blue gives $y = \ell_9(\alpha)$; Magenta gives the branches of $y = r_2(\alpha)$. The left portion has .3582 < x < 0.3592. The right "zooms in" to 0.35910 < x < 0.35915. (This interval lies between the vertical gray lines in both portions.)

Define full branch prefix f(v) as longest prefix u of v such that u^{∞} is maximal among all prefixes.

Find right endpoint of $\mathscr{I}_{k,v}$ has $r_0(\alpha)$ of digits $d(k, \mathfrak{f}(v))^{\infty}$.

One shows

$$\mathfrak{f}(\Theta_q(v)) = \overleftarrow{(\Theta_{q-1}(v))'}.$$

Define full branch prefix f(v) as longest prefix u of v such that u^{∞} is maximal among all prefixes.

Find right endpoint of $\mathscr{I}_{k,v}$ has $r_0(\alpha)$ of digits $d(k, \mathfrak{f}(v))^{\infty}$.

One shows

$$\mathfrak{f}(\Theta_q(v)) = \overleftarrow{(\Theta_{q-1}(v))'}.$$

Define full branch prefix f(v) as longest prefix u of v such that u^{∞} is maximal among all prefixes.

Find right endpoint of $\mathscr{I}_{k,v}$ has $r_0(\alpha)$ of digits $d(k, \mathfrak{f}(v))^{\infty}$.

One shows

$$\mathfrak{f}(\Theta_q(v)) = \overleftarrow{(\Theta_{q-1}(v))'}.$$

Define full branch prefix f(v) as longest prefix u of v such that u^{∞} is maximal among all prefixes.

Find right endpoint of $\mathscr{I}_{k,v}$ has $r_0(\alpha)$ of digits $d(k, \mathfrak{f}(v))^{\infty}$.

One shows

$$\mathfrak{f}(\Theta_q(v)) = \overleftarrow{(\Theta_{q-1}(v))'}.$$

Synchronization relation implies ℓ_0 digits -1, -2

Let
$$W = A^{-2}C(A^{-1}C)^{n-3}A^{-2}C(A^{-1}C)^{n-2}$$
.

Lemma (one step)

For $c, k \ge 1$, $(A^k C)^c = \underbrace{C^{-1} A^{-1} C}_{synchr. rel.} (A^{-1} C)^{n-2} [W^{k-1} A^{-2} C (A^{-1} C)^{n-3}]^{c-1} W^k A^{-1}.$

Lemma (glueing)

For $k \geq 1$,

$$WA^{-1} \cdot A^k CA^{-1} C = A^{-2} C (A^{-1} C)^{n-3} W^k A^{-2} C.$$

Synchronization relation implies ℓ_0 digits -1, -2

Let
$$W = A^{-2}C(A^{-1}C)^{n-3}A^{-2}C(A^{-1}C)^{n-2}$$
.

Lemma (one step)

For $c, k \geq 1$,

$$(A^{k}C)^{c} = \underbrace{C^{-1}A^{-1}C}_{synchr. rel.} (A^{-1}C)^{n-2} [W^{k-1}A^{-2}C(A^{-1}C)^{n-3}]^{c-1}W^{k}A^{-1}.$$

Lemma (glueing)

For $k \geq 1$,

$$WA^{-1} \cdot A^k CA^{-1}C = A^{-2}C (A^{-1}C)^{n-3} W^k A^{-2}C.$$

Synchronization relation implies ℓ_0 digits -1, -2

Let
$$W = A^{-2}C(A^{-1}C)^{n-3}A^{-2}C(A^{-1}C)^{n-2}$$
.

Lemma (one step)

For $c, k \geq 1$,

$$(A^{k}C)^{c} = \underbrace{C^{-1}A^{-1}C}_{synchr. rel.} (A^{-1}C)^{n-2} [W^{k-1}A^{-2}C(A^{-1}C)^{n-3}]^{c-1}W^{k}A^{-1}.$$

Lemma (glueing)

For $k \geq 1$,

$$WA^{-1} \cdot A^k CA^{-1} C = A^{-2} C (A^{-1} C)^{n-3} W^k A^{-2} C.$$

Outline of proof of Theorem 1

• Partition result holds, due to descriptions of $\zeta_{k,v}, \eta_{k,v}, \omega_{k,v}$

- Lemmas on previous slide give necessary ℓ_0 digits for synchronization on $\mathcal{J}_{k,v}$.
- Induction shows admissibility of these ℓ_0 digits. Of course, not admissible to right, but relation helps.
- Since only -1, -2 can use $\alpha = 0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree).

- Partition result holds, due to descriptions of $\zeta_{k,v}, \eta_{k,v}, \omega_{k,v}$
- Lemmas on previous slide give necessary ℓ_0 digits for synchronization on $\mathscr{J}_{k,v}$.
- Induction shows admissibility of these ℓ_0 digits. Of course, not admissible to right, but relation helps.
- Since only -1, -2 can use $\alpha = 0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree).

- Partition result holds, due to descriptions of $\zeta_{k,v}, \eta_{k,v}, \omega_{k,v}$
- Lemmas on previous slide give necessary ℓ₀ digits for synchronization on *J*_{k,v}.
- Induction shows admissibility of these ℓ_0 digits. Of course, not admissible to right, but relation helps.
- Since only -1, -2 can use $\alpha = 0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree).

- Partition result holds, due to descriptions of $\zeta_{k,v}, \eta_{k,v}, \omega_{k,v}$
- Lemmas on previous slide give necessary ℓ₀ digits for synchronization on *J*_{k,v}.
- Induction shows admissibility of these ℓ_0 digits. Of course, not admissible to right, but relation helps.
- Since only -1, -2 can use $\alpha = 0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree).

- Partition result holds, due to descriptions of $\zeta_{k,v}, \eta_{k,v}, \omega_{k,v}$
- Lemmas on previous slide give necessary ℓ₀ digits for synchronization on *J*_{k,v}.
- Induction shows admissibility of these ℓ_0 digits. Of course, not admissible to right, but relation helps.
- Since only -1, -2 can use $\alpha = 0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree).

One $\Omega_{n,\alpha}$, again

Figure : The domain $\Omega_{3,0.14}$, with blocks \mathcal{B}_i (projecting to cylinders for T_{α}), and their images, both denoted by *i*. Here $R_{k,\nu} = AC$ and $L_{k,\nu} = A^{-1}CA^{-2}CA^{-2}CA^{-1}CA^{-1}$, and α is an interior point of $\mathcal{J}_{1,1}$.

Figure : The domain $\Omega_{3,0.86}$. Blocks $\mathcal{B}_{i,j}$ and their images, both denoted by (i,j). Here $L_{-k,v} = A^{-2}CA^{-1}$ and $R_{-k,v} = ACAC^2$, and α is an interior point of $\mathcal{J}_{-2,1}$. Also, hints as to the lamination ordering.

Connectedness of $\Omega_{k,v}$ requires relations on heights

Figure : Relations on the heights of rectangles for general -k, v and $\alpha \in (\eta_{-k,v}, \delta_{-k,v})$. The red paths are used to prove that lamination occurs. Horizontal arrows used to show that boundaries are sent to boundaries.

THANK YOU!