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The groups

Fix n ≥ 3. Let ν = νn = 2 cosπ/n and t = 1 + ν.

Let Gn be generated by

A =

(
1 t
0 1

)
, B =

(
ν 1
−1 0

)
, C =

(
−1 1
−1 0

)
, (1)

and note that C = AB.
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The intervals

Fix α ∈ [0, 1] and define

Iα := In,α = [ (α− 1)t, αt ) .

Of endpoints
`0 := `0(α) = (α− 1)t

and
r0 := r0(α) = αt
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The maps

Let
Tα = Tn,α : x 7→ AkC l · x , (2)

any 2× 2 matrix

(
a b
c d

)
acts on reals by

(
a b
c d

)
· x =

ax + b

cx + d
, and

l > 0 is minimal such that C l · x /∈ I Thus, rotate until exit I.

k = −b(C l · x)/t + 1− α c. Then, translate back into I.
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traditional look

x =
1

µ− 1

µ−
. . .− 1

µ− 1

µ+ kt − Tα(x)

.
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Theorem 1

Theorem

For n ≥ 3, the set of α ∈ (0, 1) such that there exists i = iα, j = jα with

T i
n,α( r0(α) ) = T j

n,α( `0(α) )

is of full Lebesgue measure.

Call the set of these α the synchronization set for n.
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Theorem 1, more precision

Theorem

For n ≥ 3, the synchronization set is the union of intervals,
Jk,v= [ζk,v , ηk,v ) with k ∈ Z \ {0} and v ∈ V, a tree of words defined
below. The complement of the union of the [ζk,v , ηk,v ] is a measure zero
Cantor set.
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2-D set up

Let R =

(
0 −1
1 0

)
. For M ∈ SL2(R) and an interval IM , let

TM(x , y) :=

(
M · x ,RMR−1 · y

)
for x ∈ IM , y ∈ R.

Thus, TM(x , y) = ( M · x ,−1/(M · (−1/y)) ).

The measure µ on R2 given by

dµ =
dx dy

(1 + xy)2

is (locally) TM -invariant.
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2-D set up, 2

Each Tα is piecewise Möbius — there is a partition into subintervals,
Iα = ∪β Kβ , such that Tα(x) = Mβ · x for all x ∈ Kβ .

For x ∈ Kβ and y ∈ R let

Tα(x , y) = TMβ (x , y) =

(
Mβ · x ,RMβR−1 · y

)
.
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Theorem 2

For k ∈ N and v ∈ V (defined below), let Jk,v = [ζk,v , ηk,v ).

Theorem

Fix n ≥ 3, k ∈ N, v ∈ V and α ∈ (ζk,v , ηk,v ).

There is a connected union of finitely many rectangles Ωn,α upon which
Tn,α is bijective, up to µ-measure zero.

Furthermore, this gives the natural extension of Tn,α.

Moreover, the collection of heights (top and bottoms) of the rectangles
comprising Ωn,α depends only on (n, k , v).
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One Ωn,α
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• •
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•

•

•
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−ir2 = `5

k

(`0, y−2)

(`0, y1)

(`3, y2)

(`2, y3)

(`1, y4)

(`4, y5)

(r0, y−1)

(r0, y5)

(r1, y−2)

0

• •

• •

••

•

•

•
•
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Figure : The domain Ω3,0.14, with blocks Bi (projecting to cylinders for Tα),
and their images, both denoted by i . Here Rk,v = AC and
Lk,v = A−1CA−2CA−2CA−1CA−1, and α is an interior point of J1,1.
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Cylinders

∆α(−1, 1) ∆α(−2, 1) ∆α(k, 1)

`0

`0

`0

r0

r0

r0

b

b

b

· · · · · ·

· · · · · · · · · · · ·

· · · · · · · · ·

• • •

• •

• •

0

0

0

1

1

(−1, 1) (−2, 1) (1, 1) (−1, 2) (k, 2)

(−k , 1) (2, 1) (1, 1) (−k, 2) (2, 2) (1, 2)

Figure : Schematic representation of cylinders for three values of α (here
n = 3). For the bottom two, (k, l) denotes ∆α(k, l).

T. Schmidt CIRM 2017: Combinatorics on Words, Calculability, Automata Synchronization for α-deformations



A skew product

Fix n. Let S = Sn be given as

S :
⋃

α∈[0,1]

{r0(α)} × Iα →
⋃

α∈[0,1]

{r0(α)} × Iα

(r0(α), y) 7→ (r0(α),Tαy)

Recall that r0(α) = αt and `0(α) = (α− 1)t = r0(α)− t.
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Cylinders, a global perspective

0.5 1.0 1.5 2.0

-2

-1

1

2

y=x

y=x-t

Δ(1,2)

Δ(2,2)

Δ(-1,2) Δ(1,1)
Δ(2,1)

Δ(-1,1)

Δ(-2,1)

No C^2

Figure : The unions of the various cylinders for the Tn,α form cylinders for Sn.
Each Iα is given as a vertical fiber, with its left endpoint `0(α) = αt − t at the
bottom and its right endpoint r0(α) = αt at the top. Here: n = 3.
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Discovering synchronization

0.5 1.0 1.5 2.0

-2

-1

1

2

y=x

y=x-t

No C^2

Figure : The graph of x 7→ T3,α(x − t), with x = αt, thus the values of `1(α).
In red that of x 7→ T3,α(x); the red curves give r1(α). (Here t = t3 = 2.) Gray
vertical lines demarcate natural partition; to left of leftmost gray vertical line
“C 2 never appears.”
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Discovering synchronization, 2

ζ t η t ω t

y=x

y=x-t

L

R

Figure : Zoom in on first red branch in the “no C 2” zone. Red gives the single
branch of y = r1(α) while blue colors the two branches of y = `4(α) for
x-range plotted. The x-axis is shown as a dotted line.
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A synchronization relation

In the previous figure, find

r1 = rj−1 = C−1A−1C · `i−1 = C−1A−1C · `4

holds for α ∈J1,1.

For some u,
rj = AuC · rj−1 = Au−1C · `i−1

= `i .

This gives `i because we are in region of “no C 2” and there is a
unique translation of C · `i−1 into Iα.
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Relation reveals further digits of r0 at right endpoint

At the right endpoint of Jk,v , relation gives

rj−1 = C−1A−1C · r0 or C−1AC · rj−1 = r0

Since r1 = AkC · r0,

rj = r1

and

rj = Ak+1C · rj−1
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Period of r0(ηk,v ) — only k , k + 1 as digits

In parameter region where “C 2 does not appear”. Use simplified
digits, for α ∈Jk,v ,

r0(α) = kc1 , (k + 1)d1 , · · · , (k + 1)ds−1 , kcs︸ ︷︷ ︸
d(k,v), v=c1d1···cs−1ds−1cs

, · · ·

At right endpoint ηk,v find periodic

r0(α) = d(k , v), k + 1, kc1−1, (k + 1)d1 , · · · , (k + 1)ds−1 , kcs
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Word v gives v ′

For each s > 1 and each word v = c1d1 · · · cs−1ds−1cs , define

v ′ =


1(c1 − 1)d1c2 · · · cs−1ds−1cs if c1 6= 1 ,

(d1 + 1)c2 · · · cs−1ds−1cs otherwise .

(When v = c with c > 1 then let v ′ = 1(c − 1), and when v = 1 then
v ′ = 1.)
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Operators Θq

Set

Θ−1(c1) = c1 + 1
Θq(1) = 1q1 for q ≥ 1
For c > 1, set Θq(c) = c[1(c − 1)]q1c for any q ≥ 0.

Recursively ... Suppose v = Θp(u) = uv ′′ for some p ≥ 0 and some
suffix v ′′. Then define for any q ≥ 0

Θq(v) = v(v ′)qv ′′ .

This is a palindrome; it is shortest “self-dominant” word extending
v(v ′)q which is larger than v(v ′)∞.

Let V be the tree of all words obtained starting from v = 1.
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The tree V

1 2 3 · · ·

1s1 1q1 · · · 111 · · · 2(11)u−112 313

1s1[(s + 1)1]ts1 1q1[(q + 1)1]sq1 1q1[(q + 1)1]sq1[(q + 1)1]sq1 111(21)u11 313(1213)u13

1q1[(q + 1)1]sq1{[(q + 1)1]s+1q1}t [(q + 1)1]sq1

Θ−1

Θq

Θs Θ1

Θ−1

Θu−1

Θ−1

Θ0

Θt Θs

Θu
Θu

Θt
D

Θ0

D

D

Figure : Each vertex of the directed tree V has countably infinite valency. A
small portion of V with a hint of the derived words map, D .
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Partioning with the Jk ,v

For k ∈ N, v ∈ V, let

Ik,v = {α | r0(α) has digits d(k , v)}
This is partitioned

Ik,v = Jk,v ∪
∞⋃

q=q′

Ik,Θq(v) ,

where q′ = 0 unless v = c1, in which case q′ = −1.

Jk,v
Jk,Θq(v)

Jk,Θq−1(v)

Ik,Θ0(v)

ζk,v ηk,v ζk,Θq(v) ηk,Θq(v) ζk,Θq−1(v) ηk,Θq−1(v) ζΘ0(v) ωk,v

• • • • • • • •

Ik,v

Ik,Θq(v)

Figure : A hint of the partition of the interval where r0(α) = d(k, v) · · · ,
denoted here Ik,v .
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Right endpoint of α-cylinder Ik ,v

2 ζ

L

R

2 η 2ω

Figure : A non-full branch. Here n = 3, v = 111 and k = 1; we have that
ω1,111 is determined by the fixed point of R1,11. The labels L,R mark
respectively the curves y = L1,111 · r0(α), y = R1,111 · r0(α) where
α = x/2 = x/t3,3. Red gives of y = r3(α), while blue gives y = `9(α); Magenta
gives the branches of y = r2(α). The left portion has .3582 < x < 0.3592. The
right “zooms in” to 0.35910 < x < 0.35915. (This interval lies between the
vertical gray lines in both portions.)
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Right endpoint of α-cylinder Ik ,v , 2

Order on cylinders is k � k + 1, gives order on (shifts of) words: any
cj greater than any di , usual order of integers for cj , reverse for di

Define full branch prefix f(v) as longest prefix u of v such that u∞ is
maximal among all prefixes.

Find right endpoint of Ik,v has r0(α) of digits d(k , f(v))∞.

One shows
f(Θq(v)) =

←−−−−−−−
(Θq−1(v) )′.

Can then prove partition result.
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Synchronization relation implies `0 digits −1,−2

Let W = A−2C (A−1C )n−3 A−2C (A−1C )n−2.

Lemma (one step)

For c, k ≥ 1,

(AkC )c = C−1A−1C︸ ︷︷ ︸
synchr. rel.

(A−1C )n−2 [W k−1A−2C (A−1C )n−3]c−1W kA−1 .

Lemma (glueing)

For k ≥ 1,

WA−1 · AkCA−1C = A−2C (A−1C )n−3W k A−2C .
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Outline of proof of Theorem 1

Partition result holds, due to descriptions of ζk,v , ηk,v , ωk,v

Lemmas on previous slide give necessary `0 digits for synchronization
on Jk,v .

Induction shows admissibility of these `0 digits. Of course, not
admissible to right, but relation helps.

Since only −1,−2 can use α = 0 maps (actually with acceleration
for finite measure from Calta-S), get complement of measure zero.

Easily show no other α have synchronization (thus exact description
of the complement ... follow branch of tree).
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One Ωn,α, again

−1 −2 −3

−i i

(`0, y−2)

(`0, y1)

(`3, y2)

(`2, y3)

(`1, y4)

(`4, y5)

(r0, y−1)

(r0, y5)

(r1, y−2)

0

• •

• •

••

•

•

•
•

−1

−2

−3

i > k

−ir2 = `5

k

(`0, y−2)

(`0, y1)

(`3, y2)

(`2, y3)

(`1, y4)

(`4, y5)

(r0, y−1)

(r0, y5)

(r1, y−2)

0

• •

• •

••

•

•

•
•

•

Figure : The domain Ω3,0.14, with blocks Bi (projecting to cylinders for Tα),
and their images, both denoted by i . Here Rk,v = AC and
Lk,v = A−1CA−2CA−2CA−1CA−1, and α is an interior point of J1,1.
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A second Ωk,v

(−2, 1)

(1, 1)

(2, 1)

(−2, 2)

· · ·· · · · · · · · · (3, 2) (2, 2)

(1, 2)

(`0, y−3)

(`0, y1)
(`1, y2)

(r1, y−3)

(r2, y−2)b (r0, y−1)

(r0, y2)

0

1

• •

•
•

••

•

0

(1, 2)

(1, 1)

(2, 2)

(2, 1)
(3, 2)

(−2, 1)
(−2, 2)

(−3, 1)

(k , l)

(k, l + 1)

(k , l)

(k + 1, l + 1)

•

...

...

Figure : The domain Ω3,0.86. Blocks Bi,j and their images, both denoted by
(i , j). Here L−k,v = A−2CA−1 and R−k,v = AC AC 2, and α is an interior point
of J−2,1. Also, hints as to the lamination ordering.
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Connectedness of Ωk ,v requires relations on heights

y1 = yτ(0) yτ(1) · · · yτ(ι) = yS · · · yτ(S−1) yτ(S) = yS+1

yβ(S) yβ(S−1) · · · y−S−1 y1+β(S) · · · yβ(1) yβ(0) = y−1

−k

RL−k,vAR
−1

RL−k,uAR
−1

−k −k−1 −k

−k−1

(1,1)

RC−1AC 2R−1

(1,1)

RC−1R−1

(1,2) (1,2)

RR−k,vR
−1

RAC 2R−k,Θq−1(u)R
−1

Figure : Relations on the heights of rectangles for general −k, v and
α ∈ (η−k,v , δ−k,v ). The red paths are used to prove that lamination occurs.
Horizontal arrows used to show that boundaries are sent to boundaries.
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Thanks

THANK YOU!
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