α-deformations of an infinite class of continued fraction transformations

Thomas A. Schmidt
Oregon State University

2 February 17

α-deformations of an infinite class of continued fraction transformations

Thomas A. Schmidt
Oregon State University

2 February 17

Outline

(1) Set up
(2) Main results
(3) Synchronization relations
(4) Tree of words
(5) Group identities and sketch of proofs
(6) Lamination relations for 2-D

Thanks

- Thanks to organizers!
- Thanks to organizers!
- Joint with Kari Calta (Vassar College) and Cor Kraaikamp (TU Delft)

Fix $n \geq 3$. Let $\nu=\nu_{n}=2 \cos \pi / n$ and $t=1+\nu$.
Let G_{n} be generated by

$$
A=\left(\begin{array}{ll}
1 & t \tag{1}\\
0 & 1
\end{array}\right), B=\left(\begin{array}{cc}
\nu & 1 \\
-1 & 0
\end{array}\right), C=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right),
$$

and note that $C=A B$.

Fix $\alpha \in[0,1]$ and define

$$
\mathbb{I}_{\alpha}:=\mathbb{I}_{n, \alpha}=[(\alpha-1) t, \alpha t) .
$$

Of endpoints

$$
\ell_{0}:=\ell_{0}(\alpha)=(\alpha-1) t
$$

and

$$
r_{0}:=r_{0}(\alpha)=\alpha t
$$

Let

$$
\begin{equation*}
T_{\alpha}=T_{n, \alpha}: x \mapsto A^{k} C^{\prime} \cdot x, \tag{2}
\end{equation*}
$$

any 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts on reals by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot x=\frac{a x+b}{c x+d}$, and

- $I>0$ is minimal such that $C^{\prime} \cdot x \notin \mathbb{I}$ Thus, rotate until exit \mathbb{I}.

Let

$$
\begin{equation*}
T_{\alpha}=T_{n, \alpha}: x \mapsto A^{k} C^{\prime} \cdot x \tag{2}
\end{equation*}
$$

any 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ acts on reals by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot x=\frac{a x+b}{c x+d}$, and

- $I>0$ is minimal such that $C^{\prime} \cdot x \notin \mathbb{I} \quad$ Thus, rotate until exit \mathbb{I}.
- $k=-\left\lfloor\left(C^{\prime} \cdot x\right) / t+1-\alpha\right\rfloor$. Then, translate back into \mathbb{I}.

traditional look

Theorem

For $n \geq 3$, the set of $\alpha \in(0,1)$ such that there exists $i=i_{\alpha}, j=j_{\alpha}$ with

$$
T_{n, \alpha}^{i}\left(r_{0}(\alpha)\right)=T_{n, \alpha}^{j}\left(\ell_{0}(\alpha)\right)
$$

is of full Lebesgue measure.

Call the set of these α the synchronization set for n.

Theorem

For $n \geq 3$, the synchronization set is the union of intervals, $\mathscr{J}_{k, v}=\left[\zeta_{k, v}, \eta_{k, v}\right)$ with $k \in \mathbb{Z} \backslash\{0\}$ and $v \in \mathcal{V}$, a tree of words defined below. The complement of the union of the $\left[\zeta_{k, v}, \eta_{k, v}\right]$ is a measure zero Cantor set.

- Let $R=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. For $M \in \mathrm{SL}_{2}(\mathbb{R})$ and an interval \mathbb{I}_{M}, let

- Thus, $\mathcal{T}_{M}(x, y)=(M \cdot x,-1 /(M \cdot(-1 / y)))$. - The measure μ on \mathbb{R}^{2} given by

is (locally) \mathcal{T}_{M}-invariant.
- Let $R=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. For $M \in \mathrm{SL}_{2}(\mathbb{R})$ and an interval \mathbb{I}_{M}, let

$$
\mathcal{T}_{M}(x, y):=\left(M \cdot x, R M R^{-1} \cdot y\right) \quad \text { for } x \in \mathbb{I}_{M}, y \in \mathbb{R}
$$

- Thus, $\mathcal{T}_{M}(x, y)=(M \cdot x,-1 /(M \cdot(-1 / y)))$.
- The measure μ on \mathbb{R}^{2} given by

- Let $R=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. For $M \in \mathrm{SL}_{2}(\mathbb{R})$ and an interval \mathbb{I}_{M}, let

$$
\mathcal{T}_{M}(x, y):=\left(M \cdot x, R M R^{-1} \cdot y\right) \quad \text { for } x \in \mathbb{I}_{M}, y \in \mathbb{R}
$$

- Thus, $\mathcal{T}_{M}(x, y)=(M \cdot x,-1 /(M \cdot(-1 / y)))$.
- The measure μ on \mathbb{R}^{2} given by

- Let $R=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. For $M \in \mathrm{SL}_{2}(\mathbb{R})$ and an interval \mathbb{I}_{M}, let

$$
\mathcal{T}_{M}(x, y):=\left(M \cdot x, R M R^{-1} \cdot y\right) \quad \text { for } x \in \mathbb{I}_{M}, y \in \mathbb{R}
$$

- Thus, $\mathcal{T}_{M}(x, y)=(M \cdot x,-1 /(M \cdot(-1 / y)))$.
- The measure μ on \mathbb{R}^{2} given by

$$
d \mu=\frac{d x d y}{(1+x y)^{2}}
$$

is (locally) \mathcal{T}_{M}-invariant.

Each T_{α} is piecewise Möbius - there is a partition into subintervals, $\mathbb{I}_{\alpha}=\cup_{\beta} K_{\beta}$, such that $T_{\alpha}(x)=M_{\beta} \cdot x$ for all $x \in K_{\beta}$.

For $x \in K_{\beta}$ and $y \in \mathbb{R}$ let

$$
\mathcal{T}_{\alpha}(x, y)=\mathcal{T}_{M_{\beta}}(x, y)=\left(M_{\beta} \cdot x, R M_{\beta} R^{-1} \cdot y\right)
$$

For $k \in \mathbb{N}$ and $v \in \mathcal{V}$ (defined below), let $\mathscr{J}_{k, v}=\left[\zeta_{k, v}, \eta_{k, v}\right)$.

Theorem

Fix $n \geq 3, k \in \mathbb{N}, v \in \mathcal{V}$ and $\alpha \in\left(\zeta_{k, v}, \eta_{k, v}\right)$.
There is a connected union of finitely many rectangles $\Omega_{n, \alpha}$ upon which $\mathcal{T}_{n, \alpha}$ is bijective, up to μ-measure zero.

Furthermore, this gives the natural extension of $T_{n, \alpha}$.
Moreover, the collection of heights (top and bottoms) of the rectangles comprising $\Omega_{n, \alpha}$ depends only on (n, k, v).

For $k \in \mathbb{N}$ and $v \in \mathcal{V}$ (defined below), let $\mathscr{J}_{k, v}=\left[\zeta_{k, v}, \eta_{k, v}\right)$.

Theorem

Fix $n \geq 3, k \in \mathbb{N}, v \in \mathcal{V}$ and $\alpha \in\left(\zeta_{k, v}, \eta_{k, v}\right)$.
There is a connected union of finitely many rectangles $\Omega_{n, \alpha}$ upon which $\mathcal{T}_{n, \alpha}$ is bijective, up to μ-measure zero.

Furthermore, this gives the natural extension of $T_{n, \alpha}$.
Moreover, the collection of heights (top and bottoms) of the rectangles comprising $\Omega_{n, \alpha}$ depends only on (n, k, v).

Figure: The domain $\Omega_{3,0.14}$, with blocks \mathcal{B}_{i} (projecting to cylinders for T_{α}), and their images, both denoted by i. Here $R_{k, v}=A C$ and $L_{k, v}=A^{-1} C A^{-2} C A^{-2} C A^{-1} C A^{-1}$, and α is an interior point of $\mathscr{J}_{1,1}$.

Cylinders

Figure: Schematic representation of cylinders for three values of α (here $n=3)$. For the bottom two, (k, l) denotes $\Delta_{\alpha}(k, l)$.

A skew product

Fix n. Let $\mathcal{S}=\mathcal{S}_{n}$ be given as

$$
\begin{aligned}
\mathcal{S}: \bigcup_{\alpha \in[0,1]}\left\{r_{0}(\alpha)\right\} \times \mathbb{I}_{\alpha} & \rightarrow \bigcup_{\alpha \in[0,1]}\left\{r_{0}(\alpha)\right\} \times \mathbb{I}_{\alpha} \\
\left(r_{0}(\alpha), y\right) & \mapsto\left(r_{0}(\alpha), T_{\alpha} y\right)
\end{aligned}
$$

Fix n. Let $\mathcal{S}=\mathcal{S}_{n}$ be given as

$$
\begin{aligned}
\mathcal{S}: \bigcup_{\alpha \in[0,1]}\left\{r_{0}(\alpha)\right\} \times \mathbb{I}_{\alpha} & \rightarrow \bigcup_{\alpha \in[0,1]}\left\{r_{0}(\alpha)\right\} \times \mathbb{I}_{\alpha} \\
\left(r_{0}(\alpha), y\right) & \mapsto\left(r_{0}(\alpha), T_{\alpha} y\right)
\end{aligned}
$$

Recall that $r_{0}(\alpha)=\alpha t$ and $\ell_{0}(\alpha)=(\alpha-1) t=r_{0}(\alpha)-t$.

Cylinders, a global perspective

Figure: The unions of the various cylinders for the $T_{n, \alpha}$ form cylinders for \mathcal{S}_{n}. Each \mathbb{I}_{α} is given as a vertical fiber, with its left endpoint $\ell_{0}(\alpha)=\alpha t-t$ at the bottom and its right endpoint $r_{0}(\alpha)=\alpha t$ at the top. Here: $n=3$.

Discovering synchronization

Figure: The graph of $x \mapsto T_{3, \alpha}(x-t)$, with $x=\alpha t$, thus the values of $\ell_{1}(\alpha)$. In red that of $x \mapsto T_{3, \alpha}(x)$; the red curves give $r_{1}(\alpha)$. (Here $t=t_{3}=2$.) Gray vertical lines demarcate natural partition; to left of leftmost gray vertical line " C^{2} never appears."

Discovering synchronization, 2

Figure : Zoom in on first red branch in the "no $C^{2 "}$ zone. Red gives the single branch of $y=r_{1}(\alpha)$ while blue colors the two branches of $y=\ell_{4}(\alpha)$ for x-range plotted. The x-axis is shown as a dotted line.

A synchronization relation

- In the previous figure, find

$$
r_{1}=r_{j-1}=C^{-1} A^{-1} C \cdot \ell_{i-1}=C^{-1} A^{-1} C \cdot \ell_{4}
$$

holds for $\alpha \in \mathscr{J}_{1,1}$.

- For some u,
- This gives ℓ_{i} because we are in region of "no $C^{2 "}$ and there is a unique translation of $C \cdot \ell_{i-1}$ into \mathbb{I}_{α}.
- In the previous figure, find

$$
r_{1}=r_{j-1}=C^{-1} A^{-1} C \cdot \ell_{i-1}=C^{-1} A^{-1} C \cdot \ell_{4}
$$

holds for $\alpha \in \mathscr{J}_{1,1}$.

- For some u,

$$
r_{j}=A^{u} C \cdot r_{j-1}=A^{u-1} C \cdot \ell_{i-1}
$$

- This gives ℓ_{i} because we are in region of "no $C^{2 "}$ and there is a unique translation of $C \cdot \ell_{i-1}$ into \mathbb{I}_{α}.
- In the previous figure, find

$$
r_{1}=r_{j-1}=C^{-1} A^{-1} C \cdot \ell_{i-1}=C^{-1} A^{-1} C \cdot \ell_{4}
$$

holds for $\alpha \in \mathscr{J}_{1,1}$.

- For some u,

$$
\begin{gathered}
r_{j}=A^{u} C \cdot r_{j-1}=A^{u-1} C \cdot \ell_{i-1} \\
=\ell_{i}
\end{gathered}
$$

- In the previous figure, find

$$
r_{1}=r_{j-1}=C^{-1} A^{-1} C \cdot \ell_{i-1}=C^{-1} A^{-1} C \cdot \ell_{4}
$$

holds for $\alpha \in \mathscr{J}_{1,1}$.

- For some u,

$$
\begin{gathered}
r_{j}=A^{u} C \cdot r_{j-1}=A^{u-1} C \cdot \ell_{i-1} \\
=\ell_{i}
\end{gathered}
$$

- This gives ℓ_{i} because we are in region of "no C^{2} " and there is a unique translation of $C \cdot \ell_{i-1}$ into \mathbb{I}_{α}.

Relation reveals further digits of r_{0} at right endpoint

At the right endpoint of $\mathscr{J}_{k, v}$, relation gives

$$
r_{j-1}=C^{-1} A^{-1} C \cdot r_{0} \text { or } C^{-1} A C \cdot r_{j-1}=r_{0}
$$

Relation reveals further digits of r_{0} at right endpoint

At the right endpoint of $\mathscr{J}_{k, v}$, relation gives
-

$$
r_{j-1}=C^{-1} A^{-1} C \cdot r_{0} \text { or } C^{-1} A C \cdot r_{j-1}=r_{0}
$$

- Since $r_{1}=A^{k} C \cdot r_{0}$,

Relation reveals further digits of r_{0} at right endpoint

At the right endpoint of $\mathscr{J}_{k, v}$, relation gives

$$
r_{j-1}=C^{-1} A^{-1} C \cdot r_{0} \text { or } C^{-1} A C \cdot r_{j-1}=r_{0}
$$

- Since $r_{1}=A^{k} C \cdot r_{0}$,

$$
r_{j}=r_{1}
$$

and

$$
r_{j}=A^{k+1} C \cdot r_{j-1}
$$

Period of $r_{0}\left(\eta_{k, v}\right)$ - only $k, k+1$ as digits

- In parameter region where " C^{2} does not appear". Use simplified digits, for $\alpha \in \mathscr{J}_{k, v}$,

$$
r_{0}(\alpha)=\underbrace{k^{c_{1}},(k+1)^{d_{1}}, \cdots,(k+1)^{d_{s-1}}, k^{c_{s}}}_{d(k, v), v=c_{1} d_{1} \cdots c_{s-1} d_{s-1} c_{s}}, \cdots
$$

- At right endpoint $\eta_{k, v}$ find periodic

- In parameter region where " C^{2} does not appear". Use simplified digits, for $\alpha \in \mathscr{J}_{k, v}$,

$$
r_{0}(\alpha)=\underbrace{k^{c_{1}},(k+1)^{d_{1}}, \cdots,(k+1)^{d_{s-1}}, k^{c_{s}}}_{d(k, v), v=c_{1} d_{1} \cdots c_{s-1} d_{s-1} c_{s}}, \cdots
$$

- At right endpoint $\eta_{k, v}$ find periodic

$$
r_{0}(\alpha)=d(k, v), \overline{k+1, k^{c_{1}-1},(k+1)^{d_{1}}, \cdots,(k+1)^{d_{s-1}}, k^{c_{s}}}
$$

For each $s>1$ and each word $v=c_{1} d_{1} \cdots c_{s-1} d_{s-1} c_{s}$, define

$$
v^{\prime}= \begin{cases}1\left(c_{1}-1\right) d_{1} c_{2} \cdots c_{s-1} d_{s-1} c_{s} & \text { if } c_{1} \neq 1, \\ \left(d_{1}+1\right) c_{2} \cdots c_{s-1} d_{s-1} c_{s} & \text { otherwise } .\end{cases}
$$

(When $v=c$ with $c>1$ then let $v^{\prime}=1(c-1)$, and when $v=1$ then $v^{\prime}=1$.)

Operators Θ_{q}

- Set

```
- }\mp@subsup{\Theta}{-1}{}(\mp@subsup{c}{1}{})=\mp@subsup{c}{1}{}+
- }\mp@subsup{\Theta}{q}{}(1)=1q1 for q\geq1
- For c>1, set }\mp@subsup{\Theta}{q}{}(c)=c[1(c-1)\mp@subsup{]}{}{q}1c\mathrm{ for any q}\geq0
```

- Recursively ... Suppose $v=\Theta_{p}(u)=u v^{\prime \prime}$ for some $p \geq 0$ and some suffix $v^{\prime \prime}$. Then define for any $q \geq 0$

$$
\Theta_{q}(v)=v\left(v^{\prime}\right)^{q} v^{\prime \prime} .
$$

This is a palindrome; it is shortest "self-dominant" word extending $v\left(v^{\prime}\right)^{q}$ which is larger than $v\left(v^{\prime}\right)^{\infty}$.

- Let \mathcal{V} be the tree of all words obtained starting from $v=1$

Operators Θ_{q}

- Set
- $\Theta_{-1}\left(c_{1}\right)=c_{1}+1$
- $\Theta_{q}(1)=1 q 1$ for $q \geq 1$
- For $c>1$, set $\Theta_{q}(c)=c[1(c-1)]^{q} 1 c$ for any $q \geq 0$.
- Recursively ... Suppose $v=\Theta_{p}(u)=u v^{\prime \prime}$ for some $p \geq 0$ and some suffix $v^{\prime \prime}$. Then define for any $q \geq 0$

$$
\Theta_{q}(v)=v\left(v^{\prime}\right)^{q} v^{\prime \prime} .
$$

This is a palindrome; it is shortest "self-dominant" word extending $v\left(v^{\prime}\right)^{q}$ which is larger than $v\left(v^{\prime}\right)^{\infty}$.

- Let \mathcal{V} be the tree of all words obtained starting from $v=1$.

Operators Θ_{q}

- Set
- $\Theta_{-1}\left(c_{1}\right)=c_{1}+1$
- $\Theta_{q}(1)=1 q 1$ for $q \geq 1$
- For $c>1$, set $\Theta_{q}(c)=c[1(c-1)]^{q} 1 c$ for any $q \geq 0$.
- Recursively ... Suppose $v=\Theta_{p}(u)=u v^{\prime \prime}$ for some $p \geq 0$ and some suffix $v^{\prime \prime}$. Then define for any $q \geq 0$

$$
\Theta_{q}(v)=v\left(v^{\prime}\right)^{q} v^{\prime \prime} .
$$

This is a palindrome; it is shortest "self-dominant" word extending $v\left(v^{\prime}\right)^{q}$ which is larger than $v\left(v^{\prime}\right)^{\infty}$.

- Let \mathcal{V} be the tree of all words obtained starting from $v=1$.

Figure : Each vertex of the directed tree \mathcal{V} has countably infinite valency. A small portion of \mathcal{V} with a hint of the derived words map, \mathscr{D}.

Partioning with the

For $k \in \mathbb{N}, v \in \mathcal{V}$, let

$$
\mathscr{I}_{k, v}=\left\{\alpha \mid r_{0}(\alpha) \text { has digits } d(k, v)\right\}
$$

This is partitioned

$$
\mathscr{I}_{k, v}=\mathscr{J}_{k, v} \cup \bigcup_{q=q^{\prime}}^{\infty} \mathscr{I}_{k, \Theta_{q}(v)}
$$

where $q^{\prime}=0$ unless $v=c_{1}$, in which case $q^{\prime}=-1$.

Partioning with the

For $k \in \mathbb{N}, v \in \mathcal{V}$, let

$$
\mathscr{I}_{k, v}=\left\{\alpha \mid r_{0}(\alpha) \text { has digits } d(k, v)\right\}
$$

This is partitioned

$$
\mathscr{I}_{k, v}=\mathscr{J}_{k, v} \cup \bigcup_{q=q^{\prime}}^{\infty} \mathscr{I}_{k, \Theta_{q}(v)}
$$

where $q^{\prime}=0$ unless $v=c_{1}$, in which case $q^{\prime}=-1$.

Right endpoint of α-cylinder $\mathscr{I}_{k, v}$

Figure: A non-full branch. Here $n=3, v=111$ and $k=1$; we have that $\omega_{1,111}$ is determined by the fixed point of $R_{1,11}$. The labels L, R mark respectively the curves $y=L_{1,111} \cdot r_{0}(\alpha), y=R_{1,111} \cdot r_{0}(\alpha)$ where $\alpha=x / 2=x / t_{3,3}$. Red gives of $y=r_{3}(\alpha)$, while blue gives $y=\ell_{9}(\alpha)$; Magenta gives the branches of $y=r_{2}(\alpha)$. The left portion has $3582<x<0.3592$. The right "zooms in" to $0.35910<x<0.35915$. (This interval lies between the vertical gray lines in both portions.)

Right endpoint of α-cylinder $\mathscr{I}_{k, v}, 2$

Order on cylinders is $k \succ k+1$, gives order on (shifts of) words: any c_{j} greater than any d_{i}, usual order of integers for c_{j}, reverse for d_{i}

Define full branch prefix $f(v)$ as longest prefix u of v such that u^{∞} is maximal among all prefixes.

Find right endpoint of $G_{k, v}$ has $r_{0}(\alpha)$ of digits $d(k, f(v))^{\infty}$
One shows

$$
f\left(\Theta_{q}(v)\right)=\overleftarrow{\left(\Theta_{q-1}(v)\right)^{\prime}}
$$

Can then prove partition result.

Right endpoint of α-cylinder $\mathscr{I}_{k, v}, 2$

Order on cylinders is $k \succ k+1$, gives order on (shifts of) words: any c_{j} greater than any d_{i}, usual order of integers for c_{j}, reverse for d_{i}

Define full branch prefix $\mathfrak{f}(v)$ as longest prefix u of v such that u^{∞} is maximal among all prefixes.

Find right endpoint of $\mathscr{I}_{k, v}$ has $r_{0}(\alpha)$ of digits $d(k, f(v))^{\infty}$
One shows

$$
f\left(\Theta_{q}(v)\right)=\overleftarrow{\left(\Theta_{q-1}(v)\right)^{\prime}}
$$

Can then prove partition result.

Order on cylinders is $k \succ k+1$, gives order on (shifts of) words: any c_{j} greater than any d_{i}, usual order of integers for c_{j}, reverse for d_{i}

Define full branch prefix $\mathfrak{f}(v)$ as longest prefix u of v such that u^{∞} is maximal among all prefixes.

Find right endpoint of $\mathscr{I}_{k, v}$ has $r_{0}(\alpha)$ of digits $d(k, f(v))^{\infty}$.
One shows

$$
f\left(\Theta_{q}(v)\right)=\overleftarrow{\left(\Theta_{q-1}(v)\right)^{\prime}}
$$

Can then prove partition result.

Order on cylinders is $k \succ k+1$, gives order on (shifts of) words: any c_{j} greater than any d_{i}, usual order of integers for c_{j}, reverse for d_{i}

Define full branch prefix $\mathfrak{f}(v)$ as longest prefix u of v such that u^{∞} is maximal among all prefixes.

Find right endpoint of $\mathscr{I}_{k, v}$ has $r_{0}(\alpha)$ of digits $d(k, f(v))^{\infty}$.
One shows

$$
f\left(\Theta_{q}(v)\right)=\overleftarrow{\left(\Theta_{q-1}(v)\right)^{\prime}} .
$$

Can then prove partition result.

Synchronization relation implies ℓ_{0} digits $-1,-2$

$$
\text { Let } W=A^{-2} C\left(A^{-1} C\right)^{n-3} A^{-2} C\left(A^{-1} C\right)^{n-2} \text {. }
$$

Lemma (one step)

For c. $k>1$

Lemma (glueing)

Fork>1,

Synchronization relation implies ℓ_{0} digits $-1,-2$

$$
\text { Let } W=A^{-2} C\left(A^{-1} C\right)^{n-3} A^{-2} C\left(A^{-1} C\right)^{n-2} \text {. }
$$

Lemma (one step)

For $c, k \geq 1$,

$$
\left(A^{k} C\right)^{c}=\underbrace{C^{-1} A^{-1} C}_{\text {synchr. rel. }}\left(A^{-1} C\right)^{n-2}\left[W^{k-1} A^{-2} C\left(A^{-1} C\right)^{n-3}\right]^{c-1} W^{k} A^{-1} .
$$

Lemma (glueing)

Fork>1,

Synchronization relation implies ℓ_{0} digits $-1,-2$

$$
\text { Let } W=A^{-2} C\left(A^{-1} C\right)^{n-3} A^{-2} C\left(A^{-1} C\right)^{n-2} \text {. }
$$

Lemma (one step)

For $c, k \geq 1$,

$$
\left(A^{k} C\right)^{c}=\underbrace{C^{-1} A^{-1} C}_{\text {synchr. rel. }}\left(A^{-1} C\right)^{n-2}\left[W^{k-1} A^{-2} C\left(A^{-1} C\right)^{n-3}\right]^{c-1} W^{k} A^{-1}
$$

Lemma (glueing)

For $k \geq 1$,

$$
W A^{-1} \cdot A^{k} C A^{-1} C=A^{-2} C\left(A^{-1} C\right)^{n-3} W^{k} A^{-2} C
$$

Outline of proof of Theorem 1

- Partition result holds, due to descriptions of $\zeta_{k, v}, \eta_{k, v}, \omega_{k, v}$
- Lemmas on previous slide give necessary ℓ_{0} digits for synchronization
- Induction shows admissibility of these ℓ_{0} digits. admissible to right. but relation helps.
- Since only $-1,-2$ can use $\alpha=0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree).

Outline of proof of Theorem 1

- Partition result holds, due to descriptions of $\zeta_{k, v}, \eta_{k, v}, \omega_{k, v}$
- Lemmas on previous slide give necessary ℓ_{0} digits for synchronization on $\mathscr{J}_{k, v}$.
- Induction shows admissibility of these ℓ_{0} digits.
- Since only $-1,-2$ can use $\alpha=0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree).

Outline of proof of Theorem 1

- Partition result holds, due to descriptions of $\zeta_{k, v}, \eta_{k, v}, \omega_{k, v}$
- Lemmas on previous slide give necessary ℓ_{0} digits for synchronization on $\mathscr{J}_{k, v}$.
- Induction shows admissibility of these ℓ_{0} digits. Of course, not admissible to right, but relation helps.
- Since only $-1,-2$ can use $\alpha=0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree)

Outline of proof of Theorem 1

- Partition result holds, due to descriptions of $\zeta_{k, v}, \eta_{k, v}, \omega_{k, v}$
- Lemmas on previous slide give necessary ℓ_{0} digits for synchronization on $\mathscr{J}_{k, v}$.
- Induction shows admissibility of these ℓ_{0} digits. Of course, not admissible to right, but relation helps.
- Since only $-1,-2$ can use $\alpha=0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree)

Outline of proof of Theorem 1

- Partition result holds, due to descriptions of $\zeta_{k, v}, \eta_{k, v}, \omega_{k, v}$
- Lemmas on previous slide give necessary ℓ_{0} digits for synchronization on $\mathscr{J}_{k, v}$.
- Induction shows admissibility of these ℓ_{0} digits. Of course, not admissible to right, but relation helps.
- Since only $-1,-2$ can use $\alpha=0$ maps (actually with acceleration for finite measure from Calta-S), get complement of measure zero.
- Easily show no other α have synchronization (thus exact description of the complement ... follow branch of tree).

One $\Omega_{n, \alpha}$, again

Figure: The domain $\Omega_{3,0.14}$, with blocks \mathcal{B}_{i} (projecting to cylinders for T_{α}), and their images, both denoted by i. Here $R_{k, v}=A C$ and $L_{k, v}=A^{-1} C A^{-2} C A^{-2} C A^{-1} C A^{-1}$, and α is an interior point of $\mathscr{J}_{1,1}$.

Figure : The domain $\Omega_{3,0.86}$. Blocks $\mathcal{B}_{i, j}$ and their images, both denoted by (i, j). Here $L_{-k, v}=A^{-2} C A^{-1}$ and $R_{-k, v}=A C A C^{2}$, and α is an interior point of $\mathscr{J}_{-2,1}$. Also, hints as to the lamination ordering.

Connectedness of $\Omega_{k, v}$ requires relations on heights

Figure : Relations on the heights of rectangles for general $-k, v$ and $\alpha \in\left(\eta_{-k, v}, \delta_{-k, v}\right)$. The red paths are used to prove that lamination occurs. Horizontal arrows used to show that boundaries are sent to boundaries.

THANK YOU!

