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First articles

In the 60’, Chacon produced a class of rather simple systems that he called “geometric
constructions" and then “rank one systems" ; generalisations with finite rank systems
appear later.
On the other side, initiated by Hedlund and Morse in the 40’, symbolic constructions of
systems of sequences on a finite alphabet provided various classes of examples.
In his first papers Sébastien intends to show how these two points of view can be
reconciled ; I focus on three of them whence three parts in my talk :

1 Connection between rank and symbolic complexity.
2 Application to spectral theory of substitutions.
3 Application to diophantine approximation.
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Complexity function of a sequence/system

Let (X ,T ) be a symbolic system, and L(X), the language of X .

1. The complexity function of some sequence x counts the number of factors (subwords)
with a given length in x :

p(n) := p(x , n) = #{xk · · · xk+n−1, k ≥ 1}, n ≥ 1.

2. The complexity function of (X ,T ) is the complexity of L(X) .

It is the same function when (X ,T ) is minimal.

Questions : 1. Which informations on the system (or sequence) can be deduced from its
complexity function ?

2. Which functions from N∗ to N∗ are complexity functions ?
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Chacon’s substitutions

A first example has been extensively studied by Sébastien :

The Chacon’s sequence can be defined by 0–1 blocks according to the rule :

B0 = 0, Bn+1 = BnBn1Bn, n ≥ 1;

or by ζ∞1 (0) where ζ1 : 0→ 0010, 1→ 1 is a non-primitive substitution.

Proposition (S1)
The complexity of the Chacon’s sequence is equal to p1(n) = 2n − 1.

Then, he considers ζ2 : 0→ 0012, 1→ 12, 2→ 012 a primitive substitution. The
minimal system X(ζ2) and the Chacon’s system generated by ζ∞1 (0) (minimal too) are
topologically conjugate and

p2(n) = 2n + 1.
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Complexity function of a sequence/system

Whence a first result :

Proposition (S1)
The complexity function itself is not a topological invariant of minimal systems, but it
holds for the order of magnitude of the complexity function.

More about the first question. Primitive substitutions have sub-linear complexity.

Theorem (S3)
Minimal systems with sub-linear complexity are generated by a finite number of
substitutions (or are S-adic systems). More precisely, there exist a finite set of
substitutions (σj , 1 ≤ j ≤ r), S, on the alphabet D = {0, . . . , d − 1}, a map π : D → A
and an infinite sequence (jn), 1 ≤ jn ≤ r such that

inf
0≤a≤d−1

|σj1σj2 · · ·σjn (a)| → ∞

and every word of the language occurs in some πσj1σj2 · · ·σjn (0), n ≥ 1.

It was known for sturmian sequences with r = 2, Arnoux-Rauzy sequences with r = 3
and an interpretation of (jn).
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Finite rank systems

The notion of rank of a dynamical system is a measure-theoretic notion, introduced by
Chacon, in view to produce explicit examples in the theory.
Simplest example : the 2-odometer, that is τ : x → x + 1 with carries on {0, 1}∞.
If x = (x1, x2, . . .),

τ(x) = (1, x2, . . .) if x1 = 0,
= (0, 1, x3, . . .) if x1 = 0 = x2,

and so on, by taking into account the first index k with xk = 1.
A geometric description as a “tower" makes the dynamics of τ more obvious :

0 1/2

1/2 1

>

> >

M. Queffélec (Lille 1) Sébastien’s first steps cirm–30/01/2017 6 / 20



Finite rank systems
The notion of rank of a dynamical system is a measure-theoretic notion, introduced by
Chacon, in view to produce explicit examples in the theory.

Simplest example : the 2-odometer, that is τ : x → x + 1 with carries on {0, 1}∞.
If x = (x1, x2, . . .),

τ(x) = (1, x2, . . .) if x1 = 0,
= (0, 1, x3, . . .) if x1 = 0 = x2,

and so on, by taking into account the first index k with xk = 1.
A geometric description as a “tower" makes the dynamics of τ more obvious :

0 1/2

1/2 1

>

> >

M. Queffélec (Lille 1) Sébastien’s first steps cirm–30/01/2017 6 / 20



Finite rank systems
The notion of rank of a dynamical system is a measure-theoretic notion, introduced by
Chacon, in view to produce explicit examples in the theory.
Simplest example : the 2-odometer, that is τ : x → x + 1 with carries on {0, 1}∞.

If x = (x1, x2, . . .),
τ(x) = (1, x2, . . .) if x1 = 0,

= (0, 1, x3, . . .) if x1 = 0 = x2,
and so on, by taking into account the first index k with xk = 1.
A geometric description as a “tower" makes the dynamics of τ more obvious :

0 1/2

1/2 1

>

> >

M. Queffélec (Lille 1) Sébastien’s first steps cirm–30/01/2017 6 / 20



Finite rank systems
The notion of rank of a dynamical system is a measure-theoretic notion, introduced by
Chacon, in view to produce explicit examples in the theory.
Simplest example : the 2-odometer, that is τ : x → x + 1 with carries on {0, 1}∞.
If x = (x1, x2, . . .),

τ(x) = (1, x2, . . .) if x1 = 0,
= (0, 1, x3, . . .) if x1 = 0 = x2,

and so on, by taking into account the first index k with xk = 1.

A geometric description as a “tower" makes the dynamics of τ more obvious :

0 1/2

1/2 1

>

> >

M. Queffélec (Lille 1) Sébastien’s first steps cirm–30/01/2017 6 / 20



Finite rank systems
The notion of rank of a dynamical system is a measure-theoretic notion, introduced by
Chacon, in view to produce explicit examples in the theory.
Simplest example : the 2-odometer, that is τ : x → x + 1 with carries on {0, 1}∞.
If x = (x1, x2, . . .),

τ(x) = (1, x2, . . .) if x1 = 0,
= (0, 1, x3, . . .) if x1 = 0 = x2,

and so on, by taking into account the first index k with xk = 1.
A geometric description as a “tower" makes the dynamics of τ more obvious :

0 1/2

1/2 1

>

> >

M. Queffélec (Lille 1) Sébastien’s first steps cirm–30/01/2017 6 / 20



Finite rank systems
The notion of rank of a dynamical system is a measure-theoretic notion, introduced by
Chacon, in view to produce explicit examples in the theory.
Simplest example : the 2-odometer, that is τ : x → x + 1 with carries on {0, 1}∞.
If x = (x1, x2, . . .),

τ(x) = (1, x2, . . .) if x1 = 0,
= (0, 1, x3, . . .) if x1 = 0 = x2,

and so on, by taking into account the first index k with xk = 1.
A geometric description as a “tower" makes the dynamics of τ more obvious :

0 1/2

1/2 1

>

> >

M. Queffélec (Lille 1) Sébastien’s first steps cirm–30/01/2017 6 / 20



and then, by cutting and stacking,

>
>

>

<
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and so on · · · The 2-odometer can be approximated by a simple tower in a more and
more precise way by refining the basis and increasing the number of levels. Whence :

1.Let (X ,B, µ) be a Lebesgue space and T a measure-preserving transformation.
A Rokhlin tower is a collection (T jF )h−1

j=0 of disjoint sets (F is the basis, h the height).

The name comes from the following result :

Lemma (Rokhlin)
For an ergodic transformation T preserving the finite measure µ, for every ε > 0, there
exists a tower of total measure > µ(X)− ε.

2.The system (or T) has rank one if there exists a sequence of towers ({T jFn}hn−1
j=0 )n

generating the σ-algebra :

∀A ∈ B,∃An union of levels of the n-th tower s.t. µ(A∆An)→ 0.

So is every ergodic translation on a compact group (del junco 1976).
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Connection between rank and complexity

Standard model of a rank one system :
Stage one : F1 is the basis ;
Stage n : cut the tower n − 1 in pn equal columns, add sn,j spacers above the
column number j, and stack the columns above the basis Fn.

Example : the Chacon’s standard construction (by cutting in three parts and adding
one spacer) provides a geometric version of the symbolic Chacon system.

The rank of a system is the (finite) number of Rokhlin towers necessary to approach it.

Theorem (S2)
Consider a sequence taking its values in a finite alphabet and the associated system with
complexity function p.
1. If it is a rank one system, then lim infn→∞ p(n)/n2 ≤ 1/2 (with possible
sub-exponential peaks).
2. If the system is minimal and p(n) ≤ an + b for some a ≥ 1, then the rank of the
system is ≤ 2[a].
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Extensions and conjectures

Polynomial complexities can be found by coding trajectories of billiards (Hubert).
Other results on complexity functions are developped in the course of Bryna.

The S-adic conjecture states that, for a minimal system,

1 ≤ p(n + 1)− p(n) ≤ K ?⇐⇒ S − adicity .

The theorem of Sébastien gives the necessary condition (thanks to Cassaigne), and
quantitative versions (relating K and the cardinal |S|) are in progress (Leroy). But
the opposite direction needs a more restrictive definition of S-adicity.
A hudge amount of results are devoted to S-adic words and systems (Berthé,
Delecroix, Leroy,. . .).
Link between the complexity of a sequence (system) and its mixing properties.
The Chacon system was the first example of weakly mixing not mixing system.
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Mixing rank one systems do exist (random constructions of Ornstein), there exist
also explicit examples.

The spectrum of rank one systems has been widely studied.
1. A standard rank one system has a simple spectrum, with a generalized Riesz
product as its maximal spectral measure :

σm = w∗ − lim
N

∏
n≤N

|Pn(e2iπt)|2 · λ,

where Pn(z) = 1√pn

∑pn−1
j=0 z−(jhn−1+

∑
k≤j

sn,k ), hn height of the n-th tower.
2. Ornstein’s mixing examples have a singular spectrum (Bourgain).
3. In any case, the spectrum is singular if (1/pn) /∈ `2 (Klemes-Reinhold).
Does there exist a Lebesgue rank one system ?
Banach’s question : does there exist a Lebesgue simple spectrum ?
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Spectrum of a substitution

Framework : ζ is a primitive substitution admitting a non-periodical fixed point u ;
X := Xu is the closed orbit of u under the shift T .

The dynamical system (X ,T ) is minimal (X := X(ζ)) and uniquely ergodic, with a
unique invariant probability measure µ.
Eigenvalues of ζ : eigenvalues of the underlying operator f → f ◦ T on L2(X , µ).
Weak mixing may occur but strong mixing never occurs.
Substitution systems are finite rank systems (with sublinear complexity) :

Proposition
For every n > 0, we set

Pn = {T k (ζn[α]), α ∈ A, 0 ≤ k < |ζn(α)|}.

1. Pn is a metric partition of X.
2. The σ-algebra generated by Pn increases to the σ-algebra on X.
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Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a
sequence :

Let u be a minimal sequence on an alphabet A and w some prefix (non-empty) of u.
A return word over w is any factor u[i,j−1] := ui · · · uj−1, where i and j are two successive
occurrences of w in u (i.e. ui = uj = w1).
The return times over w are the length |w | = |u[i,j−1]| = j − i .

The setMw of return words over w is finite, providing a new code for u.
Fabien Durand obtained a characterization of substitutive sequences : the set of
"derivated" sequences must be finite.
In a standard rank one system (pn, sn,j), the return times from Fn over Fn−1 already
appear in the Riesz product : jhn−1 +

∑
k≤j sn,k .
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Eigenvalues of a substitution

Host (1986) and Livshits (1988–separately) gave a necessary and sufficient condition for
a complex number to be an eigenvalue of a primitive aperiodic substitution, with
computation in some classes of examples.

Sébastien, Christian Mauduit and Arnaldo Nogueira obtained a new formulation in terms
of return words over some letter.

If C = u[i,j−1] is a return word over some letter, they define

rn(C) = |ζn(C)| = |ζn(ui )|+ · · ·+ |ζn(uj−1)|.

Theorem (F-M-N)
Let ζ be a primitive aperiodic substitution ; the complex number λ of modulus 1 is an
eigenvalue of ζ if and only if

λrn(C) → 1 ∀ C return word.

An algebraic criterion for such a substitution to be weak mixing is deduced.
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Fibonacci example

The Fibonacci substitution ζ : 0→ 01, 1→ 0 has a purely discrete spectrum (sturmian
system).

Starting with u = σ∞(0) = 01001010 · · · , we observe that the only return words (over 0
or 1) are

0, 01, 10, 100.

Also,
|ζn(0)| = fn+1, |ζn(01)| = |ζn(10)| = fn+2, |ζn(100)| = fn+3

where (fn) is the Fibonacci recurrent sequence (starting with 1,1).
Thus, there is no purely rational eigenvalue and

e2iπω is an eigenvalue ⇐⇒
∑
n≥1

||ωfn||2 <∞,

where || · || = d(·,Z).

Then ω ∈ Q(θ) with θ the golden number ; finally ω ∈ Zθ + Z.
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Extensions and conjectures

1 Bufetov-Solomyak (2014) investigate the Hölder properties of spectral measures of
substitutions in the general primitive and aperiodic case. The spectral study requires
a matrix analogue of Riesz products (appeared in rank one systems) and return
words.

2 Pisot substitutions (with a Pisot Perron-Frobenius eigenvalue) are conjectured to
have a purely discrete spectrum. This has been proved for a two-letters alphabet
(Barge–Diamond 2002 for unitary Pisot numbers), (Hollander–Solomyak 2003).
P.Arnoux, V.Berthé, A.Siegel for extension of the Pisot conjecture to S-adic
sequences.

3 Weak mixing of S-adic systems and interval exchanges.
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Diophantine approximation and transcendence

An infinite word w on the alphabet A = {0, 1, . . . , q − 1} can be viewed as the q-adic
expansion of some real number in [0, 1)

xw =

∞∑
k=1

wkq−k si w = w1w2 · · · ∈ {0, 1, . . . , q − 1}∞.

Rational numbers have ultimately periodic adic expansions (lowest complexity).
Liouville (1852) constructed transcendental numbers with an hyperlacunary and low
complexity expansion (e.g.

∑
k 10

−k!).
Roth’s theorem in diophantine approximation gives the transcendence by truncation :

Theorem (Roth)
Let α /∈ Q and ε > 0 be such that

|α− p
q | <

1
q2+ε

for infinitely many rational numbers p/q ; then α is a transcendental number.
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Transcendence of low complexity expansions

Whence the question studied by Sébastien and Christian M. : can there exist irrational
algebraic numbers with a low complexity expansion for some q ?

So we start with 0-1 low complexity expansions and ask wether they sum up to algebraic
(or transcendental) numbers ?
But sturmian, A–R or Chacon expansions do not satisfy trivially the Roth condition.
A p-adic version of Roth’s theorem, due to Ridout, involves the arithmetic structure of
the denominators in the rational approximants to the number.

Theorem (Ridout)
Let p1, p2, . . . , pk be k arbitrary prime numbers. If there exist ε > 0 and infinitely many
rational numbers p/q such that( k∏

i=1

|p|pi

k∏
i=1

|q|pi

)
|α− p

q | <
1

q2+ε

then α is a transcendental number.
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Transcendence of low complexity expansions

Notation : If W is some word and a ≥ 1 some positive integer ; W a denotes the word
WW · · ·W with a repetitions ;
if a ∈]0, 1[ is a rational number, W a denotes the prefix of W of length a|W |.

Theorem (F-M)
If the adic-expansion of the irrational number α begins, for every n, by 0.UnV s

n · · · where
s > 2, |Vn| → ∞ and |Un|/|Vn| bounded, then α is a transcendental number.

Idea of proof : Put pn/qn = 0.UnVnVn · · · estimate qn, |α− pn
qn
| and apply Ridout’s

theorem.

Consequences :

1 Sturmian numbers (on ` letters), A-R numbers, and some automatic numbers are
transcendental numbers.

2 First estimate for the complexity of an algebraic number. If α is an algebraic
irrational number, then, for any k, lim(p(n)− n) = +∞.
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Extensions and conjectures

In the beginning of 2000’, Adamczewski and Bugeaud involve a multi-dimensional version
of Roth’s theorem and Ridout’s theorem :

Roth

multidim
�� ''

p−adic // Ridout

��
Schmidt // Schlickewei

They get an improvement by weakening the hypotheses on repetition of words.

Theorem (A–B)
If the expansion of α begin for every n by 0.UnV s

n · · · where s > 1, |Vn| → ∞ and
|Un|/|Vn| bounded, then α is a transcendental number.

1 If α is an algebraic irrational number, then, for any k, lim p(n)/n = +∞.
2 (Boris 2010). A result on the emblematic Euler constant e : lim(p(e, n)− n) =∞.
3 (A-B 2011) Numbers with sub-linear complexity are either Liouville numbers, or S–

or T–numbers in the Mahler classification.
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