Sébastien's first steps

Martine Queffélec
University Lille 1-France
cirm-30/01/2017

First articles

First articles

In the 60 ', Chacon produced a class of rather simple systems that he called "geometric constructions" and then "rank one systems" ; generalisations with finite rank systems appear later.

First articles

In the 60', Chacon produced a class of rather simple systems that he called "geometric constructions" and then "rank one systems" ; generalisations with finite rank systems appear later.
On the other side, initiated by Hedlund and Morse in the 40', symbolic constructions of systems of sequences on a finite alphabet provided various classes of examples.

First articles

In the 60', Chacon produced a class of rather simple systems that he called "geometric constructions" and then "rank one systems" ; generalisations with finite rank systems appear later.
On the other side, initiated by Hedlund and Morse in the 40', symbolic constructions of systems of sequences on a finite alphabet provided various classes of examples. In his first papers Sébastien intends to show how these two points of view can be reconciled; I focus on three of them whence three parts in my talk:

First articles

In the 60', Chacon produced a class of rather simple systems that he called "geometric constructions" and then "rank one systems" ; generalisations with finite rank systems appear later.
On the other side, initiated by Hedlund and Morse in the 40', symbolic constructions of systems of sequences on a finite alphabet provided various classes of examples. In his first papers Sébastien intends to show how these two points of view can be reconciled; I focus on three of them whence three parts in my talk :
(1) Connection between rank and symbolic complexity.

First articles

In the 60', Chacon produced a class of rather simple systems that he called "geometric constructions" and then "rank one systems" ; generalisations with finite rank systems appear later.
On the other side, initiated by Hedlund and Morse in the 40', symbolic constructions of systems of sequences on a finite alphabet provided various classes of examples. In his first papers Sébastien intends to show how these two points of view can be reconciled; I focus on three of them whence three parts in my talk:
(1) Connection between rank and symbolic complexity.
(2) Application to spectral theory of substitutions.

First articles

In the 60', Chacon produced a class of rather simple systems that he called "geometric constructions" and then "rank one systems" ; generalisations with finite rank systems appear later.
On the other side, initiated by Hedlund and Morse in the 40', symbolic constructions of systems of sequences on a finite alphabet provided various classes of examples. In his first papers Sébastien intends to show how these two points of view can be reconciled; I focus on three of them whence three parts in my talk :
(1) Connection between rank and symbolic complexity.
(2) Application to spectral theory of substitutions.
(3) Application to diophantine approximation.

Complexity function of a sequence/system

Let (X, T) be a symbolic system, and $\mathcal{L}(X)$, the language of X.

Complexity function of a sequence/system

Let (X, T) be a symbolic system, and $\mathcal{L}(X)$, the language of X.

1. The complexity function of some sequence x counts the number of factors (subwords) with a given length in x :

$$
p(n):=p(x, n)=\#\left\{x_{k} \cdots x_{k+n-1}, k \geq 1\right\}, n \geq 1 .
$$

Complexity function of a sequence/system

Let (X, T) be a symbolic system, and $\mathcal{L}(X)$, the language of X.

1. The complexity function of some sequence x counts the number of factors (subwords) with a given length in x :

$$
p(n):=p(x, n)=\#\left\{x_{k} \cdots x_{k+n-1}, k \geq 1\right\}, n \geq 1 .
$$

2. The complexity function of (X, T) is the complexity of $\mathcal{L}(X)$.

It is the same function when (X, T) is minimal.

Complexity function of a sequence/system

Let (X, T) be a symbolic system, and $\mathcal{L}(X)$, the language of X.

1. The complexity function of some sequence x counts the number of factors (subwords) with a given length in x :

$$
p(n):=p(x, n)=\#\left\{x_{k} \cdots x_{k+n-1}, k \geq 1\right\}, n \geq 1
$$

2. The complexity function of (X, T) is the complexity of $\mathcal{L}(X)$.

It is the same function when (X, T) is minimal.
Questions : 1. Which informations on the system (or sequence) can be deduced from its complexity function?

Complexity function of a sequence/system

Let (X, T) be a symbolic system, and $\mathcal{L}(X)$, the language of X.

1. The complexity function of some sequence x counts the number of factors (subwords) with a given length in x :

$$
p(n):=p(x, n)=\#\left\{x_{k} \cdots x_{k+n-1}, k \geq 1\right\}, n \geq 1
$$

2. The complexity function of (X, T) is the complexity of $\mathcal{L}(X)$.

It is the same function when (X, T) is minimal.
Questions : 1. Which informations on the system (or sequence) can be deduced from its complexity function?
2. Which functions from \mathbb{N}^{*} to \mathbb{N}^{*} are complexity functions?

Chacon's substitutions

A first example has been extensively studied by Sébastien :

Chacon's substitutions

A first example has been extensively studied by Sébastien :
The Chacon's sequence can be defined by $0-1$ blocks according to the rule :

$$
B_{0}=0, \quad B_{n+1}=B_{n} B_{n} 1 B_{n}, n \geq 1 ;
$$

or by $\zeta_{1}^{\infty}(0)$ where $\zeta_{1}: 0 \rightarrow 0010,1 \rightarrow 1$ is a non-primitive substitution.

Chacon's substitutions

A first example has been extensively studied by Sébastien :
The Chacon's sequence can be defined by 0-1 blocks according to the rule :

$$
B_{0}=0, \quad B_{n+1}=B_{n} B_{n} 1 B_{n}, \quad n \geq 1 ;
$$

or by $\zeta_{1}^{\infty}(0)$ where $\zeta_{1}: 0 \rightarrow 0010,1 \rightarrow 1$ is a non-primitive substitution.

Proposition (S1)

The complexity of the Chacon's sequence is equal to $p_{1}(n)=2 n-1$.

Chacon's substitutions

A first example has been extensively studied by Sébastien :
The Chacon's sequence can be defined by 0-1 blocks according to the rule :

$$
B_{0}=0, \quad B_{n+1}=B_{n} B_{n} 1 B_{n}, \quad n \geq 1 ;
$$

or by $\zeta_{1}^{\infty}(0)$ where $\zeta_{1}: 0 \rightarrow 0010,1 \rightarrow 1$ is a non-primitive substitution.

Proposition (S1)

The complexity of the Chacon's sequence is equal to $p_{1}(n)=2 n-1$.
Then, he considers $\zeta_{2}: 0 \rightarrow 0012,1 \rightarrow 12,2 \rightarrow 012$ a primitive substitution. The minimal system $X\left(\zeta_{2}\right)$ and the Chacon's system generated by $\zeta_{1}^{\infty}(0)$ (minimal too) are topologically conjugate and

$$
p_{2}(n)=2 n+1 .
$$

Complexity function of a sequence/system

Whence a first result :

Proposition (S1)

The complexity function itself is not a topological invariant of minimal systems, but it holds for the order of magnitude of the complexity function.

Complexity function of a sequence/system

Whence a first result :

Proposition (S1)

The complexity function itself is not a topological invariant of minimal systems, but it holds for the order of magnitude of the complexity function.

More about the first question.

Complexity function of a sequence/system

Whence a first result :

Proposition (S1)

The complexity function itself is not a topological invariant of minimal systems, but it holds for the order of magnitude of the complexity function.

More about the first question. Primitive substitutions have sub-linear complexity.

Complexity function of a sequence/system

Whence a first result :

Proposition (S1)

The complexity function itself is not a topological invariant of minimal systems, but it holds for the order of magnitude of the complexity function.

More about the first question. Primitive substitutions have sub-linear complexity.

Theorem (S3)

Minimal systems with sub-linear complexity are generated by a finite number of substitutions (or are S-adic systems). More precisely, there exist a finite set of substitutions ($\sigma_{j}, 1 \leq j \leq r$), S, on the alphabet $D=\{0, \ldots, d-1\}$, a map $\pi: D \rightarrow A$ and an infinite sequence $\left(j_{n}\right), 1 \leq j_{n} \leq r$ such that

$$
\inf _{0 \leq a \leq d-1}\left|\sigma_{j_{1}} \sigma_{j_{2}} \cdots \sigma_{j_{n}}(a)\right| \rightarrow \infty
$$

and every word of the language occurs in some $\pi \sigma_{j_{1}} \sigma_{j_{2}} \cdots \sigma_{j_{n}}(0), n \geq 1$.

Complexity function of a sequence/system

Whence a first result :

Proposition (S1)

The complexity function itself is not a topological invariant of minimal systems, but it holds for the order of magnitude of the complexity function.

More about the first question. Primitive substitutions have sub-linear complexity.

Theorem (S3)

Minimal systems with sub-linear complexity are generated by a finite number of substitutions (or are S-adic systems). More precisely, there exist a finite set of substitutions $\left(\sigma_{j}, 1 \leq j \leq r\right)$, S, on the alphabet $D=\{0, \ldots, d-1\}$, a map $\pi: D \rightarrow A$ and an infinite sequence $\left(j_{n}\right), 1 \leq j_{n} \leq r$ such that

$$
\inf _{0 \leq a \leq d-1}\left|\sigma_{j_{1}} \sigma_{j_{2}} \cdots \sigma_{j_{n}}(a)\right| \rightarrow \infty
$$

and every word of the language occurs in some $\pi \sigma_{j_{1}} \sigma_{j_{2}} \cdots \sigma_{j_{n}}(0), n \geq 1$.
It was known for sturmian sequences with $r=2$, Arnoux-Rauzy sequences with $r=3$ and an interpretation of $\left(j_{n}\right)$.

Finite rank systems

Finite rank systems
The notion of rank of a dynamical system is a measure-theoretic notion, introduced by Chacon, in view to produce explicit examples in the theory.

Finite rank systems

The notion of rank of a dynamical system is a measure-theoretic notion, introduced by Chacon, in view to produce explicit examples in the theory.

Simplest example : the 2-odometer, that is $\tau: x \rightarrow x+1$ with carries on $\{0,1\}^{\infty}$.

Finite rank systems

The notion of rank of a dynamical system is a measure-theoretic notion, introduced by Chacon, in view to produce explicit examples in the theory.
Simplest example : the 2-odometer, that is $\tau: x \rightarrow x+1$ with carries on $\{0,1\}^{\infty}$. If $x=\left(x_{1}, x_{2}, \ldots\right)$,

$$
\begin{aligned}
& \tau(x)=\left(1, x_{2}, \ldots\right) \text { if } x_{1}=0, \\
& \quad=\left(0,1, x_{3}, \ldots\right) \text { if } x_{1}=0=x_{2},
\end{aligned}
$$

and so on, by taking into account the first index k with $x_{k}=1$.

Finite rank systems

The notion of rank of a dynamical system is a measure-theoretic notion, introduced by Chacon, in view to produce explicit examples in the theory.
Simplest example : the 2-odometer, that is $\tau: x \rightarrow x+1$ with carries on $\{0,1\}^{\infty}$. If $x=\left(x_{1}, x_{2}, \ldots\right)$,

$$
\begin{aligned}
& \tau(x)=\left(1, x_{2}, \ldots\right) \text { if } x_{1}=0 \\
& \quad=\left(0,1, x_{3}, \ldots\right) \text { if } x_{1}=0=x_{2}
\end{aligned}
$$

and so on, by taking into account the first index k with $x_{k}=1$.
A geometric description as a "tower" makes the dynamics of τ more obvious:

Finite rank systems

The notion of rank of a dynamical system is a measure-theoretic notion, introduced by Chacon, in view to produce explicit examples in the theory.

Simplest example : the 2-odometer, that is $\tau: x \rightarrow x+1$ with carries on $\{0,1\}^{\infty}$. If $x=\left(x_{1}, x_{2}, \ldots\right)$,

$$
\begin{aligned}
& \tau(x)=\left(1, x_{2}, \ldots\right) \text { if } x_{1}=0 \\
& \quad=\left(0,1, x_{3}, \ldots\right) \text { if } x_{1}=0=x_{2}
\end{aligned}
$$

and so on, by taking into account the first index k with $x_{k}=1$.
A geometric description as a "tower" makes the dynamics of τ more obvious:

and so on ... The 2-odometer can be approximated by a simple tower in a more and more precise way by refining the basis and increasing the number of levels. Whence :
and so on ... The 2-odometer can be approximated by a simple tower in a more and more precise way by refining the basis and increasing the number of levels. Whence :

1. Let (X, \mathcal{B}, μ) be a Lebesgue space and T a measure-preserving transformation. A Rokhlin tower is a collection $\left(T^{j} F\right)_{j=0}^{h-1}$ of disjoint sets (F is the basis, h the height).
and so on ... The 2-odometer can be approximated by a simple tower in a more and more precise way by refining the basis and increasing the number of levels. Whence :
2. Let (X, \mathcal{B}, μ) be a Lebesgue space and T a measure-preserving transformation. A Rokhlin tower is a collection $\left(T^{j} F\right)_{j=0}^{h-1}$ of disjoint sets (F is the basis, h the height).

The name comes from the following result :

Lemma (Rokhlin)

For an ergodic transformation T preserving the finite measure μ, for every $\varepsilon>0$, there exists a tower of total measure $>\mu(X)-\varepsilon$.
and so on ... The 2-odometer can be approximated by a simple tower in a more and more precise way by refining the basis and increasing the number of levels. Whence :

1. Let (X, \mathcal{B}, μ) be a Lebesgue space and T a measure-preserving transformation. A Rokhlin tower is a collection $\left(T^{j} F\right)_{j=0}^{h-1}$ of disjoint sets (F is the basis, h the height).

The name comes from the following result :

Lemma (Rokhlin)

For an ergodic transformation T preserving the finite measure μ, for every $\varepsilon>0$, there exists a tower of total measure $>\mu(X)-\varepsilon$.
2. The system (or T) has rank one if there exists a sequence of towers $\left(\left\{T^{j} F_{n}\right\}_{j=0}^{h_{n}-1}\right)_{n}$ generating the σ-algebra :
$\forall A \in \mathcal{B}, \exists A_{n}$ union of levels of the n-th tower s.t. $\mu\left(A \Delta A_{n}\right) \rightarrow 0$.
and so on ... The 2-odometer can be approximated by a simple tower in a more and more precise way by refining the basis and increasing the number of levels. Whence :
1.Let (X, \mathcal{B}, μ) be a Lebesgue space and T a measure-preserving transformation. A Rokhlin tower is a collection $\left(T^{j} F\right)_{j=0}^{h-1}$ of disjoint sets (F is the basis, h the height).

The name comes from the following result :

Lemma (Rokhlin)

For an ergodic transformation T preserving the finite measure μ, for every $\varepsilon>0$, there exists a tower of total measure $>\mu(X)-\varepsilon$.
2. The system (or T) has rank one if there exists a sequence of towers $\left(\left\{T^{j} F_{n}\right\}_{j=0}^{h_{n}-1}\right)_{n}$ generating the σ-algebra :
$\forall A \in \mathcal{B}, \exists A_{n}$ union of levels of the n-th tower s.t. $\mu\left(A \Delta A_{n}\right) \rightarrow 0$.

So is every ergodic translation on a compact group (del junco 1976).

Connection between rank and complexity

Standard model of a rank one system :

- Stage one : F_{1} is the basis;
- Stage n : cut the tower $n-1$ in p_{n} equal columns, add $s_{n, j}$ spacers above the column number j, and stack the columns above the basis F_{n}.

Connection between rank and complexity

Standard model of a rank one system :

- Stage one : F_{1} is the basis;
- Stage n : cut the tower $n-1$ in p_{n} equal columns, add $s_{n, j}$ spacers above the column number j, and stack the columns above the basis F_{n}.

Example : the Chacon's standard construction (by cutting in three parts and adding one spacer) provides a geometric version of the symbolic Chacon system.

Connection between rank and complexity

Standard model of a rank one system :

- Stage one: F_{1} is the basis ;
- Stage n : cut the tower $n-1$ in p_{n} equal columns, add $s_{n, j}$ spacers above the column number j, and stack the columns above the basis F_{n}.

Example : the Chacon's standard construction (by cutting in three parts and adding one spacer) provides a geometric version of the symbolic Chacon system.

The rank of a system is the (finite) number of Rokhlin towers necessary to approach it.

Connection between rank and complexity

Standard model of a rank one system :

- Stage one: F_{1} is the basis;
- Stage n : cut the tower $n-1$ in p_{n} equal columns, add $s_{n, j}$ spacers above the column number j, and stack the columns above the basis F_{n}.

Example : the Chacon's standard construction (by cutting in three parts and adding one spacer) provides a geometric version of the symbolic Chacon system.

The rank of a system is the (finite) number of Rokhlin towers necessary to approach it.

Theorem (S2)

Consider a sequence taking its values in a finite alphabet and the associated system with complexity function p.

1. If it is a rank one system, then $\lim \inf _{n \rightarrow \infty} p(n) / n^{2} \leq 1 / 2$ (with possible sub-exponential peaks).
2. If the system is minimal and $p(n) \leq a n+b$ for some $a \geq 1$, then the rank of the system is $\leq 2[a]$.

Extensions and conjectures

- Polynomial complexities can be found by coding trajectories of billiards (Hubert). Other results on complexity functions are developped in the course of Bryna.

Extensions and conjectures

- Polynomial complexities can be found by coding trajectories of billiards (Hubert). Other results on complexity functions are developped in the course of Bryna.
- The S-adic conjecture states that, for a minimal system,

$$
1 \leq p(n+1)-p(n) \leq K \stackrel{?}{\Longleftrightarrow} S \text { - adicity } .
$$

The theorem of Sébastien gives the necessary condition (thanks to Cassaigne), and quantitative versions (relating K and the cardinal $|S|$) are in progress (Leroy). But the opposite direction needs a more restrictive definition of S-adicity.

Extensions and conjectures

- Polynomial complexities can be found by coding trajectories of billiards (Hubert). Other results on complexity functions are developped in the course of Bryna.
- The S-adic conjecture states that, for a minimal system,

$$
1 \leq p(n+1)-p(n) \leq K \stackrel{?}{\Longleftrightarrow} S \text { - adicity. }
$$

The theorem of Sébastien gives the necessary condition (thanks to Cassaigne), and quantitative versions (relating K and the cardinal $|S|$) are in progress (Leroy). But the opposite direction needs a more restrictive definition of S-adicity.

- A hudge amount of results are devoted to S-adic words and systems (Berthé, Delecroix, Leroy, . . .).

Extensions and conjectures

- Polynomial complexities can be found by coding trajectories of billiards (Hubert). Other results on complexity functions are developped in the course of Bryna.
- The S-adic conjecture states that, for a minimal system,

$$
1 \leq p(n+1)-p(n) \leq K \stackrel{?}{\Longleftrightarrow} S \text { - adicity } .
$$

The theorem of Sébastien gives the necessary condition (thanks to Cassaigne), and quantitative versions (relating K and the cardinal $|S|$) are in progress (Leroy). But the opposite direction needs a more restrictive definition of S-adicity.

- A hudge amount of results are devoted to S-adic words and systems (Berthé, Delecroix, Leroy, . . .).
- Link between the complexity of a sequence (system) and its mixing properties. The Chacon system was the first example of weakly mixing not mixing system.
- Mixing rank one systems do exist (random constructions of Ornstein), there exist also explicit examples.
- Mixing rank one systems do exist (random constructions of Ornstein), there exist also explicit examples.
- The spectrum of rank one systems has been widely studied.

1. A standard rank one system has a simple spectrum, with a generalized Riesz product as its maximal spectral measure :

$$
\sigma_{m}=w^{*}-\lim _{N} \prod_{n \leq N}\left|P_{n}\left(e^{2 i \pi t}\right)\right|^{2} \cdot \lambda
$$

where $P_{n}(z)=\frac{1}{\sqrt{p_{n}}} \sum_{j=0}^{p_{n}-1} z^{-\left(j h_{n-1}+\sum_{k \leq j} s_{n, k}\right)}, h_{n}$ height of the n-th tower.
2. Ornstein's mixing examples have a singular spectrum (Bourgain).
3. In any case, the spectrum is singular if $\left(1 / p_{n}\right) \notin \ell^{2}$ (Klemes-Reinhold).

- Mixing rank one systems do exist (random constructions of Ornstein), there exist also explicit examples.
- The spectrum of rank one systems has been widely studied.

1. A standard rank one system has a simple spectrum, with a generalized Riesz product as its maximal spectral measure :

$$
\sigma_{m}=w^{*}-\lim _{N} \prod_{n \leq N}\left|P_{n}\left(e^{2 i \pi t}\right)\right|^{2} \cdot \lambda,
$$

where $P_{n}(z)=\frac{1}{\sqrt{p_{n}}} \sum_{j=0}^{p_{n}-1} z^{-\left(j h_{n-1}+\sum_{k \leq j} s_{n, k}\right)}, h_{n}$ height of the n-th tower.
2. Ornstein's mixing examples have a singular spectrum (Bourgain).
3. In any case, the spectrum is singular if $\left(1 / p_{n}\right) \notin \ell^{2}$ (Klemes-Reinhold).

- Does there exist a Lebesgue rank one system?

Banach's question : does there exist a Lebesgue simple spectrum ?

Spectrum of a substitution

Spectrum of a substitution

Framework : ζ is a primitive substitution admitting a non-periodical fixed point u; $X:=X_{u}$ is the closed orbit of u under the shift T.

Spectrum of a substitution

Framework : ζ is a primitive substitution admitting a non-periodical fixed point u; $X:=X_{u}$ is the closed orbit of u under the shift T.

- The dynamical system (X, T) is minimal $(X:=X(\zeta))$ and uniquely ergodic, with a unique invariant probability measure μ.

Spectrum of a substitution

Framework : ζ is a primitive substitution admitting a non-periodical fixed point u; $X:=X_{u}$ is the closed orbit of u under the shift T.

- The dynamical system (X, T) is minimal $(X:=X(\zeta))$ and uniquely ergodic, with a unique invariant probability measure μ.
- Eigenvalues of ζ : eigenvalues of the underlying operator $f \rightarrow f \circ T$ on $L^{2}(X, \mu)$.

Spectrum of a substitution

Framework : ζ is a primitive substitution admitting a non-periodical fixed point u; $X:=X_{u}$ is the closed orbit of u under the shift T.

- The dynamical system (X, T) is minimal $(X:=X(\zeta))$ and uniquely ergodic, with a unique invariant probability measure μ.
- Eigenvalues of ζ : eigenvalues of the underlying operator $f \rightarrow f \circ T$ on $L^{2}(X, \mu)$.
- Weak mixing may occur but strong mixing never occurs.

Spectrum of a substitution

Framework : ζ is a primitive substitution admitting a non-periodical fixed point u; $X:=X_{u}$ is the closed orbit of u under the shift T.

- The dynamical system (X, T) is minimal $(X:=X(\zeta))$ and uniquely ergodic, with a unique invariant probability measure μ.
- Eigenvalues of ζ : eigenvalues of the underlying operator $f \rightarrow f \circ T$ on $L^{2}(X, \mu)$.
- Weak mixing may occur but strong mixing never occurs.
- Substitution systems are finite rank systems (with sublinear complexity) :

Proposition

For every $n>0$, we set

$$
\mathcal{P}_{n}=\left\{T^{k}\left(\zeta^{n}[\alpha]\right), \quad \alpha \in A, 0 \leq k<\left|\zeta^{n}(\alpha)\right|\right\}
$$

1. \mathcal{P}_{n} is a metric partition of X.
2. The σ-algebra generated by \mathcal{P}_{n} increases to the σ-algebra on X.

Return words and return times in symbolic dynamics

Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a sequence :

Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a sequence :

Let u be a minimal sequence on an alphabet A and w some prefix (non-empty) of u. A return word over w is any factor $u_{[i, j-1]}:=u_{i} \cdots u_{j-1}$, where i and j are two successive occurrences of w in u (i.e. $u_{i}=u_{j}=w_{1}$).

Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a sequence :

Let u be a minimal sequence on an alphabet A and w some prefix (non-empty) of u. A return word over w is any factor $u_{[i, j-1]}:=u_{i} \cdots u_{j-1}$, where i and j are two successive occurrences of w in u (i.e. $u_{i}=u_{j}=w_{1}$).
The return times over w are the length $|w|=\left|u_{[i, j-1]}\right|=j-i$.

Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a sequence :

Let u be a minimal sequence on an alphabet A and w some prefix (non-empty) of u. A return word over w is any factor $u_{[i, j-1]}:=u_{i} \cdots u_{j-1}$, where i and j are two successive occurrences of w in u (i.e. $u_{i}=u_{j}=w_{1}$).
The return times over w are the length $|w|=\left|u_{[i, j-1]}\right|=j-i$.

- The set \mathcal{M}_{w} of return words over w is finite, providing a new code for u.

Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a sequence :

Let u be a minimal sequence on an alphabet A and w some prefix (non-empty) of u. A return word over w is any factor $u_{[i, j-1]}:=u_{i} \cdots u_{j-1}$, where i and j are two successive occurrences of w in u (i.e. $u_{i}=u_{j}=w_{1}$).
The return times over w are the length $|w|=\left|u_{[i, j-1]}\right|=j-i$.

- The set \mathcal{M}_{w} of return words over w is finite, providing a new code for u.
- Fabien Durand obtained a characterization of substitutive sequences: the set of "derivated" sequences must be finite.

Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a sequence :

Let u be a minimal sequence on an alphabet A and w some prefix (non-empty) of u. A return word over w is any factor $u_{[i, j-1]}:=u_{i} \cdots u_{j-1}$, where i and j are two successive occurrences of w in u (i.e. $u_{i}=u_{j}=w_{1}$).
The return times over w are the length $|w|=\left|u_{[i, j-1]}\right|=j-i$.

- The set \mathcal{M}_{w} of return words over w is finite, providing a new code for u.
- Fabien Durand obtained a characterization of substitutive sequences: the set of "derivated" sequences must be finite.
- In a standard rank one system $\left(p_{n}, s_{n, j}\right)$, the return times from F_{n} over F_{n-1} already appear in the Riesz product: $j h_{n-1}+\sum_{k \leq j} s_{n, k}$.

Eigenvalues of a substitution

Host (1986) and Livshits (1988-separately) gave a necessary and sufficient condition for a complex number to be an eigenvalue of a primitive aperiodic substitution, with computation in some classes of examples.

Eigenvalues of a substitution

Host (1986) and Livshits (1988-separately) gave a necessary and sufficient condition for a complex number to be an eigenvalue of a primitive aperiodic substitution, with computation in some classes of examples.
Sébastien, Christian Mauduit and Arnaldo Nogueira obtained a new formulation in terms of return words over some letter.

Eigenvalues of a substitution

Host (1986) and Livshits (1988-separately) gave a necessary and sufficient condition for a complex number to be an eigenvalue of a primitive aperiodic substitution, with computation in some classes of examples.
Sébastien, Christian Mauduit and Arnaldo Nogueira obtained a new formulation in terms of return words over some letter.

If $C=u_{[i, j-1]}$ is a return word over some letter, they define

$$
r_{n}(C)=\left|\zeta^{n}(C)\right|=\left|\zeta^{n}\left(u_{i}\right)\right|+\cdots+\left|\zeta^{n}\left(u_{j-1}\right)\right| .
$$

Eigenvalues of a substitution

Host (1986) and Livshits (1988-separately) gave a necessary and sufficient condition for a complex number to be an eigenvalue of a primitive aperiodic substitution, with computation in some classes of examples.
Sébastien, Christian Mauduit and Arnaldo Nogueira obtained a new formulation in terms of return words over some letter.

If $C=u_{[i, j-1]}$ is a return word over some letter, they define

$$
r_{n}(C)=\left|\zeta^{n}(C)\right|=\left|\zeta^{n}\left(u_{i}\right)\right|+\cdots+\left|\zeta^{n}\left(u_{j-1}\right)\right|
$$

Theorem (F-M-N)

Let ζ be a primitive aperiodic substitution; the complex number λ of modulus 1 is an eigenvalue of ζ if and only if

$$
\lambda^{r_{n}(C)} \rightarrow 1 \quad \forall C \text { return word. }
$$

Eigenvalues of a substitution

Host (1986) and Livshits (1988-separately) gave a necessary and sufficient condition for a complex number to be an eigenvalue of a primitive aperiodic substitution, with computation in some classes of examples.
Sébastien, Christian Mauduit and Arnaldo Nogueira obtained a new formulation in terms of return words over some letter.

If $C=u_{[i, j-1]}$ is a return word over some letter, they define

$$
r_{n}(C)=\left|\zeta^{n}(C)\right|=\left|\zeta^{n}\left(u_{i}\right)\right|+\cdots+\left|\zeta^{n}\left(u_{j-1}\right)\right|
$$

Theorem (F-M-N)

Let ζ be a primitive aperiodic substitution ; the complex number λ of modulus 1 is an eigenvalue of ζ if and only if

$$
\lambda^{r_{n}(C)} \rightarrow 1 \quad \forall C \text { return word. }
$$

An algebraic criterion for such a substitution to be weak mixing is deduced.

Fibonacci example

The Fibonacci substitution $\zeta: 0 \rightarrow 01,1 \rightarrow 0$ has a purely discrete spectrum (sturmian system).

Fibonacci example

The Fibonacci substitution $\zeta: 0 \rightarrow 01,1 \rightarrow 0$ has a purely discrete spectrum (sturmian system).
Starting with $u=\sigma^{\infty}(0)=01001010 \cdots$, we observe that the only return words (over 0 or 1) are
$0,01,10,100$.

Fibonacci example

The Fibonacci substitution $\zeta: 0 \rightarrow 01,1 \rightarrow 0$ has a purely discrete spectrum (sturmian system).
Starting with $u=\sigma^{\infty}(0)=01001010 \cdots$, we observe that the only return words (over 0 or 1) are

$$
0,01,10,100
$$

Also,

$$
\left|\zeta^{n}(0)\right|=f_{n+1},\left|\zeta^{n}(01)\right|=\left|\zeta^{n}(10)\right|=f_{n+2},\left|\zeta^{n}(100)\right|=f_{n+3}
$$

where $\left(f_{n}\right)$ is the Fibonacci recurrent sequence (starting with 1,1).

Fibonacci example

The Fibonacci substitution $\zeta: 0 \rightarrow 01,1 \rightarrow 0$ has a purely discrete spectrum (sturmian system).
Starting with $u=\sigma^{\infty}(0)=01001010 \cdots$, we observe that the only return words (over 0 or 1) are

$$
0,01,10,100
$$

Also,

$$
\left|\zeta^{n}(0)\right|=f_{n+1},\left|\zeta^{n}(01)\right|=\left|\zeta^{n}(10)\right|=f_{n+2},\left|\zeta^{n}(100)\right|=f_{n+3}
$$

where $\left(f_{n}\right)$ is the Fibonacci recurrent sequence (starting with 1,1). Thus, there is no purely rational eigenvalue and

$$
e^{2 i \pi \omega} \text { is an eigenvalue } \Longleftrightarrow \sum_{n \geq 1}\left\|\omega f_{n}\right\|^{2}<\infty
$$

where $\|\cdot\|=d(\cdot, \mathbb{Z})$.

Fibonacci example

The Fibonacci substitution $\zeta: 0 \rightarrow 01,1 \rightarrow 0$ has a purely discrete spectrum (sturmian system).
Starting with $u=\sigma^{\infty}(0)=01001010 \cdots$, we observe that the only return words (over 0 or 1) are

$$
0,01,10,100
$$

Also,

$$
\left|\zeta^{n}(0)\right|=f_{n+1},\left|\zeta^{n}(01)\right|=\left|\zeta^{n}(10)\right|=f_{n+2},\left|\zeta^{n}(100)\right|=f_{n+3}
$$

where $\left(f_{n}\right)$ is the Fibonacci recurrent sequence (starting with 1,1). Thus, there is no purely rational eigenvalue and

$$
e^{2 i \pi \omega} \text { is an eigenvalue } \Longleftrightarrow \sum_{n \geq 1}\left\|\omega f_{n}\right\|^{2}<\infty
$$

where $\|\cdot\|=d(\cdot, \mathbb{Z})$.
Then $\omega \in \mathbb{Q}(\theta)$ with θ the golden number; finally $\omega \in \mathbb{Z} \theta+\mathbb{Z}$.

Extensions and conjectures

(1) Bufetov-Solomyak (2014) investigate the Hölder properties of spectral measures of substitutions in the general primitive and aperiodic case. The spectral study requires a matrix analogue of Riesz products (appeared in rank one systems) and return words.

Extensions and conjectures

© Bufetov-Solomyak (2014) investigate the Hölder properties of spectral measures of substitutions in the general primitive and aperiodic case. The spectral study requires a matrix analogue of Riesz products (appeared in rank one systems) and return words.
(2) Pisot substitutions (with a Pisot Perron-Frobenius eigenvalue) are conjectured to have a purely discrete spectrum. This has been proved for a two-letters alphabet (Barge-Diamond 2002 for unitary Pisot numbers), (Hollander-Solomyak 2003).

Extensions and conjectures

© Bufetov-Solomyak (2014) investigate the Hölder properties of spectral measures of substitutions in the general primitive and aperiodic case. The spectral study requires a matrix analogue of Riesz products (appeared in rank one systems) and return words.
(c) Pisot substitutions (with a Pisot Perron-Frobenius eigenvalue) are conjectured to have a purely discrete spectrum. This has been proved for a two-letters alphabet (Barge-Diamond 2002 for unitary Pisot numbers), (Hollander-Solomyak 2003). P.Arnoux, V.Berthé, A.Siegel for extension of the Pisot conjecture to S-adic sequences.

Extensions and conjectures

© Bufetov-Solomyak (2014) investigate the Hölder properties of spectral measures of substitutions in the general primitive and aperiodic case. The spectral study requires a matrix analogue of Riesz products (appeared in rank one systems) and return words.
(2) Pisot substitutions (with a Pisot Perron-Frobenius eigenvalue) are conjectured to have a purely discrete spectrum. This has been proved for a two-letters alphabet (Barge-Diamond 2002 for unitary Pisot numbers), (Hollander-Solomyak 2003). P.Arnoux, V.Berthé, A.Siegel for extension of the Pisot conjecture to S-adic sequences.

- Weak mixing of S-adic systems and interval exchanges.

Diophantine approximation and transcendence

An infinite word w on the alphabet $A=\{0,1, \ldots, q-1\}$ can be viewed as the q-adic expansion of some real number in $[0,1)$

$$
x_{w}=\sum_{k=1}^{\infty} w_{k} q^{-k} \text { si } w=w_{1} w_{2} \cdots \in\{0,1, \ldots, q-1\}^{\infty}
$$

Diophantine approximation and transcendence

An infinite word w on the alphabet $A=\{0,1, \ldots, q-1\}$ can be viewed as the q-adic expansion of some real number in $[0,1)$

$$
x_{w}=\sum_{k=1}^{\infty} w_{k} q^{-k} \text { si } w=w_{1} w_{2} \cdots \in\{0,1, \ldots, q-1\}^{\infty} .
$$

Rational numbers have ultimately periodic adic expansions (lowest complexity).

Diophantine approximation and transcendence

An infinite word w on the alphabet $A=\{0,1, \ldots, q-1\}$ can be viewed as the q-adic expansion of some real number in $[0,1)$

$$
x_{w}=\sum_{k=1}^{\infty} w_{k} q^{-k} \text { si } w=w_{1} w_{2} \cdots \in\{0,1, \ldots, q-1\}^{\infty}
$$

Rational numbers have ultimately periodic adic expansions (lowest complexity). Liouville (1852) constructed transcendental numbers with an hyperlacunary and low complexity expansion (e.g. $\sum_{k} 10^{-k!}$).

Diophantine approximation and transcendence

An infinite word w on the alphabet $A=\{0,1, \ldots, q-1\}$ can be viewed as the q-adic expansion of some real number in $[0,1)$

$$
x_{w}=\sum_{k=1}^{\infty} w_{k} q^{-k} \text { si } w=w_{1} w_{2} \cdots \in\{0,1, \ldots, q-1\}^{\infty}
$$

Rational numbers have ultimately periodic adic expansions (lowest complexity).
Liouville (1852) constructed transcendental numbers with an hyperlacunary and low complexity expansion (e.g. $\sum_{k} 10^{-k!}$).
Roth's theorem in diophantine approximation gives the transcendence by truncation :

Theorem (Roth)

Let $\alpha \notin \mathbb{Q}$ and $\varepsilon>0$ be such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2+\varepsilon}}
$$

for infinitely many rational numbers p / q; then α is a transcendental number.

Transcendence of low complexity expansions

Whence the question studied by Sébastien and Christian M. : can there exist irrational algebraic numbers with a low complexity expansion for some q ?

Transcendence of low complexity expansions

Whence the question studied by Sébastien and Christian M. : can there exist irrational algebraic numbers with a low complexity expansion for some q ?
So we start with 0-1 low complexity expansions and ask wether they sum up to algebraic (or transcendental) numbers?

Transcendence of low complexity expansions

Whence the question studied by Sébastien and Christian M. : can there exist irrational algebraic numbers with a low complexity expansion for some q ?
So we start with 0-1 low complexity expansions and ask wether they sum up to algebraic (or transcendental) numbers?
But sturmian, A-R or Chacon expansions do not satisfy trivially the Roth condition.

Transcendence of low complexity expansions

Whence the question studied by Sébastien and Christian M. : can there exist irrational algebraic numbers with a low complexity expansion for some q ?
So we start with 0-1 low complexity expansions and ask wether they sum up to algebraic (or transcendental) numbers?
But sturmian, A-R or Chacon expansions do not satisfy trivially the Roth condition.
A p-adic version of Roth's theorem, due to Ridout, involves the arithmetic structure of the denominators in the rational approximants to the number.

Transcendence of low complexity expansions

Whence the question studied by Sébastien and Christian M. : can there exist irrational algebraic numbers with a low complexity expansion for some q ?
So we start with 0-1 low complexity expansions and ask wether they sum up to algebraic (or transcendental) numbers?
But sturmian, A-R or Chacon expansions do not satisfy trivially the Roth condition.
A p-adic version of Roth's theorem, due to Ridout, involves the arithmetic structure of the denominators in the rational approximants to the number.

Theorem (Ridout)

Let $p_{1}, p_{2}, \ldots, p_{k}$ be k arbitrary prime numbers. If there exist $\varepsilon>0$ and infinitely many rational numbers p / q such that

$$
\left(\prod_{i=1}^{k}|p|_{p_{i}} \prod_{i=1}^{k}|q|_{p_{i}}\right)\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2+\varepsilon}}
$$

then α is a transcendental number.

Transcendence of low complexity expansions

Notation : If W is some word and $a \geq 1$ some positive integer; W^{a} denotes the word $W W \cdots W$ with a repetitions;
if $a \in] 0,1\left[\right.$ is a rational number, W^{a} denotes the prefix of W of length a|W|.

Transcendence of low complexity expansions

Notation : If W is some word and $a \geq 1$ some positive integer; W^{a} denotes the word $W W \cdots W$ with a repetitions; if $a \in] 0,1\left[\right.$ is a rational number, W^{a} denotes the prefix of W of length $a|W|$.

Theorem (F-M)

If the adic-expansion of the irrational number α begins, for every n, by $0 . U_{n} V_{n}^{s} \cdots$ where $s>2,\left|V_{n}\right| \rightarrow \infty$ and $\left|U_{n}\right| /\left|V_{n}\right|$ bounded, then α is a transcendental number.

Transcendence of low complexity expansions

Notation : If W is some word and $a \geq 1$ some positive integer; W^{a} denotes the word $W W \cdots W$ with a repetitions; if $a \in] 0,1\left[\right.$ is a rational number, W^{a} denotes the prefix of W of length $a|W|$.

Theorem (F-M)

If the adic-expansion of the irrational number α begins, for every n, by $0 . U_{n} V_{n}^{s} \cdots$ where $s>2,\left|V_{n}\right| \rightarrow \infty$ and $\left|U_{n}\right| /\left|V_{n}\right|$ bounded, then α is a transcendental number.

Idea of proof : Put $p_{n} / q_{n}=0 . U_{n} V_{n} V_{n} \cdots$ estimate $q_{n},\left|\alpha-\frac{p_{n}}{q_{n}}\right|$ and apply Ridout's theorem.

Transcendence of low complexity expansions

Notation : If W is some word and $a \geq 1$ some positive integer; W^{a} denotes the word $W W \cdots W$ with a repetitions; if $a \in] 0,1\left[\right.$ is a rational number, W^{a} denotes the prefix of W of length $a|W|$.

Theorem (F-M)

If the adic-expansion of the irrational number α begins, for every n, by $0 . U_{n} V_{n}^{s} \cdots$ where $s>2,\left|V_{n}\right| \rightarrow \infty$ and $\left|U_{n}\right| /\left|V_{n}\right|$ bounded, then α is a transcendental number.

Idea of proof : Put $p_{n} / q_{n}=0 . U_{n} V_{n} V_{n} \cdots$ estimate $q_{n},\left|\alpha-\frac{p_{n}}{q_{n}}\right|$ and apply Ridout's theorem.

Consequences:

(1) Sturmian numbers (on ℓ letters), A-R numbers, and some automatic numbers are transcendental numbers.

Transcendence of low complexity expansions

Notation : If W is some word and $a \geq 1$ some positive integer; W^{a} denotes the word $W W \cdots W$ with a repetitions; if $a \in] 0,1\left[\right.$ is a rational number, W^{a} denotes the prefix of W of length $a|W|$.

Theorem (F-M)

If the adic-expansion of the irrational number α begins, for every n, by $0 . U_{n} V_{n}^{s} \cdots$ where $s>2,\left|V_{n}\right| \rightarrow \infty$ and $\left|U_{n}\right| /\left|V_{n}\right|$ bounded, then α is a transcendental number.

Idea of proof : Put $p_{n} / q_{n}=0 . U_{n} V_{n} V_{n} \cdots$ estimate $q_{n},\left|\alpha-\frac{p_{n}}{q_{n}}\right|$ and apply Ridout's theorem.

Consequences:

(1) Sturmian numbers (on ℓ letters), A-R numbers, and some automatic numbers are transcendental numbers.
(2) First estimate for the complexity of an algebraic number. If α is an algebraic irrational number, then, for any $k, \lim (p(n)-n)=+\infty$.

Extensions and conjectures

In the beginning of 2000', Adamczewski and Bugeaud involve a multi-dimensional version of Roth's theorem and Ridout's theorem :

Extensions and conjectures

In the beginning of 2000', Adamczewski and Bugeaud involve a multi-dimensional version of Roth's theorem and Ridout's theorem :

Extensions and conjectures

In the beginning of 2000', Adamczewski and Bugeaud involve a multi-dimensional version of Roth's theorem and Ridout's theorem :

They get an improvement by weakening the hypotheses on repetition of words.

Theorem (A-B)

If the expansion of α begin for every n by $0 . U_{n} V_{n}^{s} \ldots$ where $s>1,\left|V_{n}\right| \rightarrow \infty$ and $\left|U_{n}\right| /\left|V_{n}\right|$ bounded, then α is a transcendental number.

Extensions and conjectures

In the beginning of 2000', Adamczewski and Bugeaud involve a multi-dimensional version of Roth's theorem and Ridout's theorem :

They get an improvement by weakening the hypotheses on repetition of words.

Theorem (A-B)

If the expansion of α begin for every n by $0 . U_{n} V_{n}^{s} \ldots$ where $s>1,\left|V_{n}\right| \rightarrow \infty$ and $\left|U_{n}\right| /\left|V_{n}\right|$ bounded, then α is a transcendental number.
(1) If α is an algebraic irrational number, then, for any $k, \lim p(n) / n=+\infty$.

Extensions and conjectures

In the beginning of 2000', Adamczewski and Bugeaud involve a multi-dimensional version of Roth's theorem and Ridout's theorem :

They get an improvement by weakening the hypotheses on repetition of words.

Theorem (A-B)

If the expansion of α begin for every n by $0 . U_{n} V_{n}^{s} \ldots$ where $s>1,\left|V_{n}\right| \rightarrow \infty$ and $\left|U_{n}\right| /\left|V_{n}\right|$ bounded, then α is a transcendental number.
(1) If α is an algebraic irrational number, then, for any $k, \lim p(n) / n=+\infty$.
(2) (Boris 2010). A result on the emblematic Euler constant $e: \lim (p(e, n)-n)=\infty$.

Extensions and conjectures

In the beginning of 2000', Adamczewski and Bugeaud involve a multi-dimensional version of Roth's theorem and Ridout's theorem :

They get an improvement by weakening the hypotheses on repetition of words.

Theorem (A-B)

If the expansion of α begin for every n by $0 . U_{n} V_{n}^{s} \ldots$ where $s>1,\left|V_{n}\right| \rightarrow \infty$ and $\left|U_{n}\right| /\left|V_{n}\right|$ bounded, then α is a transcendental number.
(1) If α is an algebraic irrational number, then, for any $k, \lim p(n) / n=+\infty$.
(2) (Boris 2010). A result on the emblematic Euler constant $e: \lim (p(e, n)-n)=\infty$.

- (A-B 2011) Numbers with sub-linear complexity are either Liouville numbers, or Sor T-numbers in the Mahler classification.

