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First articles

In the 60’, Chacon produced a class of rather simple systems that he called “geometric
constructions" and then “rank one systems" ; generalisations with finite rank systems
appear later.
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appear later.

On the other side, initiated by Hedlund and Morse in the 40’, symbolic constructions of
systems of sequences on a finite alphabet provided various classes of examples.

In his first papers Sébastien intends to show how these two points of view can be
reconciled ; | focus on three of them whence three parts in my talk :
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In the 60’, Chacon produced a class of rather simple systems that he called “geometric
constructions" and then “rank one systems" ; generalisations with finite rank systems
appear later.

On the other side, initiated by Hedlund and Morse in the 40’, symbolic constructions of
systems of sequences on a finite alphabet provided various classes of examples.

In his first papers Sébastien intends to show how these two points of view can be
reconciled ; | focus on three of them whence three parts in my talk :

@ Connection between rank and symbolic complexity.

@ Application to spectral theory of substitutions.

© Application to diophantine approximation.

M. Queffélec (Lille 1) Sébastien’s first steps cirm-30/01/2017 2/20



Complexity function of a sequence/system

Let (X, T) be a symbolic system, and £(X), the language of X.
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Complexity function of a sequence/system

Let (X, T) be a symbolic system, and £(X), the language of X.

1. The complexity function of some sequence x counts the number of factors (subwords)
with a given length in x :

p(n) := p(x,n) = #{xk -+ Xk4n-1, k > 1}, n>1.
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M. Queffélec (Lille 1) Sébastien’s first steps cirm—30/01/2017 3/20



Complexity function of a sequence/system

Let (X, T) be a symbolic system, and £(X), the language of X.

1. The complexity function of some sequence x counts the number of factors (subwords)
with a given length in x :

p(n) = P(X»n) = #{Xk © o Xkn—1, k 2 1}7 n 2 1

2. The complexity function of (X, T) is the complexity of L(X) .
It is the same function when (X, T) is minimal.

Questions : 1. Which informations on the system (or sequence) can be deduced from its
complexity function?
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1. The complexity function of some sequence x counts the number of factors (subwords)
with a given length in x :

p(n) := p(x,n) = #{xk -+ Xk4n-1, k > 1}, n>1.

2. The complexity function of (X, T) is the complexity of L(X) .
It is the same function when (X, T) is minimal.

Questions : 1. Which informations on the system (or sequence) can be deduced from its
complexity function?

2. Which functions from N* to N* are complexity functions?
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Chacon'’s substitutions

A first example has been extensively studied by Sébastien :
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Chacon'’s substitutions

A first example has been extensively studied by Sébastien :
The Chacon's sequence can be defined by 0-1 blocks according to the rule :
Bo = 0, B,,+1 = Banan, n 2 ].;

or by (£°(0) where (1 : 0 — 0010, 1 — 1 is a non-primitive substitution.
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A first example has been extensively studied by Sébastien :

The Chacon's sequence can be defined by 0-1 blocks according to the rule :
By =0, Bpi1=ByBy1Bs, n>1;

or by (£°(0) where (1 : 0 — 0010, 1 — 1 is a non-primitive substitution.

Proposition (S1)

The complexity of the Chacon’s sequence is equal to pi(n) = 2n — 1. J
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Chacon'’s substitutions

A first example has been extensively studied by Sébastien :

The Chacon's sequence can be defined by 0-1 blocks according to the rule :
Bo = 0, B,,+1 = B,,B,,:[B,,7 n 2 ].;

or by (£°(0) where (1 : 0 — 0010, 1 — 1 is a non-primitive substitution.

The complexity of the Chacon’s sequence is equal to pi(n) = 2n — 1.

Proposition (S1) J

Then, he considers (> : 0 — 0012, 1 — 12, 2 — 012 a primitive substitution. The
minimal system X((2) and the Chacon’s system generated by (;°(0) (minimal too) are
topologically conjugate and

p2(n) =2n+1.
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Complexity function of a sequence/system
Whence a first result :
Proposition (S1)

The complexity function itself is not a topological invariant of minimal systems, but it
holds for the order of magnitude of the complexity function.
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Complexity function of a sequence/system

Whence a first result :
Proposition (S1)

The complexity function itself is not a topological invariant of minimal systems, but it
holds for the order of magnitude of the complexity function.

More about the first question. Primitive substitutions have sub-linear complexity.

Theorem (S3)

Minimal systems with sub-linear complexity are generated by a finite number of
substitutions (or are S-adic systems). More precisely, there exist a finite set of
substitutions (0j, 1 < j <r), S, on the alphabet D ={0,...,d —1}, amapnm:D — A
and an infinite sequence (jn),1 < j, < r such that

05;2d71‘011012 aj,(a)l 00

and every word of the language occurs in some woj o), - - - 0j,(0), n > 1.
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Complexity function of a sequence/system

Whence a first result :
Proposition (S1)

The complexity function itself is not a topological invariant of minimal systems, but it
holds for the order of magnitude of the complexity function.

More about the first question. Primitive substitutions have sub-linear complexity.

Theorem (S3)

Minimal systems with sub-linear complexity are generated by a finite number of
substitutions (or are S-adic systems). More precisely, there exist a finite set of
substitutions (0j, 1 < j <r), S, on the alphabet D ={0,...,d —1}, amapnm:D — A
and an infinite sequence (jn),1 < j, < r such that

0S;2d71‘011012 aj,(a)l 00

and every word of the language occurs in some woj o), - - - 0j,(0), n > 1.

It was known for sturmian sequences with r = 2, Arnoux-Rauzy sequences with r = 3
and an interpretation of (j).
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Finite rank systems
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Finite rank systems

The notion of rank of a dynamical system is a measure-theoretic notion, introduced by
Chacon, in view to produce explicit examples in the theory.
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Finite rank systems
The notion of rank of a dynamical system is a measure-theoretic notion, introduced by
Chacon, in view to produce explicit examples in the theory.
Simplest example : the 2-odometer, that is 7 : x — x + 1 with carries on {0,1}°.
If x = (x1, x2, . ..),

7(x)=(1,x,...) if xx =0,

= (0,1,X3,...) if X1 = 0 = X2,

and so on, by taking into account the first index k with xx = 1.
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= (0,1,X3,...) if X1 = 0 = X2,

and so on, by taking into account the first index k with xx = 1.

A geometric description as a “tower" makes the dynamics of 7 more obvious :
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and then, by cutting and stacking,
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and so on --- The 2-odometer can be approximated by a simple tower in a more and
more precise way by refining the basis and increasing the number of levels. Whence :
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and so on --- The 2-odometer can be approximated by a simple tower in a more and
more precise way by refining the basis and increasing the number of levels. Whence :

1.Let (X, B, ) be a Lebesgue space and T a measure-preserving transformation.
A Rokhlin tower is a collection (T’ F )j’.’:_o1 of disjoint sets (F is the basis, h the height).

M. Queffélec (Lille 1) Sébastien’s first steps cirm—30/01/2017 8 /20



and so on --- The 2-odometer can be approximated by a simple tower in a more and
more precise way by refining the basis and increasing the number of levels. Whence :

1.Let (X, B, ) be a Lebesgue space and T a measure-preserving transformation.
A Rokhlin tower is a collection (T’ F )j’.’:_o1 of disjoint sets (F is the basis, h the height).

The name comes from the following result :

Lemma (Rokhlin)

For an ergodic transformation T preserving the finite measure y, for every € > 0, there
exists a tower of total measure > p(X) — e.
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and so on --- The 2-odometer can be approximated by a simple tower in a more and
more precise way by refining the basis and increasing the number of levels. Whence :

1.Let (X, B, ) be a Lebesgue space and T a measure-preserving transformation.

A Rokhlin tower is a collection (T F )J” o of disjoint sets (F is the basis, h the height).

The name comes from the following result :

Lemma (Rokhlin)

For an ergodic transformation T preserving the finite measure y, for every € > 0, there
exists a tower of total measure > p(X) — e.

2.The system (or T) has rank one if there exists a sequence of towers ({T/F, }h"_l)
generating the o-algebra :

VA € B,3A, union of levels of the n-th tower s.t. i(AAA,) — 0.
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and so on --- The 2-odometer can be approximated by a simple tower in a more and
more precise way by refining the basis and increasing the number of levels. Whence :

1.Let (X, B, u) be a Lebesgue space and T a measure-preserving transformation.
A Rokhlin tower is a collection (T’ F )J’.’:_o1 of disjoint sets (F is the basis, h the height).

The name comes from the following result :

Lemma (Rokhlin)

For an ergodic transformation T preserving the finite measure y, for every € > 0, there
exists a tower of total measure > p(X) — e.

2.The system (or T) has rank one if there exists a sequence of towers ({ T’ F,,}J'-Zo_l),1

generating the o-algebra :

VA € B,3A, union of levels of the n-th tower s.t. i(AAA,) — 0.

So is every ergodic translation on a compact group (del junco 1976).
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Connection between rank and complexity

Standard model of a rank one system :
o Stage one : F; is the basis;

o Stage n : cut the tower n — 1 in p, equal columns, add s, ; spacers above the
column number j, and stack the columns above the basis F,.
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o Stage one : F; is the basis;
o Stage n : cut the tower n — 1 in p, equal columns, add s, ; spacers above the
column number j, and stack the columns above the basis F,.

Example : the Chacon’s standard construction (by cutting in three parts and adding
one spacer) provides a geometric version of the symbolic Chacon system.
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Connection between rank and complexity

Standard model of a rank one system :
o Stage one : F; is the basis;

o Stage n : cut the tower n — 1 in p, equal columns, add s, ; spacers above the
column number j, and stack the columns above the basis F,.

Example : the Chacon’s standard construction (by cutting in three parts and adding
one spacer) provides a geometric version of the symbolic Chacon system.

The rank of a system is the (finite) number of Rokhlin towers necessary to approach it.

Theorem (S2)

Consider a sequence taking its values in a finite alphabet and the associated system with
complexity function p.

1. If it is a rank one system, then liminf,_,o, p(n)/n® < 1/2 (with possible
sub-exponential peaks).

2. If the system is minimal and p(n) < an+ b for some a > 1, then the rank of the
system is < 2[a].
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Extensions and conjectures

@ Polynomial complexities can be found by coding trajectories of billiards (Hubert).
Other results on complexity functions are developped in the course of Bryna.
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Extensions and conjectures

@ Polynomial complexities can be found by coding trajectories of billiards (Hubert).
Other results on complexity functions are developped in the course of Bryna.

@ The S-adic conjecture states that, for a minimal system,

1<p(n+1)—p(n) <K s adicity.

The theorem of Sébastien gives the necessary condition (thanks to Cassaigne), and
quantitative versions (relating K and the cardinal |S|) are in progress (Leroy). But
the opposite direction needs a more restrictive definition of S-adicity.

M. Queffélec (Lille 1) Sébastien’s first steps cirm-30/01/2017 10 / 20



Extensions and conjectures

@ Polynomial complexities can be found by coding trajectories of billiards (Hubert).
Other results on complexity functions are developped in the course of Bryna.

@ The S-adic conjecture states that, for a minimal system,

1<p(n+1)—p(n) <K s adicity.

The theorem of Sébastien gives the necessary condition (thanks to Cassaigne), and
quantitative versions (relating K and the cardinal |S|) are in progress (Leroy). But
the opposite direction needs a more restrictive definition of S-adicity.

@ A hudge amount of results are devoted to S-adic words and systems (Berthé,
Delecroix, Leroy,...).
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Extensions and conjectures

@ Polynomial complexities can be found by coding trajectories of billiards (Hubert).
Other results on complexity functions are developped in the course of Bryna.

@ The S-adic conjecture states that, for a minimal system,

1<p(n+1)—p(n) <K s adicity.

The theorem of Sébastien gives the necessary condition (thanks to Cassaigne), and
quantitative versions (relating K and the cardinal |S|) are in progress (Leroy). But
the opposite direction needs a more restrictive definition of S-adicity.

@ A hudge amount of results are devoted to S-adic words and systems (Berthé,
Delecroix, Leroy,...).

@ Link between the complexity of a sequence (system) and its mixing properties.
The Chacon system was the first example of weakly mixing not mixing system.
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@ Mixing rank one systems do exist (random constructions of Ornstein), there exist
also explicit examples.

@ The spectrum of rank one systems has been widely studied.
1. A standard rank one system has a simple spectrum, with a generalized Riesz
product as its maximal spectral measure :

om=w" —lim [T 1Pa(e™)17 - A,
n<N

where P,(z) = 71,7 f-’i;l Z_(jhn71+zkgf s"’k), h, height of the n-th tower.
2. Ornstein’s mixing examples have a singular spectrum (Bourgain).

3. In any case, the spectrum is singular if (1/p,) ¢ €% (Klemes-Reinhold).
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@ Mixing rank one systems do exist (random constructions of Ornstein), there exist
also explicit examples.

@ The spectrum of rank one systems has been widely studied.
1. A standard rank one system has a simple spectrum, with a generalized Riesz
product as its maximal spectral measure :

om=w" —lim [T 1Pa(e™)17 - A,
n<N

where P,(z) = 71,7 f;gl Z_(jhniﬁzkgf s"’k), h, height of the n-th tower.
2. Ornstein’s mixing examples have a singular spectrum (Bourgain).

3. In any case, the spectrum is singular if (1/p,) ¢ €% (Klemes-Reinhold).

o Does there exist a Lebesgue rank one system ?
Banach's question : does there exist a Lebesgue simple spectrum ?
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Spectrum of a substitution

Framework : ( is a primitive substitution admitting a non-periodical fixed point u;
X := X, is the closed orbit of u under the shift T.
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Spectrum of a substitution

Framework : ( is a primitive substitution admitting a non-periodical fixed point u;
X := X, is the closed orbit of u under the shift T.

@ The dynamical system (X, T) is minimal (X := X(¢)) and uniquely ergodic, with a
unique invariant probability measure .
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Framework : ( is a primitive substitution admitting a non-periodical fixed point u;
X := X, is the closed orbit of u under the shift T.

@ The dynamical system (X, T) is minimal (X := X(¢)) and uniquely ergodic, with a

unique invariant probability measure .

e FEigenvalues of ¢ : eigenvalues of the underlying operator f — f o T on L*(X, ).
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X := X, is the closed orbit of u under the shift T.

@ The dynamical system (X, T) is minimal (X := X(¢)) and uniquely ergodic, with a
unique invariant probability measure .

e FEigenvalues of ¢ : eigenvalues of the underlying operator f — f o T on L*(X, ).

@ Weak mixing may occur but strong mixing never occurs.
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Spectrum of a substitution

Framework : ( is a primitive substitution admitting a non-periodical fixed point u;
X := X, is the closed orbit of u under the shift T.

@ The dynamical system (X, T) is minimal (X := X(¢)) and uniquely ergodic, with a
unique invariant probability measure .

e FEigenvalues of ¢ : eigenvalues of the underlying operator f — f o T on L*(X, ).
o Weak mixing may occur but strong mixing never occurs.

@ Substitution systems are finite rank systems (with sublinear complexity) :

Proposition
For every n > 0, we set
Pr={T“("le]), a€A 0<k<[("(@)]}-

1. P, is a metric partition of X.
2. The o-algebra generated by P, increases to the o-algebra on X.
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Return words and return times in symbolic dynamics
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Return words and return times in symbolic dynamics
sequence :

A return word is a word separating two successive occurrences of some factor in a
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Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a
sequence :

Let u be a minimal sequence on an alphabet A and w some prefix (non-empty) of u.
A return word over w is any factor ujj j_1) := u; - - - uj—1, where i and j are two successive
occurrences of w in u (i.e. up = uj = wy).
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Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a
sequence :

Let u be a minimal sequence on an alphabet A and w some prefix (non-empty) of u.
A return word over w is any factor ujj j_1) := u; - - - uj—1, where i and j are two successive
occurrences of w in u (i.e. up = uj = wy).

The return times over w are the length |w| = |uj j_y| =j —i.
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Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a
sequence :

Let u be a minimal sequence on an alphabet A and w some prefix (non-empty) of u.
A return word over w is any factor Ufjj—1] = Ui+ Uj—1, where | and j are two successive
occurrences of w in u (i.e. up = uj = wy).

The return times over w are the length |w| = |uj j_y| =j —i.

@ The set M,, of return words over w is finite, providing a new code for u.
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Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a
sequence :

Let u be a minimal sequence on an alphabet A and w some prefix (non-empty) of u.
A return word over w is any factor Ufjj—1] = Ui+ Uj—1, where | and j are two successive
occurrences of w in u (i.e. up = uj = wy).

The return times over w are the length |w| = |uj j_y| =j —i.

@ The set M,, of return words over w is finite, providing a new code for u.

o Fabien Durand obtained a characterization of substitutive sequences : the set of
"derivated" sequences must be finite.
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Return words and return times in symbolic dynamics

A return word is a word separating two successive occurrences of some factor in a
sequence :

Let u be a minimal sequence on an alphabet A and w some prefix (non-empty) of u.
A return word over w is any factor Ufjj—1] = Ui+ Uj—1, where | and j are two successive
occurrences of w in u (i.e. up = uj = wy).

The return times over w are the length |w| = |uj j_y| =j —i.

@ The set M,, of return words over w is finite, providing a new code for u.

o Fabien Durand obtained a characterization of substitutive sequences : the set of
"derivated" sequences must be finite.

@ In a standard rank one system (pn, sn,j), the return times from F, over F,_; already
appear in the Riesz product : jh,—1 + ZKJ. Sn,k-
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Eigenvalues of a substitution

Host (1986) and Livshits (1988—separately) gave a necessary and sufficient condition for
a complex number to be an eigenvalue of a primitive aperiodic substitution, with
computation in some classes of examples.
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Host (1986) and Livshits (1988—separately) gave a necessary and sufficient condition for
a complex number to be an eigenvalue of a primitive aperiodic substitution, with
computation in some classes of examples.

Sébastien, Christian Mauduit and Arnaldo Nogueira obtained a new formulation in terms

of return words over some letter.
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Eigenvalues of a substitution

Host (1986) and Livshits (1988—separately) gave a necessary and sufficient condition for
a complex number to be an eigenvalue of a primitive aperiodic substitution, with
computation in some classes of examples.

Sébastien, Christian Mauduit and Arnaldo Nogueira obtained a new formulation in terms
of return words over some letter.

If C = uj;;_q) is a return word over some letter, they define

ra(C) = [C"(O) = I¢" (i) [ + -+ + |¢" (wj-1).
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Eigenvalues of a substitution

Host (1986) and Livshits (1988—separately) gave a necessary and sufficient condition for
a complex number to be an eigenvalue of a primitive aperiodic substitution, with
computation in some classes of examples.

Sébastien, Christian Mauduit and Arnaldo Nogueira obtained a new formulation in terms
of return words over some letter.

If C = uj;;_q) is a return word over some letter, they define

ra(C) = [C"(O) = I¢" (i) [ + -+ + |¢" (wj-1).

Theorem (F-M-N)

Let ¢ be a primitive aperiodic substitution; the complex number A of modulus 1 is an
eigenvalue of ¢ if and only if

A€ 1V C return word.
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Eigenvalues of a substitution

Host (1986) and Livshits (1988—separately) gave a necessary and sufficient condition for
a complex number to be an eigenvalue of a primitive aperiodic substitution, with
computation in some classes of examples.

Sébastien, Christian Mauduit and Arnaldo Nogueira obtained a new formulation in terms
of return words over some letter.

If C = uj;;_q) is a return word over some letter, they define

ra(C) = [C"(O) = I¢" (i) [ + -+ + |¢" (wj-1).

Theorem (F-M-N)

Let ¢ be a primitive aperiodic substitution; the complex number A of modulus 1 is an
eigenvalue of ¢ if and only if

A€ 1V C return word.

An algebraic criterion for such a substitution to be weak mixing is deduced.
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Fibonacci example

The Fibonacci substitution ¢ : 0 — 01, 1 — 0 has a purely discrete spectrum (sturmian
system).
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Fibonacci example

The Fibonacci substitution ¢ : 0 — 01, 1 — 0 has a purely discrete spectrum (sturmian
system).
Starting with u = ¢°°(0) = 01001010 - -, we observe that the only return words (over 0
or 1) are

0, 01, 10, 100.
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Fibonacci example

The Fibonacci substitution ¢ : 0 — 01, 1 — 0 has a purely discrete spectrum (sturmian
system).
Starting with u = ¢°°(0) = 01001010 - -, we observe that the only return words (over 0
or 1) are

0, 01, 10, 100.

Also,
IC"(0)] = fas1, [C"(01)] = [¢"(10)] = fos2, |C"(100)| = fuis

where (f,) is the Fibonacci recurrent sequence (starting with 1,1).
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Fibonacci example

The Fibonacci substitution ¢ : 0 — 01, 1 — 0 has a purely discrete spectrum (sturmian
system).
Starting with u = ¢°°(0) = 01001010 - -, we observe that the only return words (over 0
or 1) are

0, 01, 10, 100.

Also,
1C"(0)] = fasa, [C"(O1)] = ["(10)] = fusa, [C"(100)] = Fov

where (f,) is the Fibonacci recurrent sequence (starting with 1,1).
Thus, there is no purely rational eigenvalue and
€”™ is an eigenvalue <= Z [|wh|[* < oo,
n>1

where || - || = d(-, Z).
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Fibonacci example

The Fibonacci substitution ¢ : 0 — 01, 1 — 0 has a purely discrete spectrum (sturmian
system).
Starting with u = ¢°°(0) = 01001010 - -, we observe that the only return words (over 0
or 1) are
0, 01, 10, 100.

Also,

IC"(0)] = fagr, [€7(01)] = IC"(10)] = fara, [C"(100)] = foys
where (f,) is the Fibonacci recurrent sequence (starting with 1,1).
Thus, there is no purely rational eigenvalue and

€”™ is an eigenvalue <= Z llwha]]? < oo,
n>1

where || - || = d(-, Z).
Then w € Q(#) with 6 the golden number; finally w € Z6 + 7Z.
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Extensions and conjectures

© Bufetov-Solomyak (2014) investigate the Holder properties of spectral measures of
substitutions in the general primitive and aperiodic case. The spectral study requires
a matrix analogue of Riesz products (appeared in rank one systems) and return
words.
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Extensions and conjectures

© Bufetov-Solomyak (2014) investigate the Holder properties of spectral measures of
substitutions in the general primitive and aperiodic case. The spectral study requires
a matrix analogue of Riesz products (appeared in rank one systems) and return
words.

@ Pisot substitutions (with a Pisot Perron-Frobenius eigenvalue) are conjectured to
have a purely discrete spectrum. This has been proved for a two-letters alphabet
(Barge—Diamond 2002 for unitary Pisot numbers), (Hollander—Solomyak 2003).
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Extensions and conjectures

© Bufetov-Solomyak (2014) investigate the Holder properties of spectral measures of
substitutions in the general primitive and aperiodic case. The spectral study requires
a matrix analogue of Riesz products (appeared in rank one systems) and return
words.

@ Pisot substitutions (with a Pisot Perron-Frobenius eigenvalue) are conjectured to
have a purely discrete spectrum. This has been proved for a two-letters alphabet
(Barge—Diamond 2002 for unitary Pisot numbers), (Hollander—Solomyak 2003).
P.Arnoux, V.Berthé, A.Siegel for extension of the Pisot conjecture to S-adic
sequences.
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Extensions and conjectures

© Bufetov-Solomyak (2014) investigate the Holder properties of spectral measures of
substitutions in the general primitive and aperiodic case. The spectral study requires
a matrix analogue of Riesz products (appeared in rank one systems) and return
words.

@ Pisot substitutions (with a Pisot Perron-Frobenius eigenvalue) are conjectured to
have a purely discrete spectrum. This has been proved for a two-letters alphabet
(Barge—Diamond 2002 for unitary Pisot numbers), (Hollander—Solomyak 2003).
P.Arnoux, V.Berthé, A.Siegel for extension of the Pisot conjecture to S-adic
sequences.

© Weak mixing of S-adic systems and interval exchanges.
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Diophantine approximation and transcendence

An infinite word w on the alphabet A= {0,1,...,q — 1} can be viewed as the g-adic
expansion of some real number in [0, 1)

XWIZqufk siw=wiw,---€{0,1,...,g—1}.
k=1
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Diophantine approximation and transcendence

An infinite word w on the alphabet A= {0,1,...,q — 1} can be viewed as the g-adic
expansion of some real number in [0, 1)

XWIZqufk siw=wiw,---€{0,1,...,9g—1}.
k=1

Rational numbers have ultimately periodic adic expansions (lowest complexity).
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Diophantine approximation and transcendence

An infinite word w on the alphabet A= {0,1,...,q — 1} can be viewed as the g-adic
expansion of some real number in [0, 1)

XWIZqufk siw=wiw,---€{0,1,...,9g—1}.
k=1

Rational numbers have ultimately periodic adic expansions (lowest complexity).

Liouville (1852) constructed transcendental numbers with an hyperlacunary and low
complexity expansion (e.g. >, 107).
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Diophantine approximation and transcendence

An infinite word w on the alphabet A= {0,1,...,q — 1} can be viewed as the g-adic
expansion of some real number in [0, 1)

XWIZqufk siw=wiw,---€{0,1,...,9g—1}.
k=1

Rational numbers have ultimately periodic adic expansions (lowest complexity).
Liouville (1852) constructed transcendental numbers with an hyperlacunary and low
complexity expansion (e.g. >, 107).

Roth's theorem in diophantine approximation gives the transcendence by truncation :
Theorem (Roth)

Let o ¢ Q and € > 0 be such that

P 1
o — 5' < q*te

for infinitely many rational numbers p/q ; then « is a transcendental number.
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Transcendence of low complexity expansions

Whence the question studied by Sébastien and Christian M.

algebraic numbers with a low complexity expansion for some g ?

can there exist irrational
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Transcendence of low complexity expansions

Whence the question studied by Sébastien and Christian M. : can there exist irrational
algebraic numbers with a low complexity expansion for some g ?

So we start with 0-1 low complexity expansions and ask wether they sum up to algebraic
(or transcendental) numbers?
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Transcendence of low complexity expansions

Whence the question studied by Sébastien and Christian M. : can there exist irrational
algebraic numbers with a low complexity expansion for some g ?

So we start with 0-1 low complexity expansions and ask wether they sum up to algebraic
(or transcendental) numbers?

But sturmian, A-R or Chacon expansions do not satisfy trivially the Roth condition.
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Transcendence of low complexity expansions

Whence the question studied by Sébastien and Christian M. : can there exist irrational
algebraic numbers with a low complexity expansion for some g ?

So we start with 0-1 low complexity expansions and ask wether they sum up to algebraic
(or transcendental) numbers?

But sturmian, A-R or Chacon expansions do not satisfy trivially the Roth condition.

A p-adic version of Roth’s theorem, due to Ridout, involves the arithmetic structure of
the denominators in the rational approximants to the number.
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Transcendence of low complexity expansions

Whence the question studied by Sébastien and Christian M. : can there exist irrational
algebraic numbers with a low complexity expansion for some g ?

So we start with 0-1 low complexity expansions and ask wether they sum up to algebraic
(or transcendental) numbers?

But sturmian, A-R or Chacon expansions do not satisfy trivially the Roth condition.

A p-adic version of Roth’s theorem, due to Ridout, involves the arithmetic structure of
the denominators in the rational approximants to the number.

Theorem (Ridout)

Let p1, p2, ..., pk be k arbitrary prime numbers. If there exist € > 0 and infinitely many
rational numbers p/q such that

k k
P 1
(TT1eto TT el 1o — 21 <
i=1 i=1

then « is a transcendental number.
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Transcendence of low complexity expansions

Notation : If W is some word and a > 1 some positive integer; W? denotes the word
WW - - W with a repetitions;

if a €]0,1[ is a rational number, W? denotes the prefix of W of length a|W|.

M. Queffélec (Lille 1) Sébastien’s first steps cirm—30/01/2017 19 /20



Transcendence of low complexity expansions

Notation : If W is some word and a > 1 some positive integer; W? denotes the word
WW - - W with a repetitions;

if a €]0,1[ is a rational number, W? denotes the prefix of W of length a|W|.

Theorem (F-M)

If the adic-expansion of the irrational number o begins, for every n, by 0.U,V}; - -+ where
s> 2, |Va| = oo and |U,|/|Va| bounded, then « is a transcendental number.
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Transcendence of low complexity expansions

Notation : If W is some word and a > 1 some positive integer; W? denotes the word
WW - - W with a repetitions;
if a €]0,1[ is a rational number, W? denotes the prefix of W of length a|W|.

Theorem (F-M)

If the adic-expansion of the irrational number o begins, for every n, by 0.U,V}; - -+ where
s> 2, |Va| = oo and |U,|/|Va| bounded, then « is a transcendental number.

Idea of proof : Put p,/gn = 0.U,V,V, - - - estimate gn, |a — %\ and apply Ridout’s
theorem.
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Transcendence of low complexity expansions

Notation : If W is some word and a > 1 some positive integer; W? denotes the word
WW - - W with a repetitions;
if a €]0,1[ is a rational number, W? denotes the prefix of W of length a|W|.

Theorem (F-M)

If the adic-expansion of the irrational number o begins, for every n, by 0.U,V}; - -+ where
s> 2, |Va| = oo and |U,|/|Va| bounded, then « is a transcendental number.

Idea of proof : Put p,/gn = 0.U,V,V, - - - estimate gn, |a — %\ and apply Ridout's
theorem.

Consequences :

@ Sturmian numbers (on £ letters), A-R numbers, and some automatic numbers are
transcendental numbers.
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Transcendence of low complexity expansions

Notation : If W is some word and a > 1 some positive integer; W? denotes the word
WW - - W with a repetitions;
if a €]0,1[ is a rational number, W? denotes the prefix of W of length a|W|.

Theorem (F-M)

If the adic-expansion of the irrational number o begins, for every n, by 0.U,V}; - -+ where
s> 2, |Va| = oo and |U,|/|Va| bounded, then « is a transcendental number.

Idea of proof : Put p,/gn = 0.U,V,V, - - - estimate gn, |a — %\ and apply Ridout's
theorem.
Consequences :

@ Sturmian numbers (on £ letters), A-R numbers, and some automatic numbers are
transcendental numbers.

@ First estimate for the complexity of an algebraic number. If « is an algebraic
irrational number, then, for any k, lim(p(n) — n) = 4oc.
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Extensions and conjectures

In the beginning of 2000’, Adamczewski and Bugeaud involve a multi-dimensional version
of Roth’s theorem and Ridout's theorem :
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Extensions and conjectures

In the beginning of 2000’, Adamczewski and Bugeaud involve a multi-dimensional version
of Roth's theorem and Ridout's theorem :

—adi
Roth —2—%“~ Ridout

.

Schmidt —— Schlickewei
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Extensions and conjectures

In the beginning of 2000’, Adamczewski and Bugeaud involve a multi-dimensional version
of Roth's theorem and Ridout's theorem :

—adi
Roth —2—%“~ Ridout

.

Schmidt —— Schlickewei

They get an improvement by weakening the hypotheses on repetition of words.

Theorem (A-B)

If the expansion of « begin for every n by 0.U,V; --- where s > 1, |V,| — oo and
|Un|/|Va| bounded, then « is a transcendental number.
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Extensions and conjectures

In the beginning of 2000’, Adamczewski and Bugeaud involve a multi-dimensional version
of Roth's theorem and Ridout's theorem :

—adi
Roth — %< Ridout

.

Schmidt —— Schlickewei

They get an improvement by weakening the hypotheses on repetition of words.

Theorem (A-B)

If the expansion of « begin for every n by 0.U,V; --- where s > 1, |V,| — oo and
|Un|/|Va| bounded, then « is a transcendental number.

Q If « is an algebraic irrational number, then, for any k, lim p(n)/n = +oc.
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Extensions and conjectures

In the beginning of 2000’, Adamczewski and Bugeaud involve a multi-dimensional version
of Roth's theorem and Ridout's theorem :

—adi
Roth — %< Ridout

.

Schmidt —— Schlickewei

They get an improvement by weakening the hypotheses on repetition of words.

Theorem (A-B)

If the expansion of « begin for every n by 0.U,V; --- where s > 1, |V,| — oo and
|Un|/|Va| bounded, then « is a transcendental number.

Q If « is an algebraic irrational number, then, for any k, lim p(n)/n = +oc.

@ (Boris 2010). A result on the emblematic Euler constant e : lim(p(e, n) — n) = cc.
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Extensions and conjectures

In the beginning of 2000’, Adamczewski and Bugeaud involve a multi-dimensional version
of Roth's theorem and Ridout's theorem :

—adi
Roth — %< Ridout

S

Schmidt —— Schlickewei

They get an improvement by weakening the hypotheses on repetition of words.

Theorem (A-B)

If the expansion of « begin for every n by 0.U,V; --- where s > 1, |V,| — oo and
|Un|/|Va| bounded, then « is a transcendental number.

Q If « is an algebraic irrational number, then, for any k, lim p(n)/n = +oc.
@ (Boris 2010). A result on the emblematic Euler constant e : lim(p(e, n) — n) = co.

© (A-B 2011) Numbers with sub-linear complexity are either Liouville numbers, or S—
or T—numbers in the Mahler classification.
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