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Let (f0, f1, . . . , fn, . . . ) be a sequence with fi ∈ R, i ∈ N0.
Let F denote the partial sum, defined by

F (n) =
n−1∑
i=0

fi , n ≥ 0,

The function F is assumed to be linearly interpolated between
consecutive integers.
Let the function ϕn : [0, 1]→ [0, 1] be defined by

ϕn(t) =
F (t · n)− t · F (n)

Rn
,

(The normalizing coefficient Rn = max
t∈[0,1]

|F (t · n)− t · F (n)|.)



Let (X ,T ) be a dynamical system, a function f : X → R and a
point x ∈ X .
É. Janvresse, T. de la Rue and Y. Velenik defined
fi = f (T ix), i ≥ 0, and considered cluster points in C [0, 1] of the
set {ϕn}n≥1. Any cluster point ϕ = ϕx ,f is called a limiting
function.

More formally: ϕ is a limiting function if there is a stabilizing
subsequence (ln)n such that ||ϕ− ϕln ||∞ → 0.
Although, in general, limiting functions do not always exist and are
never unique, they give an interesting insight to the fluctuations of
ergodic sums (when an ergodic limit exists).
There are also interesting applications to combinatorics and
number theory.
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Figure: A graded graph (Bratteli diagram).

I The space X of infinite edge paths of some graded graph with
some linear order on the incoming edges of each vertex. It is
equipped with a partial order �, which is lexicographical on
the set of edge paths in X that belong to the same class of
the tail partition.

I The adic transformation T is defined on X \
(
Xmax ∪ Xmin

)
by

sending x ∈ X to its successor Tx , that is, the smallest y that
satisfies y � x .



Let (X ,T ) be an adic transformation. This assumption is not
restrictive due to the following theorem by A. M. Vershik:

Theorem

Any ergodic measure preserving transformation on a Lebesgue
space is isomorphic to some adic transformation.

Let FN denote the space of cylindric functions of rank N
(i.e., functions that depend only on the first N coordinates of
x = (xn)∞0 ).



The Pascal adic transformation
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Let I be {0, 1}∞ and µq be the dyadic Bernoulli measures∏∞
1 (q, 1− q), q ∈ (0, 1).

We denote by P the Pascal adic transformation can be explicitly
defined by:

x 7→ Px ; P(0m−l1l10 . . . ) = 1l0m−l01 . . .

(that is only the initial m + 2 coordinates of x are being changed).

Pascal adic transformation dynamics



The measures µq, q ∈ (0, 1), give the list of all invariant ergodic
measures.
A function g ∈ L∞(X , µ) of the form g = h ◦ T − h + const,
h ∈ L∞(X , µ), is called cohomologous to a constant.

Theorem

(É. Janvresse et.al., Theorem 2.4.) Let P be the Pascal adic
transformation defined on the Lebesgue probability space
(X ,B, µq), q ∈ (0, 1), and g be a cylindric function from FN .
Then for µq-a.e. x the limiting curve ϕg

x ∈ C [0, 1] exists if and
only if g is not cohomologous to a constant.

Example of the limiting curve, q = 0.4 :



Main results

Limiting curves and cohomologous to a constant functions
(necessary condition)

Self-Similar dynamical systems

Limiting curves for the Pascal adic transformation
Illustration
Transition regimes
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Limiting curves and cohomologous to a constant functions
(necessary condition)

Theorem (É. Janvresse et al (2005), A.M.(2016))

I If a continuous limiting curve ϕg
x = limn ϕ

g
x ,ln

exists for µ-a.e.

x, then the normalizing coefficients Rg
x ,ln

are unbounded in n.

I The normalizing sequence Rg
x ,ln

is bounded if and only if the
function g is cohomologous to some constant.



Self-Similar dynamical systems

Let p(x) be a positive integer polynomial, for example,
p(x) = 1 + x + 3x2
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Figure: The graded graph associated to p(x) = 1 + x + 3x2.



Self-Similar dynamical systems
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Figure: Canonical ordering for p(x) = 1 + x + 3x2.

As for the Pascal adic, the set of all invariant ergodic measures for
a polynomial system is a certain one-parameter family µq,
q ∈ (0, 1

a0
), of Bernoulli measures.

Denote by tq the unique solution in (0, 1) of the equation

a0qd + a1qd−1t + · · ·+ ad td − qd−1 = 0.

X. Mela and S. Bailey showed that these measures are as follows:

µq =
∞∏
0

(
q, . . . , q︸ ︷︷ ︸

a0

, tq, . . . , tq︸ ︷︷ ︸
a1

,
t2q
q
, . . . ,

t2q
q︸ ︷︷ ︸

a2

, . . . ,
tdq

qd−1 , . . . ,
tdq

qd−1︸ ︷︷ ︸
ad

)
.



Self-Similar dynamical systems

Theorem

Let (X ,T , µq) be a polynomial system and g be a cylindric
function from FN . Then for µq-a.e. x a limiting curve
ϕg
x ∈ C [0, 1] exists if and only if the function g is not

cohomologous to a constant.

Figure: An example of a limiting curve



Figure: The Bratteli diagram and the polygonal approximation
p(x) = 2 + x + x2.



The distribution function of the measure µq

I We assume for simplicity that p(x) = 1 + x (it is the Pascal
adic case).

I The Bernoulli measure µq =
∏

(q, 1− q) (if carried to [0, 1])
can be defined by the distribution function
Lq(x) : [0, 1]→ [0, 1].

Lq : x =
∞∑
k=1

ωk
1

2k
7→

∞∑
k=1

ωkqk−sk−1(1− q)sk−1 ,

where sk =
∑k

j=1 ωj , ωj ∈ {0, 1}.

Figure: The graphs of L0.5 (left) and L0.3 (right)



A class of self-affine functions

Let q1 and q2 be distinct parameters from (0, 1). We consider the
function Sq1,q2 : [0, 1]→ [0, 1] defined by Sq1,q2 = Lq2 ◦ L−1q1 . For

k ∈ N we define the function T k
q by the identity:

T k
q :=

∂kSq,a

∂ak

∣∣∣
a=q

, k ∈ N.

The function 1
2T

1
1/2 is the famous Takagi function (M. Hata and

M. Yamaguti).

Figure: The graphs of T 1
1/2 (left) and T 2

1/2 (right)



A class of self-affine functions.

T k
q (qi ) =

∂k

∂qk
qi = i(i − 1) . . . (i − k)qi−k−1,

i ∈ N, in particular,

T 1
q (qi ) = iqi−1, T 2

q (qi ) = i(i − 1)qi−2.

Taking into account certain self-affinity relations, the functions T k
q

are uniquely defined by these values.

Figure: The graphs of T 1
0.4 (left) and T 2

0.4 (right)



A class of self-affine functions

Everything can be generalized for p(x) = a0 + a1x + · · ·+ adxd :
As above, for q1, q2 ∈ (0, 1/a0), functions Sp

q1,q2 : [0, 1]→ [0, 1]
can be defined.
Similarly,

T k
p,q1 :=

∂kSp
q1,q2

∂qk
2

∣∣∣
q2=q1

, k ∈ N.

Figure: The graph of T k
p,q1 ,p(x) = 2 + x + x2.



Let’s return to the Pascal adic

Let (I ,P, µq) be the Pascal adic, x ∈ I define the infinite path
passing through the vertices (n, kn(x)) of the Pascal graph, a
stabilizing sequence can be chosen as ln =

( n
kn

)
.



How to find the limiting curves explicitly?

Let g ∈ FN be a cylindric function.
In order to find the limiting curve ϕ along the sequence (n, kn) (we
write simply (n, k)), we need

1. to represent the function g in the form g =
2N−1∑
j=0

cjw
q
t for

some convenient basis {wq
t },

2. to evaluate the partial sums Fn,k at the points

xi ,k,n =
(n−i
k−i
)
, i ∈ N, for each function wq

t ,

3. to find the leading term Rnϕ(qi ) of the asymptotic expansion

Fn,k(xi ,k,n)−
xi ,k,n
x0,k,n

· Fn,k(x0,k,n) = Rn · ϕ(qi ) + o(Rn)

(since lim
n

xi,k,n
x0,k,n

= qi with n→∞, knn → q)



1. We take the Walsh-Paley functions {wq
t } (orthogonalized in

L2
µq) for the basis in question.

2. Let Km(k , q, n) denote the Krawtchouk polynomials of a
discrete variable k , defined by the identity

Km(k , q, n) = 2F1

[
−k , −m

−n
;

1

q

]
(1)

where 2F1 is the Gauss hypergeometric function.
For the function wq

t , 0 < t < 2N , the partial sum Fn,k(xi ,k,n)
is expressed as:

Fn,k(xi ,k,n) = (−2q)mKm(k − i , q, n − i) · xi ,k,n, (2)

with m = s2(t).
We study the asymptotic behavior of Fn,k for n→∞, kn → q.



Let n→∞, and ξ = k−nq√
nq(1−q)

= O(1).

I There is a classical asymptotic expansion of the Krawtchouk
polynomial

Km(k , q, n) = b0Hm(ξ) + O(n−(m+1)/2),

where Hm(x) ≡ (−1)mex
2 dm

dxm e−x
2

is the Hermite polynomial

and b0 = (−1)m
(
pq
2n

)m/2
.

I There are also expansions by N. Temme and J. Lopez (with
asymptotic property)

Km(k , q, n) =
m∑
j=0

bj(ξ)Hm−j(ξ)

For instance, we have

Km(k , q, n) = b0Hm(ξ) + b3(ξ)Hm−3(ξ)
1

n
+ o(n−(m+2)/2)



Limiting curves for the Pascal adic transformation

Theorem

Let P be the Pascal adic transformation of the Lebesgue
probability space (I ,B, µq), N ∈ N, and g ∈ FN be a function
that is not cohomologous to a constant. Then for µq-a.e. x there
exists a stabilizing sequence ln(x) such that the limiting function is
αg ,xT 1

q , where αg ,x ∈ {−1, 1}.



Limiting curves for the Pascal adic transformation

Theorem

Let P be the Pascal adic transformation of the Lebesgue
probability space (I ,B, µq), N ∈ N, and g ∈ FN be a function
that is not cohomologous to a constant. Then for µq-a.e. x there
exists a stabilizing sequence ln(x) such that the limiting function is
αg ,xT 1

q , where αg ,x ∈ {−1, 1}.
Technically, for almost every sequence (n, kn(x)) (in the sense of
the µq measure) using the classical expansion of the Krawtchouk
polynomials, we show that for the functions wq

t with m = s2(t)

Fn,k(xi ,k,n)− xi,k,n
x0,k,n

· Fn,k(x0,k,n) = iqi−1Rn,k + o(Rn,k)

Rn,k = βHm−1(ξ),

where β = β(m, n, k , q), provided ξ is not the root of Hm−1.
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v = k − nq,



Limiting curves for the Pascal adic transformation
Illustration

v = k − nq, ξ = k−nq√
2q(1−q)n

= v√
2q(1−q)n

, m = 4.
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Limiting curves for the Pascal adic transformation
Transition regimes

What if v = O(1)?
αvT 1

q + βvT 2
q
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Smooth limits of limiting curves

We answer the question by É. Janvresse et.al: is there a smooth
curve in the limit?

Figure: Limiting curves observed for the polynomial adic transformations
associated with polynomial p(x) = 1 + x + x2 + · · ·+ xd for (from left to
right): d + 1 = 2, 3, 8, 32 and symmetric measure.



Smooth limits of limiting curves

Statement:

Figure: Limiting curve is parabola.

Question:
Is there a dynamical counterpart (a certain generalization of the
self-similar adic transformations with infinite degree of each
vertex)?
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