The Weyl pseudometric and the Krieger Theorem

Martha Łącka (joint work with Marta Pietrzyk)

31stycznia2017

(日) (四) (코) (코) (코) (코)

The Weyl Pseudometric for \mathbb{Z} -action

 (X, ρ) - a compact metric space such that $diam_{\rho}(X) \leq 1$,

The Weyl Pseudometric on \mathbf{X}^∞

$$D_W(\underline{x}, \underline{z}) = \limsup_{n \to \infty} \frac{1}{n} \sup_k \sum_{i=k}^{k+n-1} \rho(x_i, z_i).$$

The Weyl Pseudometric on X T: $X \rightarrow X$ - a homeomorphism

$$D_W(x,z) = D_W(\{T^j(x)\}_{j\in\mathbb{N}}, \{T^j(z)\}_{j\in\mathbb{N}}).$$

- Introduced by Jacobs and Kanae,
- Studied by Downarowicz, Iwanik, Blanchard, Salo, Törmä and others.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

More General Setting — Amenable Group Action

A dynamical system (X, G) consists of a compact metric space and an action of G on X by homeomorphisms, where G is a countable discrete amenable group.

A sequence $\{F_n\}_{n\in\mathbb{N}}$ of finite subsets of G is a (left) Følner sequence if

$$\lim_{n \to \infty} \frac{|gF_n \triangle F_n|}{|F_n|} = 0 \quad \text{for every } g \in G.$$

Example: \mathbb{Z} , $F_n = \{0, ..., n-1\}$.

We say the group G is amenable, if it admits a (left) Følner sequence.

Examples: \mathbb{Z}^d , every countable abelian group.

The Weyl Pseudometric for an Amenable Group Actions

The Weyl Pseudometric on \mathbf{X}^∞

$$D_{W}(\underline{x},\underline{z}) = \limsup_{n \to \infty} \frac{1}{n} \sup_{k} \sum_{i=k}^{k+n-1} \rho(x_{i},z_{i}).$$

The Weyl Pseudometric on X^G

Fix any Følner sequence $\{H_n\}_{n \in \mathbb{N}}$.

$$\mathrm{D}_{\mathrm{W}}(\underline{\mathrm{x}},\underline{\mathrm{z}}) = \limsup_{\mathrm{n} \to \infty} \frac{1}{|\mathrm{H}_{\mathrm{n}}|} \Biggl(\sup_{\mathrm{g} \in \mathrm{G}} \sum_{\mathrm{f} \in \mathrm{H}_{\mathrm{n}}\mathrm{g}} \rho(\mathrm{x}_{\mathrm{f}},\mathrm{z}_{\mathrm{f}}) \Biggr)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The Weyl Pseudometric for an Amenable Group Actions

Fix any Følner sequence $\{H_n\}_{n\in\mathbb{N}}$. Then for any $\underline{x}, \underline{z} \in X^G$ one has

$$\begin{split} D_{W}(\underline{x},\underline{z}) &= \limsup_{n \to \infty} \left(\sup_{g \in G} \frac{1}{|H_{n}|} \sum_{f \in H_{ng}} \rho(x_{f},z_{f}) \right) = \\ &= \sup_{\mathcal{F}} \limsup_{n \to \infty} \frac{1}{|F_{n}|} \sum_{f \in F_{N}} \rho(x_{f},z_{f}) = \inf_{F \in Fin(G)} \frac{1}{|F|} \sup_{g \in G} \sum_{f \in F} \rho(x_{fg},z_{fg}). \end{split}$$

Moreover, D_{W} is uniformly equivalent to D'_{W} given by
 $D'_{W}(\underline{x},\underline{z}) &= \inf\left(\left\{ \varepsilon > 0 \ : \ \limsup_{N \to \infty} \sup_{g \in G} \frac{1}{|F_{N}|} |\{f \in F_{Ng} \ : \rho(fx,fz) > \varepsilon\}| < \varepsilon \right\} \right). \end{split}$

Entropy

For an open cover \mathcal{U} of the space X denote by $\mathcal{N}(\mathcal{U})$ the minimal cardinality of a subcover of \mathcal{U} . The join of \mathcal{U} with another open cover \mathcal{V} , denoted $\mathcal{U} \lor \mathcal{V}$ is given by

$$\mathcal{U} \lor \mathcal{V} = \{ U \cap V : U \in \mathcal{U}, V \in \mathcal{V} \}.$$

Let $F=\{f_1,\ldots,f_s\}\subset G$ be a finite set. By $\boldsymbol{\mathcal{U}}^F$ we understand the cover

$$\mathcal{U}^{\mathrm{F}} = \bigvee_{\mathrm{f}\in\mathrm{F}}\mathrm{f}^{-1}\mathcal{U} = (\mathrm{f}_{1}^{-1}\mathcal{U}) \vee \ldots \vee (\mathrm{f}_{\mathrm{s}}^{-1}\mathcal{U}).$$

The topological entropy of a system (X, G) with respect to a cover \mathcal{U} is given by

$$\mathrm{h}(\mathrm{X},\mathrm{G},\mathcal{U}):=\limsup_{\mathrm{n}
ightarrow\infty}rac{\log\mathcal{N}ig(\mathcal{U}^{\mathrm{F}_{\mathrm{n}}}ig)}{|\mathrm{F}_{\mathrm{n}}|}.$$

The topological entropy of the action of G is defined as

 $h_{top}(X) = \sup\{h(X,G,\mathcal{U}) \, : \, \mathcal{U} \text{ is an open cover of } X\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

(Semi)continuity of Entropy

Theorem

The function $(X, D_W) \ni x \to h_{top}(\overline{Gx}) \in (\mathbb{R}_+ \cup \{\infty\}, \tau)$ where τ is the natural topology is lower semicontinuous.

Theorem

Let $\mathbf{x} \in \mathcal{A}^{G}$. The function $\mathbf{x} \mapsto \mathbf{h}_{top}(\overline{\mathbf{Gx}})$ is continuous with respect to D_{W} -pseudometric on \mathcal{A}^{G} and usual metric on $[0, \infty)$.

<ロト <四ト <注入 <注下 <注下 <

Besicovitch Pseudometric

The Besicovitch pseudometric on X^G

$$D_{B,\mathcal{F}}(\underline{x}_{G},\underline{x}_{G}') = \limsup_{N \to \infty} \frac{1}{|F_{N}|} \sum_{g \in F_{N}} \rho(x_{g},x_{g}').$$

The Besicovitch pseudometric on (X, G)

$$D_{B,\mathcal{F}}(x,x') = D_{B,\mathcal{F}}(\underline{x}_G,\underline{x'}_G).$$

The Connection Between Weyl and Besicovitch Pseudometric

$$D_W(\underline{x}, \underline{z}) = \sup_{\mathcal{F}} D_{B,\mathcal{F}}(\underline{x}, \underline{z}).$$

Studied by Besicovitch, Aulsander, Fomin, Oxtoby and, more recently, by Blanchard, Downarwicz, Glasner, Garcia-Ramos, Formenti, Kurka, Kwietniak, Oprocha and others...

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Empirical and Distribution Measures

Given a set $F \in Fin(G)$ and a sequence $\underline{x} = \{x_g\}_{g \in G}$ denote by $\mathfrak{m}(\underline{x}, F) \in \mathcal{M}(X)$ the empirical measure of x with respect to F, that is let

$$\mathfrak{m}(\underline{\mathbf{x}}, \mathbf{F}) = \frac{1}{|\mathbf{F}|} \sum_{\mathbf{f} \in \mathbf{F}} \hat{\delta}_{\mathbf{x}_{\mathbf{f}}}.$$

A measure $\mu \in \mathcal{M}(X)$ is a distribution measure for a sequence $\underline{x} \in X^{G}$ if μ is a weak-* limit of some subsequence of $\{\mathfrak{m}(\underline{x}, F_{n})\}_{n=1}^{\infty}$.

The set of all distribution measures of a sequence $\underline{\mathbf{x}}$ (with respect to \mathcal{F}) is denoted by $\hat{\boldsymbol{\omega}}_{\mathcal{F}}(\underline{\mathbf{x}})$.

Properties of $\hat{\omega}_{\mathcal{F}}(\mathbf{x})$ set

- The set $\hat{\omega}_{\mathcal{F}}(\mathbf{x})$ is closed and non-empty.
- If $F_n \subset F_{n+1}$ and $|F_{n+1}|/|F_n| \to 1$ as $n \to \infty$, then $\hat{\omega}_{\mathcal{F}}(x)$ is connected.
- The function

$$(\mathbf{X}^{\mathbf{G}}, \mathbf{D}_{\mathbf{B}}) \ni \underline{\mathbf{x}} \to \hat{\omega}_{\mathcal{F}}(\underline{\mathbf{x}}) \in (2^{\mathcal{M}(\mathbf{X})}, \mathbf{H})$$

is uniformly continuous. Moreover, the modulus of continuity does not depend on the choice of the Følner sequence.

<ロト <四ト <注入 <注下 <注下 <

Simplices of Invariant Measures

Let $\mathcal{M}_{G}(\overline{Gx})$ be the simplex of G-invariant probability measures on \overline{Gx} .

Theorem

For every $x \in X$ one has

$$\mathcal{M}_{\mathrm{G}}(\overline{\mathrm{Gx}}) = \bigcup_{\mathcal{F}} \hat{\omega}_{\mathcal{F}}(\mathrm{x}).$$

Corollary

For every $\varepsilon > 0$ there exists $\delta > 0$ such that if $D_W(x, z) < \delta$, then $H(\mathcal{M}_G(\overline{Gx}), \mathcal{M}_G(\overline{Gz})) < \varepsilon$.

A countable group G is residually finite if there exists a nested sequence $\{H_n\}_{n \in \mathbb{N}}$ of finite index normal subgroups such that

$$\bigcap_{n=0}^{\infty} H_n = \{e\},$$

where $e \in G$ denotes the identity element.

Example: \mathbb{Z}^d .

Toeplitz Sequences

Let \mathcal{A} be a finite set.

To eplitz for \mathbb{Z} -action

A sequence $\underline{x} \in \mathcal{A}^Z$ is called a Toeplitz sequence if for very $k \in \mathbb{Z}$ there exists $p \in \mathbb{N}$ such that

 $\mathbf{x}_{\mathbf{k}} = \mathbf{x}_{\mathbf{k}+\mathbf{jp}}$ for all $\mathbf{j} \in \mathbb{Z}$.

To eplitz Sequences for residually finite group Actions An element $x \in \mathcal{A}^G$ is called a To eplitz sequence if for every $g \in G$ there exists a finite index subgroup $H \subset G$ such that

for every $\gamma \in H$ one has $x_{\gamma g} = x_g$.

Toeplitz Sequences

To eplitz Sequences for $\mathbb{Z}\text{-}\mathrm{action}$

- Introduced by Jacobs and Kanae.
- Studied by Baake, Downarowicz, Gjerde, Iwaniik, Jaeger, Johansen, Lenz, Markley, Paul, Williams and others.
- Using them one can construct strictly ergodic systems with positive entropy or minimal systems which are not uniquely ergodic, they correspond to some class Bratteli-Vershik systems.

Toeplitz Sequences for Amenable Residually Finite Groups

- Studied by Cortez, Downarowicz, Krieger, Petit and others.
- Every metrizable Choquet simplex can be realized as a simplex of invariant measures of some Toeplitz shift.
- Krieger proved that for any number t in [0, log k) there exists a Toeplitz shift x over k-letter alphabet such that the entropy of x is equal to t.

Theorem

The family of Toeplitz sequences is **pathwise connected** with respect to the Weyl pseudometric.

Krieger's Theorem

Let G be a countable amenable residually finite group and \mathcal{A} be a finite set. Then for every number $h \in [0, \log |\mathcal{A}|)$ there exists a Toeplitz sequence $\eta \in \mathcal{A}^{G}$ such that $h_{top}(\overline{G\eta}) = h$.

< □ > < @ > < 注 > < 注 > ... 注