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The Weyl Pseudometric for Z-action

(X, ρ)- a compact metric space such that diamρ(X) ≤ 1,

The Weyl Pseudometric on X∞

DW(x, z) = lim sup
n→∞

1
n

sup
k

k+n−1∑
i=k

ρ(xi, zi).

The Weyl Pseudometric on X

T : X→ X - a homeomorphism

DW(x, z) = DW({Tj(x)}j∈N, {Tj(z)}j∈N).

Introduced by Jacobs and Kanae,

Studied by Downarowicz, Iwanik, Blanchard, Salo, Törmä and
others.



More General Setting — Amenable Group Action

A dynamical system (X,G) consists of a compact metric space and an
action of G on X by homeomorphisms, where G is a countable discrete
amenable group.

A sequence {Fn}n∈N of finite subsets of G is a (left) Følner sequence if

lim
n→∞

|gFn4Fn|
|Fn|

= 0 for every g ∈ G.

Example: Z, Fn = {0, . . . ,n − 1}.

We say the group G is amenable, if it admits a (left) Følner sequence.

Examples: Zd, every countable abelian group.



The Weyl Pseudometric for an Amenable Group Actions

The Weyl Pseudometric on X∞

DW(x, z) = lim sup
n→∞

1
n

sup
k

k+n−1∑
i=k

ρ(xi, zi).

The Weyl Pseudometric on XG

Fix any Følner sequence {Hn}n∈N.

DW(x, z) = lim sup
n→∞

1
|Hn|

sup
g∈G

∑
f∈Hng

ρ(xf , zf)

.



The Weyl Pseudometric for an Amenable Group Actions

Fix any Følner sequence {Hn}n∈N. Then for any x, z ∈ XG one has

DW(x, z) = lim sup
n→∞

sup
g∈G

1
|Hn|

∑
f∈Hng

ρ(xf , zf)

 =
= sup

F

lim sup
n→∞

1
|Fn|

∑
f∈FN

ρ(xf , zf) = inf
F∈Fin(G)

1
|F|

sup
g∈G

∑
f∈F

ρ(xfg, zfg).

Moreover, DW is uniformly equivalent to D′W given by

D′W
(
x, z

)
= inf


ε > 0 : lim sup

N→∞
sup
g∈G

1
|FN|
|{f ∈ FNg : ρ(fx, fz) > ε}| < ε


 .



Entropy

For an open cover U of the space X denote by N(U) the minimal
cardinality of a subcover of U. The join of U with another open cover
V, denoted U ∨V is given by

U ∨V = {U ∩V : U ∈ U, V ∈ V}.

Let F = {f1, . . . , fs} ⊂ G be a finite set. By UF we understand the cover

UF =
∨
f∈F

f−1U = (f−11 U) ∨ . . . ∨ (f−1s U).

The topological entropy of a system (X,G) with respect to a cover U is
given by

h(X,G,U) := lim sup
n→∞

logN
(
UFn

)
|Fn|

.

The topological entropy of the action of G is defined as

htop(X) = sup{h(X,G,U) : U is an open cover of X}.



(Semi)continuity of Entropy

Theorem

The function (X,DW) 3 x→ htop(Gx) ∈ (R+ ∪ {∞}, τ) where τ is the
natural topology is lower semicontinuous.

Theorem

Let x ∈ AG. The function x 7→ htop(Gx) is continuous with respect to
DW-pseudometric on AG and usual metric on [0,∞).



Besicovitch Pseudometric

The Besicovitch pseudometric on XG

DB,F (xG, x
′
G) = lim sup

N→∞

1
|FN|

∑
g∈FN

ρ(xg, x′g).

The Besicovitch pseudometric on (X,G)

DB,F (x, x′) = DB,F (xG, x
′
G).

The Connection Between Weyl and Besicovitch Pseudometric

DW(x, z) = sup
F

DB,F (x, z).

Studied by Besicovitch, Aulsander, Fomin, Oxtoby and, more recently,
by Blanchard, Downarwicz, Glasner, Garcia-Ramos, Formenti, Kurka,
Kwietniak, Oprocha and others...



Empirical and Distribution Measures

Given a set F ∈ Fin(G) and a sequence x = {xg}g∈G denote by
m(x,F) ∈ M(X) the empirical measure of x with respect to F, that is let

m(x,F) =
1
|F|

∑
f∈F

δ̂xf .

A measure µ ∈ M(X) is a distribution measure for a sequence x ∈ XG if
µ is a weak-* limit of some subsequence of {m(x,Fn)}∞n=1.

The set of all distribution measures of a sequence x (with respect to F )
is denoted by ω̂F (x).



Properties of ω̂F (x) set

The set ω̂F (x) is closed and non-empty.

If Fn ⊂ Fn+1 and |Fn+1|/|Fn| → 1 as n→ ∞, then ω̂F (x) is
connected.

The function

(XG,DB) 3 x→ ω̂F (x) ∈ (2M(X),H)

is uniformly continuous. Moreover, the modulus of continuity does
not depend on the choice of the Følner sequence.



Simplices of Invariant Measures

LetMG(Gx) be the simplex of G-invariant probability measures on Gx.

Theorem
For every x ∈ X one has

MG(Gx) =
⋃
F

ω̂F (x).

Corollary

For every ε > 0 there exists δ > 0 such that if DW(x, z) < δ, then
H(MG(Gx),MG(Gz)) < ε.



Residually Finite Groups

A countable group G is residually finite if there exists a nested
sequence {Hn}n∈N of finite index normal subgroups such that

∞⋂
n=0

Hn = {e},

where e ∈ G denotes the identity element.

Example: Zd.



Toeplitz Sequences

Let A be a finite set.

Toeplitz for Z-action

A sequence x ∈ AZ is called a Toeplitz sequence if for very k ∈ Z there
exists p ∈ N such that

xk = xk+jp for all j ∈ Z.

Toeplitz Sequences for residually finite group Actions

An element x ∈ AG is called a Toeplitz sequence if for every g ∈ G
there exists a finite index subgroup H ⊂ G such that

for every γ ∈ H one has xγg = xg.



Toeplitz Sequences

Toeplitz Sequences for Z-action

Introduced by Jacobs and Kanae.

Studied by Baake, Downarowicz, Gjerde, Iwaniik, Jaeger,
Johansen, Lenz, Markley, Paul, Williams and others.

Using them one can construct strictly ergodic systems with
positive entropy or minimal systems which are not uniquely
ergodic, they correspond to some class Bratteli-Vershik systems.

Toeplitz Sequences for Amenable Residually Finite Groups

Studied by Cortez, Downarowicz, Krieger, Petit and others.

Every metrizable Choquet simplex can be realized as a simplex of
invariant measures of some Toeplitz shift.

Krieger proved that for any number t in [0, log k) there exists a
Toeplitz shift x over k-letter alphabet such that the entropy of x is
equal to t.



Krieger’s Theorem

Theorem
The family of Toeplitz sequences is pathwise connected with respect to
the Weyl pseudometric.

Krieger’s Theorem

Let G be a countable amenable residually finite group and A be a
finite set. Then for every number h ∈ [0, log | A |) there exists a Toeplitz
sequence η ∈ AG such that htop(Gη) = h.


