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Two related questions
For a class of systems,
» How hard is computing the topological entropy?
» What are the possible values of the topological entropy?
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A subshift (or tiling space) is a set of configurations defined by a set of
forbidden patterns 7 C A*.

It is of finite type if F is finite.

Example.
d=1, F={11} = {Hl}
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Some more definitions

L,(X): square patterns of side length n appearing in X.
Entropy

log #Ln(X)

n9

Ny hrop(X).

Topological mixing
¥ is f-mixing if any two patterns in X of diameter d can be “glued together”
at any distance > f(d) into another pattern in X.
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A few examples (in 1D)

F #L, hiop mixing rate
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Mixing in higher dimension

v
Topological
mixing > f(d)
u
Block v
gluing u > f(d)




Computability

Computability of real numbers
A real number « is computable if there is a computable function n — «,
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Computability of real numbers

A real number « is computable if there is a computable function n — «,
such that
| —ap] <277

« is upper-semi-computable if instead:

Qp \( Q.

Computing the entropy
If we can compute (or approximate from above) the value of #L,(X), then
hiop(X) is upper-semi-computable.

Proof:
log #L,(X)
nd

N hiop(E).
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One-dimensional subshifts of finite type

The entropy of 1D SFT is computable (computing the dominant eigenvalue of
a matrix).

Lind 1974

Entropies of O(1)-mixing 1D SFT are exactly reals of the form qlog p, where
g = 1 and pis a Perron number.
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In particular, entropy of dD SFT is not computable.
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Higher-dimensional subshifts of finite type
Hochman and Meyerovitch 2007
Entropies of dD SFT are the upper-semi-computable real numbers.
In particular, entropy of dD SFT is not computable.
Pavlov and Schraudner, 2015

Entropy of block-gluing 2D SFT is exptime-computable, and there is a partial
characterisation.

Z f(gznn)i—FOO

computable ’
(?)
exptime (d = 2)

mixing
no _ high
upper-semi-comp. ..

(all) ..,.....?Fock-glumg



General subshifts

Gangloff, H., Rojas
Any real number is the entropy of some O(1)-mixing subshift.
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Where did the computability go?
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A threshold

Gangloff, H., Rojas

Assume that > ’(22:) f + o0. The entropies of O(f)-mixing subshifts with

computable

. real numbers.
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decidable language are the
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Conclusion

» Fixing the computational complexity of the language unveils the effect of

mixing properties;

» Can we complete the SFT picture (d > 2) ?
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