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Topological entropy

John Milnor, 2002:

"Given an explicit dynamical system and ε > 0, is it possible in principle to
compute the associated entropy [...] with a maximum error of ε?"

Not computable:

I cellular automata
I Turing machines
I C∞ interval maps
I smooth diffeomorphisms (d > 2)

Computable: (hypotheses missing)

I positively expansive CA
I one-tape Turing machines
I piecewise monotonous int. maps
I smooth diffeomorphisms (d ≤ 2).

Two related questions
For a class of systems,

I How hard is computing the topological entropy?
I What are the possible values of the topological entropy?
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Subshifts / Tiling spaces

A a finite alphabet ({0, 1} = {�,�});
A∗ the (finite) patterns;

AZd
the configurations (infinite in all directions).

A subshift (or tiling space) is a set of configurations defined by a set of
forbidden patterns F ⊂ A∗.

It is of finite type if F is finite.

Example.
d = 1, F = {11} = {��}

. . . ∈ Σ

. . . /∈ Σ
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Some more definitions

Ln(Σ): square patterns of side length n appearing in Σ.

Entropy

log #Ln(Σ)

nd
↘ htop(Σ).

Topological mixing
Σ is f -mixing if any two patterns in Σ of diameter d can be “glued together”
at any distance ≥ f (d) into another pattern in Σ.
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A few examples (in 1D)

F #Ln htop mixing rate

∅ 2n 1 0

{11} ' ϕn logϕ 1
{00, 11} 2 0 ×

{01k 0} :
√

k /∈ N ? 0.815± 0.4
√

n

0 1
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Mixing in higher dimension

≥ f (d)

u

v

Topological
mixing

u ≥ f (d)

vBlock
gluing



Computability

Computability of real numbers
A real number α is computable if there is a computable function n 7→ αn

such that
|α− αn| ≤ 2−n;

α is upper-semi-computable if instead:

αn ↘ α.

Computing the entropy
If we can compute (or approximate from above) the value of #Ln(Σ), then
htop(Σ) is upper-semi-computable.

Proof:
log #Ln(Σ)

nd
↘ htop(Σ).
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One-dimensional subshifts of finite type

The entropy of 1D SFT is computable (computing the dominant eigenvalue of
a matrix).

Lind 1974
Entropies of

O(1)-mixing

1D SFT are exactly reals of the form q log p, where
and p is a Perron number.

mixing rate

no constant
rate

computable

(Perron numbers +)
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Higher-dimensional subshifts of finite type

Hochman and Meyerovitch 2007
Entropies of dD SFT are the upper-semi-computable real numbers.

In particular, entropy of dD SFT is not computable.

Pavlov and Schraudner, 2015
Entropy of block-gluing 2D SFT is exptime-computable, and there is a partial
characterisation.
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General subshifts

Gangloff, H., Rojas
Any real number is the entropy of some O(1)-mixing subshift.

mixing / block-gluing

no constant
rate

all

Compare Grillenberger 73.

Where did the computability go?
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Computational complexity of the language

Deciding the language

Input w ∈ A∗

Output w ∈ L(Σ)?

We consider subshifts with decidable language.
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Simonsen 06, Hertling and Spandl 07
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A threshold

Gangloff, H., Rojas

Assume that
∑ f (2n)

2n

<
=

+∞. The entropies of O(f )-mixing subshifts with

decidable language are the
computable

upper-semi-computable
real numbers.
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Conclusion

I Fixing the computational complexity of the language unveils the effect of
mixing properties;

I Can we complete the SFT picture (d ≥ 2) ?
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