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• Ulam and von Neumann (Bull. Math. Soc., 1947)
Logistic map: T (x) = 4x(1− x), 0 ≤ x ≤ 1
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Given an initial value x = T0(x),

Tn(x) = T (Tn−1(x)) for n = 1,2, · · · .
The sequence (Tn(x))∞n=0 is a good candidate for the pseudo-random
numbers.



Ulam and von Neumann’s idea requires handling real numbers

for practice. On the contrary, computers can only deal with float-

ing point numbers . Hence we need ergodic theory for a transfor-

mation from a finite set onto itself to understand the behaviour

of the iterates of one-dimensional transformations implemented

in computers.

� �
No way is known to give a good theoretical model that tells

us characteristics of the execution time for floating point

numbers . ( D. Knuth, The Art of Computer Programming,

vol. 2, 3rd ed., Addison-Wesley, ’97)� �



Discretized Bernoulli Transformations

⃝ Cryptosystems

• Permutation Cipher Based on Discretized Unimodal Bernoulli

Transformations (N. Masuda and K. Aihara, Trans. of IEICE,

’99 (in Japanese))

⃝ Spreading Seq.s for SSMA Communication Systems

• Maximal-Period Sequences Based on Discretized Bernoulli

Transformations (A. Tsuneda, Y. Kuga, and T. Inoue,

IEICE Trans. on Funda., 2002)

A Generalization of de Bruijn Sequences



Markov Partition

We use |E| to denote the cardinality of a set E.

Definition 1 Let T : [0,1) → [0,1). Let P be a partition of

[0,1) given by the point 0 = a0 < a1 < · · · < a|P| = 1. For

i = 1, · · · , |P|, let Ii = (ai−1, ai) and denote the restriction of T to

Ii by T |Ii. If T |Ii is a homeomorphism from Ii onto the interior of

some connected union of the closures of intervals of P, then T is

said to be Markov. The partition P = {Ii}
|P|
i=1 is referred to as a

Markov partition with respect to T .



An example of discretized dyadic transformations (2m = 12):

σ =

(
I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12
I2 I3 I5 I7 I9 I12 I1 I4 I6 I8 I10 I11

)
.
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σ determines a full-length sequence 000010111101.
If 2m = 2n, then the full-length sequence is called the de Bruijn
sequence.



Discretized Golden Mean Transformations

σ =

(
I1 I2 I3 I4 I5 I6 I7 I8 I9 I11 I12
I2 I3 I4 I7 I8 I9 I11 I12 I1 I5 I6

)
.

Note that I10 and I13 are excluded from the Markov partion.
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σ determines a full-length sequence 00000100101. [F. Enomoto
and S. Ito, Workshop Number Theory and Ergodic Theory, 2004)]



Graph Represention of the Markov
Transformation
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For an irreducible aperiodic Markov transformation T , given a

Markov partition P with respect to T , corresponding each subin-

terval I ∈ P to one edge e(I), we obtain the set A of edges.



Eulerian Subgraph Spanning G

A directed graph H = (W,B) is said to be a subgraph of the

directed graph G = (V,A) if W ⊂ V and B ⊂ A. In this case we

write H ⊂ G. The directed graph H is called a spanning subgraph

of G if W = V. Furthermore, if H is Eulerian, it is called

Eulerian subgraph spanning G . We are interested in the span-

ning Eulerian subgraph of G with maximal number of edges .
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The spanning Eulerian subgraph with maximal number of edges



� �
Full-length sequences based on the discretized Markov transfor-

mation are exactly Eulerian circuits in H, whose length is given

by |B|.� �



Preliminaries

Let Σ be a finite alphabet. The full Σ-shift is denoted by

ΣZ = {x = (xi)i∈Z : ∀i ∈ Z, xi ∈ Σ}

which is endowed with the product topology arising from the dis-

crete topology on Σ. The shift transformation σ : ΣZ → ΣZ is

defined by

σ((xi)i∈Z) = (xi+1)i∈Z.

The closed shift-invariant subsets of ΣZ are called subshifts. For

a subshift X, we use σX to denote the shift transformation on X,

which is the restriction to X of σ on ΣZ. For simplicity, we shall

write σ : X → X rather than σX.



We call elements u = u1u2 · · ·un ∈ Σn blocks over Σ of length

n (n ≥ 1). We use Σ∗ to denote the collection of all blocks over

Σ and the empty block ϵ. For a subshift X, we use Ln(X) to

denote the collection of all n-blocks appearing in points in X.

The language of X is the collection L(X) =
∪∞
n=0Ln(X), where

L0(X) = {ϵ}.

Definition 2 The topological entropy of a subshift X is defined

by

h(X) = lim
n→∞

1

n
log |Ln(X)|.

We use |E| to denote the cardinality of a set E.



Higher Edge Graph

Definition 3 Let G be a graph. For n ≥ 2 we define the nth

higher edge graph G[n] of G to have vertex set Ln−1(XAG
) and

to have edge set containing exactly one edge from e1e2 · · · en−1

to f1f2 · · · fn−1 whenever e2e3 · · · en−1 = f1f2 · · · fn−2 (or t(e1) =

i(f1) if n = 2), and none otherwise. The edge is named

e1e2e3 · · · en−1fn−1 = e1f1f2 · · · fn−1.

For n = 1 we set G[1] = G.



Discretized Dyadic Transformations

Let T : [0,1] → [0,1] be the dyadic transformation:

T (x) = 2x (mod 1), x ∈ [0,1].

If we take a Markov partition of [0,1] given by the point 0 <

1/2 < 1, then we obtain the graph G representing the dyadic

transformation.

/.-,()*+0
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1__ G = G[1] = H1.
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G = G[1] = H1.
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G[2] = H2.

For each n (≥ 1), we obtain G[n] = ({0,1}n−1, {0,1}n). Since G[n]

is Eulerian, we have Hn = G[n] for each n. The Eulerian circuits

in G[n] are called the de Bruijn sequences of length 2n because of

the following theorem. For the same reason, G[n] is called the de

Bruijn graph.

Theorem 1 (de Bruijn, 1946, Flye Sainte-Marie, 1894) For each

positive integer n, there are exactly 22
n−1−n Eulerian circuits in

G[n].



The Topological Entropy of Discretized
Markov Transformation

Let G be the graph representing the Markov transformation. Then

we obtain a sequence (G[n])∞n=1 of higher edge graphs of G. For

each n ≥ 1, we use Hn = (Ln−1(XAG
),Bn) to denote the Eulerian

subgraph spanning G[n] with maximal number of edges, each of

which leads to a discretized Markov transformation T̂n.

We use νn to denote the number of the full-length sequence in

Hn. Recall that the length is given by |Bn|.

Definition 4 The topological entropy of the discretized Markov

transformation T = (T̂n)∞n=1 of T is defined by

hT = lim
n→∞

1

|Bn|
log νn.



Example 1 The topological entropy of the discretized dyadic

transformation T is given by

hT =
1

2
log2.

Remark 1 Since it is also shown in [de Bruijn, 1946] and [Flye

Sainte-Marie, 1894] that, for each n (≥ 1), there are exactly

{(k − 1)!}k
n−1

kk
n−1−n

Eulerian circuits of length kn in

G[n] = ({0,1, · · · , k − 1}n−1, {0,1, · · · , k − 1}n),

the topological entropy of the discretized k-adic transformation

is given by

1

k
log(k!).



Discretized Golden Mean Transformation

Let T : [0,1] → [0,1] be the golden mean transformation:

T (x) = βx (mod 1), x ∈ [0,1],

where β is the golden mean number 1+
√
5

2 .
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G[2] = H2.

In view of G[2], the set of forbidden blocks is given by F = {11}.



For each n (≥ 2), we obtain G[n] = (Ln−1(XF),Ln(XF)) and the
Eulerian subgraph Hn = (Ln−1(XF),Bn) spanning G[n] with max-
imal number of edges. Although G[2] is Eulerian, which implies
H2 = G[2], G[n] is not always Eulerian for n (≥ 3). In fact, H3 is a
proper subgraph of G[3], in symbols H3 $ G[3]. We observed that
Hn $ G[n] for any n (≥ 3).

Noting that the sequence (|Bn|)∞n=2 is the Fibonacci numbers de-
fined by the recurrence relation |Bn| = |Bn−1|+ |Bn−2| (≥ 4) with
|B2| = 3 and |B3| = 4, we obtain

|Bn| = βn + β
n

for n ≥ 2, (1)

where β = 1−
√
5

2 .

The topological entropy of the discretized golden mean transfor-
mation is given by

Theorem 2

lim
n→∞

1

|Bn|
log νn =

1

β(β − β)
log2.



A Class of Markov Transformations Associated
with Greedy β-Expansion

Now we are in the position to consider the discretized Markov

β-transformations with the alphabet Σ = {0,1, · · · , k − 1} (k ≥ 2)

and the set F = {(k − 1)c, · · · , (k − 1)(k − 1)} (1 ≤ c ≤ k − 1) of

(k − c) forbidden blocks. Setting c1 = k − 1 and c = c2, β is the

positive solution of t2 − c1t− c2 = 0.
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Generally we have

Theorem 3

lim
n→∞

1

|Bn|
log νn =

c2
β(β − β)

log(k!)

+
β − c2

β(β − β)
log{(k − 1)!}+

1

β(β − β)
log(c2!).



Variational Principle

Definition 5 If λ is the Perron-Frobenius eigenvalue of A and

(u0, · · · , u|Σ|−1) is a strictly positive left eigenvector and (v0, · · · , v|Σ|−1)

is a strictly positive right eigenvector with
∑|Σ|−1

i=0 uivi = 1, then

we obtain a Markov measure given by a probability vector p =

(p0, · · · , p|Σ|−1) and a stochastic matrix P = (pi,j) where

pi = uivi and pi,j =
ai,jvj

λvi
.

We call this measure the Parry measure for σ : XA → XA.

We obtain

−
∑
i,j

pipi,j log pi,j = logλ.

The left hand side is the Shannon entropy for a Markov chain given

by (p, P ) while the right hand side is the topological entropy of

σ : XA → XA.



Correlational Properties of the de Bruijn
Sequences

Definition 6 The cross-correlation function of time delay ℓ for

the sequences X = (Xi)
N−1
i=0 and Y = (Yi)

N−1
i=0 over Σ = {0,1, · · · , k−

1} (k ≥ 2) is defined by

RN(ℓ;X,Y ) =
N−1∑
i=0

exp
(
Xi

k
2π

√
−1

)
exp

(
−
Yi+ℓ ( mod N)

k
2π

√
−1

)
,

where ℓ = 0,1, · · · , N−1 and, for integers a and b (≥ 1), a ( mod b)

denotes the least residue of a to modulus b. The normalized cross-

correlation function of time delay ℓ for the sequences X and Y is

defined by

rN(ℓ;X,Y ) =
1

N
RN(ℓ;X,Y ).

If X = Y , we call RN(ℓ;X,X) and rN(ℓ;X,X) the auto-correlation

function and the normalized auto-correlation function, and simply

denote them by RN(ℓ;X) and rN(ℓ;X), respectively.



By the definition, we immediately see the following.

Remark 2 For any X, we have

rN(0;X) = 1.



The following basic properties of the normalized auto-correlation

functions for the de Bruijn sequences are well known [Zhang &

Chen, 1989].

Theorem 4 Let X and Y be the de Bruijn sequences of length

N = 2n (n ≥ 1). Then we have

i)
N−1∑
ℓ=0

rN(ℓ;X,Y ) = 0;

ii) rN(ℓ;X) = 0 for 1 ≤ ℓ ≤ n− 1.

(Zero Correlation Zone (ZCZ))

Observation 1 If (Zn)∞n=0 is a sequence of independent and iden-

tically distributed (i.i.d.) random variables over {1,−1} with uni-

form distributions, Theorem 4 ii) implies

rN(ℓ;X) = E[Z0Zℓ] for 0 ≤ ℓ ≤ n− 1.



Correlational Properties of the the Full-Length
Sequences Based on the Discretized Golden

Mean Transformation

In virtue of symbolic analysis of Ln(XF) and Bn, we obtain

Theorem 5 Let X and Y be full-length sequences based on the

discretized golden mean transformation of length |Bn|. Then we

obtain
|Bn|−1∑
ℓ=0

r|Bn|(ℓ;X,Y ) =
(βn − β

n
)2

(β − β)2(βn + β
n
)
.

Asymptotically, we obtain

Remark 3

lim
n→∞

1

|Bn|

|Bn|−1∑
ℓ=0

r|Bn|(ℓ;X,Y ) =
1

(β − β)2
.



Moreover, we obtain

Theorem 6 Let X be a full-length sequence based on the dis-

cretized golden mean transformation of length |Bn|. Then for

1 ≤ ℓ ≤ n− 1, we obtain

r|Bn|(ℓ;X) =
1

(β − β)2


1+ 4

(
β

β

)ℓ
·
1+

(
β

β

)n−2ℓ

1+

(
β

β

)n

.



On the other hand, for the stationary Markov process (Zn)∞n=0

over {1,−1} with the transition matrix

( 1
β

1
β2

1 0

)
, we obtain

E[Z0Zℓ] =
1

(β − β)2

1+ 4

(
β

β

)ℓ for ℓ ≥ 0. (2)

For a random variable X, we use E[X] to denote the expected

value of X.



Discussions

Now let us estimate the error of the normalized auto-correlation

function, which is originated from the discretization of the under-

lying transformations. In view of Theorem 6, (2) leads to

Observation 2

r|Bn|(ℓ;X)− E[Z0Zℓ] =


(
β

β

)ℓ
−
(
β

β

)ℓ ·

(
β

β

)n

1+

(
β

β

)n (3)

and

lim
n→∞ r|Bn|(ℓ;X) = E[Z0Zℓ].



The equation (3) implies

r|Bn|(ℓ;X) = E[Z0Zℓ] +O

((
β

β

)n)
, (4)

where O is the big O notation from the Landau symbol.

The error O

((
β
β

)n)
can be regarded as coming from the dis-

cretization of the underlying β-transformation.

It is noteworthy that (4) holds even for the de Bruijn sequences

in the following sense. If the underlying transformation is the

dyadic transformation, we have β = 2 and β = 0. Thus we obtain

O

((
β
β

)2n)
= 0 for the de Bruijn sequences.

In view of Theorem 4 ii) together with this fact, (4) holds for the

de Bruijn sequences if (Zn)∞n=0 is a sequence of independent and

identically distributed (i.i.d.) random variables over {1,−1} with

uniform distributions.



Full-Length Sequences Based on the
Discretized Markov β-Transformations

We consider the discretized Markov β-transformations with the

alphabet Σ = {0,1, · · · , k− 1} and the set F = {(k− 1)(k− 1)} of

forbidden blocks (k ≥ 2).

For Σ = {0,1,2} and F = {22}, as the underlying transformation,

we have the β-transformation with β = 1+
√
3.

0 11 2

1

β β

1
β

2
β

0 1 2



k-Phase Signals
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E[Z0Zℓ] =
1

(k − 1)2(β − β)2

{β + (k − 1)β
}
+ (k − 1)k2

(
β

β

)ℓ
for ℓ ≥ 0.



By using exactly the same manner as above, we generally obtain

Theorem 7

|Bn|−1∑
ℓ=0

r|Bn|(ℓ;X,Y ) =
(βn − β

n
)2

(k − 1)2(β − β)2(βn + β
n
)
.

Asymptotically, we obtain

Remark 4

lim
n→∞

|Bn|−1∑
ℓ=0

1

|Bn|
r|Bn|(ℓ;X,Y ) =

1

(k − 1)2(β − β)2
.



Moreover, we obtain

Theorem 8 Let X be a full-length sequence based on the dis-

cretized Markov β-transformation of length |Bn| with with the

alphabet Σ = {0,1, · · · , k− 1} and the set F = {(k− 1)(k− 1)} of

forbidden blocks. Then for 1 ≤ ℓ ≤ n− 1, we obtain

r|Bn|(ℓ;X) =
1

(k − 1)2(β − β)2

{β + (k − 1)β
}

+ (k − 1)k2
(
β

β

)ℓ
·
1+

(
β

β

)n−2ℓ

1+

(
β

β

)n
.

This implies

r|Bn|(ℓ;X) = E[Z0Zℓ] +O

((
β

β

)n)
.



Optimum Binary Spreading Sequences of
Markov Chains
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experimental results

experimental results

theoretical estimations

{1,−1}-valued Markov chains with

E[Zn] = 0 and E[Z0Zℓ] = (−2+
√
3)ℓ, ℓ ≥ 0.



We consider the Markov β-transformations with the alphabet Σ =

{0,1,2} and the set F = {22} of forbidden blocks. Then we have

the β-transformation with β = 1+
√
3.

0 11 2

1

β β

1
β

2
β

0 1 2



Design of Simple Functions
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-1 11

2
β2

Θ(x) = 1
[0, 2

β2
)
(x)− 1

[, 2
β2

,2β)
(x) + 1

[2β ,1]
(x).

E[Zn] = 0, (uniform distribution)

and

E[Z0Zℓ] = (−2+
√
3)ℓ, ℓ ≥ 0, negative correlation as desired!



Experimental Results

n length # of seq.s # of seq.s w/ uniform dist.
2 8 12 6
3 20 1728 945

Example 2 For the order n = 3, we have

00010020110121021112 → 11101011001010010001,

where in the right hand side, we use 0 to denote −1 for simplicity.
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Theorem 9 For 1 ≤ ℓ ≤ n− 1, we obtain

r|Bn|(ℓ;X) = (−2+
√
3)ℓ +


(
β

β

)ℓ
−
(
β

β

)ℓ ·

(
β

β

)n

1+

(
β

β

)n .

This implies

r|Bn|(ℓ;X) = E[Z0Zℓ] +O

((
β

β

)n)
.



Summary

In this reserch, we first obtained the topological entropy of the
discretized golden mean transformation. We also generalized this
result and gave the topological entropy of the discretized Markov
β-transformations with the alphabet Σ = {0,1, · · · , k−1} and the
set F = {(k − 1)c, · · · , (k − 1)(k − 1)} (1 ≤ c ≤ k − 1) of (k − c)
forbidden blocks.

In view of basic properties of the normalized auto-correlation func-
tions for the de Bruijn sequences that can be regarded as the full-
length sequences based on the discretized dyadic transformation,
we obtained correlational properties of the full-length sequences
based on the discretized golden mean transformation.

We generalized this result and gave the correlational properties
of the discretized Markov β-transformations with the alphabet
Σ = {0,1, · · · , k−1} and the set F = {(k−1)(k−1)} of forbidden
blocks.

We also applied the generalized result to evaluate the auto-correlation
function for the optimum binary spreading sequences of Markov
chains based on discretized β-transformations, where β = 1+

√
3.


