Combinatorics on Words, Calculability, Automata

The topological entropy and correlational properties of the discretized Markov β-transformations and their applications

Hiroshi FUJISAKI
Kanazawa University

Jan. 31, 2017

- Ulam and von Neumann (Bull. Math. Soc., 1947)

Logistic map: $T(x)=4 x(1-x), 0 \leq x \leq 1$

Given an initial value $x=T^{0}(x)$,

$$
T^{n}(x)=T\left(T^{n-1}(x)\right) \quad \text { for } \quad n=1,2, \cdots
$$

The sequence $\left(T^{n}(x)\right)_{n=0}^{\infty}$ is a good candidate for the pseudo-random numbers.

Ulam and von Neumann's idea requires handling real numbers for practice. On the contrary, computers can only deal with floating point numbers. Hence we need ergodic theory for a transformation from a finite set onto itself to understand the behaviour of the iterates of one-dimensional transformations implemented in computers.

> No way is known to give a good theoretical model that tells us characteristics of the execution time for floating point numbers. (D. Knuth, The Art of Computer Programming, vol. 2, 3rd ed., Addison-Wesley, '97)

Discretized Bernoulli Transformations

Cryptosystems- Permutation Cipher Based on Discretized Unimodal Bernoulli Transformations (N. Masuda and K. Aihara, Trans. of IEICE, '99 (in Japanese))Spreading Seq.s for SSMA Communication Systems
- Maximal-Period Sequences Based on Discretized Bernoulli Transformations (A. Tsuneda, Y. Kuga, and T. Inoue, IEICE Trans. on Funda., 2002)

A Generalization of de Bruijn Sequences

Markov Partition

We use $|E|$ to denote the cardinality of a set E.
Definition 1 Let $T:[0,1) \rightarrow[0,1)$. Let \mathcal{P} be a partition of $[0,1)$ given by the point $0=a_{0}<a_{1}<\cdots<a_{|\mathcal{P}|}=1$. For $i=1, \cdots,|\mathcal{P}|$, let $I_{i}=\left(a_{i-1}, a_{i}\right)$ and denote the restriction of T to I_{i} by $\left.T\right|_{I_{i}}$. If $\left.T\right|_{I_{i}}$ is a homeomorphism from I_{i} onto the interior of some connected union of the closures of intervals of \mathcal{P}, then T is said to be Markov. The partition $\mathcal{P}=\left\{I_{i}\right\}_{i=1}^{|\mathcal{P}|}$ is referred to as a Markov partition with respect to T.

An example of discretized dyadic transformations $(2 m=12)$:

$$
\sigma=\left(\begin{array}{cccccccccccc}
I_{1} & I_{2} & I_{3} & I_{4} & I_{5} & I_{6} & I_{7} & I_{8} & I_{9} & I_{10} & I_{11} & I_{12} \\
I_{2} & I_{3} & I_{5} & I_{7} & I_{9} & I_{12} & I_{1} & I_{4} & I_{6} & I_{8} & I_{10} & I_{11}
\end{array}\right)
$$

σ determines a full-length sequence 000010111101.
If $2 m=2^{n}$, then the full-length sequence is called the de Bruijn sequence.

Discretized Golden Mean Transformations

$$
\sigma=\left(\begin{array}{ccccccccccc}
I_{1} & I_{2} & I_{3} & I_{4} & I_{5} & I_{6} & I_{7} & I_{8} & I_{9} & I_{11} & I_{12} \\
I_{2} & I_{3} & I_{4} & I_{7} & I_{8} & I_{9} & I_{11} & I_{12} & I_{1} & I_{5} & I_{6}
\end{array}\right)
$$

Note that I_{10} and I_{13} are excluded from the Markov partion.

σ determines a full-length sequence 00000100101. [F. Enomoto and S. Ito, Workshop Number Theory and Ergodic Theory, 2004)]

Graph Represention of the Markov

 Transformation

For an irreducible aperiodic Markov transformation T, given a Markov partition \mathcal{P} with respect to T, corresponding each subinterval $I \in \mathcal{P}$ to one edge $e(I)$, we obtain the set \mathcal{A} of edges.

A directed graph $H=(\mathcal{W}, \mathcal{B})$ is said to be a subgraph of the directed graph $G=(\mathcal{V}, \mathcal{A})$ if $\mathcal{W} \subset \mathcal{V}$ and $\mathcal{B} \subset \mathcal{A}$. In this case we write $H \subset G$. The directed graph H is called a spanning subgraph of G if $\mathcal{W}=\mathcal{V}$. Furthermore, if H is Eulerian, it is called Eulerian subgraph spanning G. We are interested in the spanning Eulerian subgraph of G with maximal number of edges.

The spanning Eulerian subgraph with maximal number of edges

Full-length sequences based on the discretized Markov transformation are exactly Eulerian circuits in H, whose length is given by $|\mathcal{B}|$.

Preliminaries

Let Σ be a finite alphabet. The full Σ-shift is denoted by

$$
\Sigma^{\mathbb{Z}}=\left\{x=\left(x_{i}\right)_{i \in \mathbb{Z}}: \forall i \in \mathbb{Z}, x_{i} \in \Sigma\right\}
$$

which is endowed with the product topology arising from the discrete topology on Σ. The shift transformation $\sigma: \Sigma^{\mathbb{Z}} \rightarrow \Sigma^{\mathbb{Z}}$ is defined by

$$
\sigma\left(\left(x_{i}\right)_{i \in \mathbb{Z}}\right)=\left(x_{i+1}\right)_{i \in \mathbb{Z}}
$$

The closed shift-invariant subsets of $\Sigma^{\mathbb{Z}}$ are called subshifts. For a subshift X, we use σ_{X} to denote the shift transformation on X, which is the restriction to X of σ on $\Sigma^{\mathbb{Z}}$. For simplicity, we shall write $\sigma: X \rightarrow X$ rather than σ_{X}.

We call elements $u=u_{1} u_{2} \cdots u_{n} \in \Sigma^{n}$ blocks over Σ of length $n(n \geq 1)$. We use Σ^{*} to denote the collection of all blocks over Σ and the empty block ϵ. For a subshift X, we use $\mathcal{L}_{n}(X)$ to denote the collection of all n-blocks appearing in points in X. The language of X is the collection $\mathcal{L}(X)=\cup_{n=0}^{\infty} \mathcal{L}_{n}(X)$, where $\mathcal{L}_{0}(X)=\{\epsilon\}$.

Definition 2 The topological entropy of a subshift X is defined by

$$
h(X)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\mathcal{L}_{n}(X)\right| .
$$

We use $|E|$ to denote the cardinality of a set E.

Definition 3 Let G be a graph. For $n \geq 2$ we define the nth higher edge graph $G^{[n]}$ of G to have vertex set $\mathcal{L}_{n-1}\left(X_{A_{G}}\right)$ and to have edge set containing exactly one edge from $e_{1} e_{2} \cdots e_{n-1}$ to $f_{1} f_{2} \cdots f_{n-1}$ whenever $e_{2} e_{3} \cdots e_{n-1}=f_{1} f_{2} \cdots f_{n-2}$ (or $\mathbf{t}\left(e_{1}\right)=$ $\mathbf{i}\left(f_{1}\right)$ if $n=2$), and none otherwise. The edge is named

$$
e_{1} e_{2} e_{3} \cdots e_{n-1} f_{n-1}=e_{1} f_{1} f_{2} \cdots f_{n-1} .
$$

For $n=1$ we set $G^{[1]}=G$.

Let $T:[0,1] \rightarrow[0,1]$ be the dyadic transformation:

$$
T(x)=2 x(\bmod 1), x \in[0,1] .
$$

If we take a Markov partition of $[0,1]$ given by the point $0<$ $1 / 2<1$, then we obtain the graph G representing the dyadic transformation.

$$
\mathrm{o} \text { CO } 1 \quad G=G^{[1]}=H_{1} \text {. }
$$

$$
G=G^{[1]}=H_{1} .
$$

$$
G^{[2]}=H_{2} .
$$

For each $n(\geq 1)$, we obtain $G^{[n]}=\left(\{0,1\}^{n-1},\{0,1\}^{n}\right)$. Since $G^{[n]}$ is Eulerian, we have $H_{n}=G^{[n]}$ for each n. The Eulerian circuits in $G^{[n]}$ are called the de Bruijn sequences of length 2^{n} because of the following theorem. For the same reason, $G^{[n]}$ is called the de Bruijn graph.

Theorem 1 (de Bruijn, 1946, Flye Sainte-Marie, 1894) For each positive integer n, there are exactly $2^{2^{n-1}-n}$ Eulerian circuits in $G^{[n]}$.

The Topological Entropy of Discretized Markov Transformation

Let G be the graph representing the Markov transformation. Then we obtain a sequence $\left(G^{[n]}\right)_{n=1}^{\infty}$ of higher edge graphs of G. For each $n \geq 1$, we use $H_{n}=\left(\mathcal{L}_{n-1}\left(X_{A_{G}}\right), \mathcal{B}_{n}\right)$ to denote the Eulerian subgraph spanning $G^{[n]}$ with maximal number of edges, each of which leads to a discretized Markov transformation \widehat{T}_{n}.

We use ν_{n} to denote the number of the full-length sequence in H_{n}. Recall that the length is given by $\left|\mathcal{B}_{n}\right|$.

Definition 4 The topological entropy of the discretized Markov transformation $\mathcal{T}=\left(\widehat{T}_{n}\right)_{n=1}^{\infty}$ of T is defined by

$$
h_{\mathcal{T}}=\lim _{n \rightarrow \infty} \frac{1}{\left|\mathcal{B}_{n}\right|} \log \nu_{n} .
$$

Example 1 The topological entropy of the discretized dyadic transformation \mathcal{T} is given by

$$
h_{\mathcal{T}}=\frac{1}{2} \log 2
$$

Remark 1 Since it is also shown in [de Bruijn, 1946] and [Flye Sainte-Marie, 1894] that, for each $n(\geq 1)$, there are exactly

$$
\{(k-1)!\}^{k^{n-1}} k^{k^{n-1}-n}
$$

Eulerian circuits of length k^{n} in

$$
G^{[n]}=\left(\{0,1, \cdots, k-1\}^{n-1},\{0,1, \cdots, k-1\}^{n}\right)
$$

the topological entropy of the discretized k-adic transformation is given by

$$
\frac{1}{k} \log (k!)
$$

Let $T:[0,1] \rightarrow[0,1]$ be the golden mean transformation:

$$
T(x)=\beta x \quad(\bmod 1), \quad x \in[0,1]
$$

where β is the golden mean number $\frac{1+\sqrt{5}}{2}$.

In view of $G^{[2]}$, the set of forbidden blocks is given by $\mathcal{F}=\{11\}$.

For each $n(\geq 2)$, we obtain $G^{[n]}=\left(\mathcal{L}_{n-1}\left(X_{\mathcal{F}}\right), \mathcal{L}_{n}\left(X_{\mathcal{F}}\right)\right)$ and the Eulerian subgraph $H_{n}=\left(\mathcal{L}_{n-1}\left(X_{\mathcal{F}}\right), \mathcal{B}_{n}\right)$ spanning $G^{[n]}$ with maximal number of edges. Although $G^{[2]}$ is Eulerian, which implies $H_{2}=G^{[2]}, G^{[n]}$ is not always Eulerian for $n(\geq 3)$. In fact, H_{3} is a proper subgraph of $G^{[3]}$, in symbols $H_{3} \varsubsetneqq G^{[3]}$. We observed that $H_{n} \varsubsetneqq G^{[n]}$ for any $n(\geq 3)$.

Noting that the sequence $\left(\left|\mathcal{B}_{n}\right|\right)_{n=2}^{\infty}$ is the Fibonacci numbers defined by the recurrence relation $\left|\mathcal{B}_{n}\right|=\left|\mathcal{B}_{n-1}\right|+\left|\mathcal{B}_{n-2}\right|$ (≥ 4) with $\left|\mathcal{B}_{2}\right|=3$ and $\left|\mathcal{B}_{3}\right|=4$, we obtain

$$
\begin{equation*}
\left|\mathcal{B}_{n}\right|=\beta^{n}+\bar{\beta}^{n} \quad \text { for } \quad n \geq 2 \tag{1}
\end{equation*}
$$

where $\bar{\beta}=\frac{1-\sqrt{5}}{2}$.
The topological entropy of the discretized golden mean transformation is given by

Theorem 2

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|\mathcal{B}_{n}\right|} \log \nu_{n}=\frac{1}{\beta(\beta-\bar{\beta})} \log 2
$$

A Class of Markov Transformations Associated with Greedy β-Expansion

Now we are in the position to consider the discretized Markov β-transformations with the alphabet $\Sigma=\{0,1, \cdots, k-1\}(k \geq 2)$ and the set $\mathcal{F}=\{(k-1) c, \cdots,(k-1)(k-1)\}(1 \leq c \leq k-1)$ of ($k-c$) forbidden blocks. Setting $c_{1}=k-1$ and $c=c_{2}, \beta$ is the positive solution of $t^{2}-c_{1} t-c_{2}=0$.

Generally we have

Theorem 3

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{\left|\mathcal{B}_{n}\right|} \log \nu_{n}= & \frac{c_{2}}{\beta(\beta-\bar{\beta})} \log (k!) \\
& +\frac{\beta-c_{2}}{\beta(\beta-\bar{\beta})} \log \{(k-1)!\}+\frac{1}{\beta(\beta-\bar{\beta})} \log \left(c_{2}!\right)
\end{aligned}
$$

Variational Principle

Definition 5 If λ is the Perron-Frobenius eigenvalue of A and ($u_{0}, \cdots, u_{|\Sigma|-1}$) is a strictly positive left eigenvector and $\left(v_{0}, \cdots, v_{|\Sigma|-1}\right)$ is a strictly positive right eigenvector with $\sum_{i=0}^{\left|\sum\right|-1} u_{i} v_{i}=1$, then we obtain a Markov measure given by a probability vector $p=$ $\left(p_{0}, \cdots, p_{|\Sigma|-1}\right)$ and a stochastic matrix $P=\left(p_{i, j}\right)$ where

$$
p_{i}=u_{i} v_{i} \quad \text { and } \quad p_{i, j}=\frac{a_{i, j} v_{j}}{\lambda v_{i}}
$$

We call this measure the Parry measure for $\sigma: X_{A} \rightarrow X_{A}$.

We obtain

$$
-\sum_{i, j} p_{i} p_{i, j} \log p_{i, j}=\log \lambda
$$

The left hand side is the Shannon entropy for a Markov chain given by (p, P) while the right hand side is the topological entropy of $\sigma: X_{A} \rightarrow X_{A}$.

Correlational Properties of the de Bruijn Sequences

Definition 6 The cross-correlation function of time delay ℓ for the sequences $\boldsymbol{X}=\left(X_{i}\right)_{i=0}^{N-1}$ and $\boldsymbol{Y}=\left(Y_{i}\right)_{i=0}^{N-1}$ over $\Sigma=\{0,1, \cdots, k-$ $1\}(k \geq 2)$ is defined by

$$
R_{N}(\ell ; \boldsymbol{X}, \boldsymbol{Y})=\sum_{i=0}^{N-1} \exp \left(\frac{X_{i}}{k} 2 \pi \sqrt{-1}\right) \exp \left(-\frac{Y_{i+\ell(\bmod N)}}{k} 2 \pi \sqrt{-1}\right)
$$

where $\ell=0,1, \cdots, N-1$ and, for integers a and $b(\geq 1), a(\bmod b)$ denotes the least residue of a to modulus b. The normalized crosscorrelation function of time delay ℓ for the sequences \boldsymbol{X} and \boldsymbol{Y} is defined by

$$
r_{N}(\ell ; \boldsymbol{X}, \boldsymbol{Y})=\frac{1}{N} R_{N}(\ell ; \boldsymbol{X}, \boldsymbol{Y})
$$

If $\boldsymbol{X}=\boldsymbol{Y}$, we call $R_{N}(\ell ; \boldsymbol{X}, \boldsymbol{X})$ and $r_{N}(\ell ; \boldsymbol{X}, \boldsymbol{X})$ the auto-correlation function and the normalized auto-correlation function, and simply denote them by $R_{N}(\ell ; \boldsymbol{X})$ and $r_{N}(\ell ; \boldsymbol{X})$, respectively.

By the definition, we immediately see the following. Remark 2 For any \boldsymbol{X}, we have

$$
r_{N}(0 ; \boldsymbol{X})=1
$$

The following basic properties of the normalized auto-correlation functions for the de Bruijn sequences are well known [Zhang \& Chen, 1989].

Theorem 4 Let \boldsymbol{X} and \boldsymbol{Y} be the de Bruijn sequences of length $N=2^{n}(n \geq 1)$. Then we have
i) $\quad \sum_{\ell=0}^{N-1} r_{N}(\ell ; \boldsymbol{X}, \boldsymbol{Y})=0$;
ii)

$$
\begin{aligned}
& r_{N}(\ell ; \boldsymbol{X})=0 \quad \text { for } \quad 1 \leq \ell \leq n-1 \\
&(\text { Zero Correlation Zone }(Z \subset Z))
\end{aligned}
$$

Observation 1 If $\left(Z_{n}\right)_{n=0}^{\infty}$ is a sequence of independent and identically distributed (i.i.d.) random variables over $\{1,-1\}$ with uniform distributions, Theorem 4 ii) implies

$$
r_{N}(\ell ; \boldsymbol{X})=\mathbb{E}\left[Z_{0} Z_{\ell}\right] \quad \text { for } \quad 0 \leq \ell \leq n-1
$$

Correlational Properties of the the Full-Length

 Sequences Based on the Discretized Golden Mean TransformationIn virtue of symbolic analysis of $\mathcal{L}_{n}\left(X_{\mathcal{F}}\right)$ and \mathcal{B}_{n}, we obtain
Theorem 5 Let \boldsymbol{X} and \boldsymbol{Y} be full-length sequences based on the discretized golden mean transformation of length $\left|\mathcal{B}_{n}\right|$. Then we obtain

$$
\sum_{\ell=0}^{\left|\mathcal{B}_{n}\right|-1} r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X}, \boldsymbol{Y})=\frac{\left(\beta^{n}-\bar{\beta}^{n}\right)^{2}}{(\beta-\bar{\beta})^{2}\left(\beta^{n}+\bar{\beta}^{n}\right)}
$$

Asymptotically, we obtain
Remark 3

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|\mathcal{B}_{n}\right|} \sum_{\ell=0}^{\left|\mathcal{B}_{n}\right|-1} r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X}, \boldsymbol{Y})=\frac{1}{(\beta-\bar{\beta})^{2}}
$$

Moreover, we obtain

Theorem 6 Let \boldsymbol{X} be a full-length sequence based on the discretized golden mean transformation of length $\left|\mathcal{B}_{n}\right|$. Then for $1 \leq \ell \leq n-1$, we obtain

$$
r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X})=\frac{1}{(\beta-\bar{\beta})^{2}}\left\{1+4\left(\frac{\bar{\beta}}{\beta}\right)^{\ell} \cdot \frac{1+\left(\frac{\bar{\beta}}{\beta}\right)^{n-2 \ell}}{1+\left(\frac{\bar{\beta}}{\beta}\right)^{n}}\right\}
$$

On the other hand, for the stationary Markov process $\left(Z_{n}\right)_{n=0}^{\infty}$ over $\{1,-1\}$ with the transition matrix $\left(\begin{array}{cc}\frac{1}{\beta} & \frac{1}{\beta^{2}} \\ 1 & 0\end{array}\right)$, we obtain

$$
\begin{equation*}
\mathbb{E}\left[Z_{0} Z_{\ell}\right]=\frac{1}{(\beta-\bar{\beta})^{2}}\left\{1+4\left(\frac{\bar{\beta}}{\beta}\right)^{\ell}\right\} \quad \text { for } \quad \ell \geq 0 \tag{2}
\end{equation*}
$$

For a random variable X, we use $\mathbb{E}[X]$ to denote the expected value of X.

Discussions

Now let us estimate the error of the normalized auto-correlation function, which is originated from the discretization of the underlying transformations. In view of Theorem 6, (2) leads to

Observation 2

$$
\begin{equation*}
r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X})-\mathbb{E}\left[Z_{0} Z_{\ell}\right]=\left\{\left(\frac{\beta}{\bar{\beta}}\right)^{\ell}-\left(\frac{\bar{\beta}}{\beta}\right)^{\ell}\right\} \cdot \frac{\left(\frac{\bar{\beta}}{\beta}\right)^{n}}{1+\left(\frac{\bar{\beta}}{\beta}\right)^{n}} \tag{3}
\end{equation*}
$$

and

$$
\lim _{n \rightarrow \infty} r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X})=\mathbb{E}\left[Z_{0} Z_{\ell}\right] .
$$

The equation (3) implies

$$
\begin{equation*}
r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X})=\mathbb{E}\left[Z_{0} Z_{\ell}\right]+O\left(\left(\frac{\bar{\beta}}{\beta}\right)^{n}\right) \tag{4}
\end{equation*}
$$

where O is the big O notation from the Landau symbol.
The error $O\left(\left(\frac{\bar{\beta}}{\beta}\right)^{n}\right)$ can be regarded as coming from the discretization of the underlying β-transformation.

It is noteworthy that (4) holds even for the de Bruijn sequences in the following sense. If the underlying transformation is the dyadic transformation, we have $\beta=2$ and $\bar{\beta}=0$. Thus we obtain $O\left(\left(\frac{\bar{\beta}}{\beta}\right)^{2^{n}}\right)=0$ for the de Bruijn sequences.

In view of Theorem 4 ii) together with this fact, (4) holds for the de Bruijn sequences if $\left(Z_{n}\right)_{n=0}^{\infty}$ is a sequence of independent and identically distributed (i.i.d.) random variables over $\{1,-1\}$ with uniform distributions.

Full-Length Sequences Based on the Discretized Markov β-Transformations

We consider the discretized Markov β-transformations with the alphabet $\Sigma=\{0,1, \cdots, k-1\}$ and the set $\mathcal{F}=\{(k-1)(k-1)\}$ of forbidden blocks ($k \geq 2$).

For $\Sigma=\{0,1,2\}$ and $\mathcal{F}=\{22\}$, as the underlying transformation, we have the β-transformation with $\beta=1+\sqrt{3}$.

k-Phase Signals

$$
\begin{array}{r}
\mathbb{E}\left[Z_{0} Z_{\ell}\right]=\frac{1}{(k-1)^{2}(\beta-\bar{\beta})^{2}}\left(\{\beta+(k-1) \bar{\beta}\}+(k-1) k^{2}\left(\frac{\bar{\beta}}{\beta}\right)^{\ell}\right) \\
\text { for } \ell \geq 0 .
\end{array}
$$

By using exactly the same manner as above, we generally obtain Theorem 7

$$
\sum_{\ell=0}^{\left|\mathcal{B}_{n}\right|-1} r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X}, \boldsymbol{Y})=\frac{\left(\beta^{n}-\bar{\beta}^{n}\right)^{2}}{(k-1)^{2}(\beta-\bar{\beta})^{2}\left(\beta^{n}+\bar{\beta}^{n}\right)}
$$

Asymptotically, we obtain

Remark 4

$$
\lim _{n \rightarrow \infty} \sum_{\ell=0}^{\left|\mathcal{B}_{n}\right|-1} \frac{1}{\left|\mathcal{B}_{n}\right|} r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X}, \boldsymbol{Y})=\frac{1}{(k-1)^{2}(\beta-\bar{\beta})^{2}}
$$

Moreover, we obtain

Theorem 8 Let \boldsymbol{X} be a full-length sequence based on the discretized Markov β-transformation of length $\left|\mathcal{B}_{n}\right|$ with with the alphabet $\Sigma=\{0,1, \cdots, k-1\}$ and the set $\mathcal{F}=\{(k-1)(k-1)\}$ of forbidden blocks. Then for $1 \leq \ell \leq n-1$, we obtain

$$
r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X})=\frac{1}{(k-1)^{2}(\beta-\bar{\beta})^{2}}(\{\beta+(k-1) \bar{\beta}\}
$$

$$
\left.+(k-1) k^{2}\left(\frac{\bar{\beta}}{\beta}\right)^{\ell} \cdot \frac{1+\left(\frac{\bar{\beta}}{\beta}\right)^{n-2 \ell}}{1+\left(\frac{\bar{\beta}}{\beta}\right)^{n}}\right)
$$

This implies

$$
r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X})=\mathbb{E}\left[Z_{0} Z_{\ell}\right]+O\left(\left(\frac{\bar{\beta}}{\beta}\right)^{n}\right)
$$

Optimum Binary Spreading Sequences of

 Markov Chains
$\{1,-1\}$-valued Markov chains with

$$
\mathbb{E}\left[Z_{n}\right]=0 \quad \text { and } \quad \mathbb{E}\left[Z_{0} Z_{\ell}\right]=(-2+\sqrt{3})^{\ell}, \quad \ell \geq 0
$$

We consider the Markov β-transformations with the alphabet $\Sigma=$ $\{0,1,2\}$ and the set $\mathcal{F}=\{22\}$ of forbidden blocks. Then we have the β-transformation with $\beta=1+\sqrt{3}$.

Design of Simple Functions

$$
\mathbb{E}\left[Z_{n}\right]=0,(\text { uniform distribution })
$$

and $\mathbb{E}\left[Z_{0} Z_{\ell}\right]=(-2+\sqrt{3})^{\ell}, \quad \ell \geq 0$, negative correlation as desired!

Experimental Results

n	length	\# of seq.s	\# of seq.s w/ uniform dist.
2	8	12	6
3	20	1728	945

Example 2 For the order $n=3$, we have
$00010020110121021112 \rightarrow 11101011001010010001$,
where in the right hand side, we use 0 to denote -1 for simplicity.

Theorem 9 For $1 \leq \ell \leq n-1$, we obtain

$$
r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X})=(-2+\sqrt{3})^{\ell}+\left\{\left(\frac{\beta}{\bar{\beta}}\right)^{\ell}-\left(\frac{\bar{\beta}}{\beta}\right)^{\ell}\right\} \cdot \frac{\left(\frac{\bar{\beta}}{\beta}\right)^{n}}{1+\left(\frac{\bar{\beta}}{\beta}\right)^{n}}
$$

This implies

$$
r_{\left|\mathcal{B}_{n}\right|}(\ell ; \boldsymbol{X})=\mathbb{E}\left[Z_{0} Z_{\ell}\right]+O\left(\left(\frac{\bar{\beta}}{\beta}\right)^{n}\right)
$$

Summary

In this reserch, we first obtained the topological entropy of the discretized golden mean transformation. We also generalized this result and gave the topological entropy of the discretized Markov β-transformations with the alphabet $\Sigma=\{0,1, \cdots, k-1\}$ and the set $\mathcal{F}=\{(k-1) c, \cdots,(k-1)(k-1)\}(1 \leq c \leq k-1)$ of $(k-c)$ forbidden blocks.
In view of basic properties of the normalized auto-correlation functions for the de Bruijn sequences that can be regarded as the fulllength sequences based on the discretized dyadic transformation, we obtained correlational properties of the full-length sequences based on the discretized golden mean transformation.

We generalized this result and gave the correlational properties of the discretized Markov β-transformations with the alphabet $\Sigma=\{0,1, \cdots, k-1\}$ and the set $\mathcal{F}=\{(k-1)(k-1)\}$ of forbidden blocks.

We also applied the generalized result to evaluate the auto-correlation function for the optimum binary spreading sequences of Markov chains based on discretized β-transformations, where $\beta=1+\sqrt{3}$.

