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e Ulam and von Neumann (Bull. Math. Soc., 1947)
Logistic map: T(z) =4x2(1—z), 0<x <1
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Given an initial value z = T9(2),

T (z) = T(T" (z)) for n=1,2,---.

The sequence (T"(x))>2 4 is a good candidate for the pseudo-random
numbers.




Ulam and von Neumann's idea requires handling real nhumbers
for practice. On the contrary, computers can only deal with float-
ing point numbers . Hence we need ergodic theory for a transfor-
mation from a finite set onto itself to understand the behaviour
of the iterates of one-dimensional transformations implemented
in computers.

- D
No way is known to give a good theoretical model that tells
us characteristics of the execution time for floating point
numbers . ( D. Knuth, The Art of Computer Programming,

vol. 2, 3rd ed., Addison-Wesley, '97) )
\_




Discretized Bernoulli Transformations I

(O Cryptosystems
e Permutation Cipher Based on Discretized Unimodal Bernoulli
Transformations (N. Masuda and K. Aihara, Trans. of IEICE,
'99 (in Japanese))
(O Spreading Seq.s for SSMA Communication Systems
e Maximal-Period Sequences Based on Discretized Bernoulli
Transformations (A. Tsuneda, Y. Kuga, and T. Inoue,
IEICE Trans. on Funda., 2002)
A Generalization of de Bruijn Sequences



Markov Partition I

We use |E| to denote the cardinality of a set F.

Definition 1 Let T : [0,1) — [0,1). Let P be a partition of
[0,1) given by the point 0 = ag < a1 < -+ < apj = 1. For
i=1,---,|P|, let I; = (a;_1,a;) and denote the restriction of T to
I; by T|r.. If T|;. is a homeomorphism from I; onto the interior of
some connected union of the closures of intervals of ‘P, then T is
said to be Markov. The partition P = {I,L-},l;;'l is referred to as a
Markov partition with respect to T'.




An example of discretized dyadic transformations (2m = 12):

o— (11 12 I3 14 Is Is I7 Ig Ig 10 I11 l12 |
Ip I3 Is I7 lg Iio In Ia Ie Ig Iip0 111

—
[\l

————————————————————————————————————————————————————————————————

[y
[

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

-
(]

****************************************************************

———————————————————————————————————————————————————————————————

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

**************************************************************

———————————————————————————————————————————————————————————————

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

= [\ w L [ [o}] 3 o] ©

1 2 3 4 5 6 7 8 9 10 11 12

o determines a full-length sequence 000010111101.

If 2m = 2", then the full-length sequence is called the de Bruijn
sequence.



Discretized Golden Mean Transformations
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I13 are excluded from the Markov partion.
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o determines a full-length sequence 00000100101. [F. Enomoto
and S. Ito, Workshop Number Theory and Ergodic Theory, 2004)]



Graph Represention of the Markov
Transformation
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For an irreducible aperiodic Markov transformation 7', given a
Markov partition P with respect to 7', corresponding each subin-
terval I € P to one edge e(I), we obtain the set A of edges.



Eulerian Subgraph Spanning G

A directed graph H = (W, B) is said to be a subgraph of the
directed graph G = (V, A) if W C V and B C A. In this case we
write H C G. The directed graph H is called a spanning subgraph
of G if W = V. Furthermore, if H is Eulerian, it is called
Eulerian subgraph spanning G . We are interested in the span-
ning Eulerian subgraph of G with maximal number of edges .
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The spanning Eulerian subgraph with maximal number of edges
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N
Full-length sequences based on the discretized Markov transfor-
mation are exactly Eulerian circuits in H, whose length is given

by |B].
N J




Preliminaries I

Let > be a finite alphabet. The full >-shift is denoted by
>t = {x = (2;)ep Vi €L, x; € T}

which is endowed with the product topology arising from the dis-
crete topology on X. The shift transformation o : X2 — 32 js
defined by

o((x3)icz) = (®i41)icz-
The closed shift-invariant subsets of >% are called subshifts. For
a subshift X, we use ox to denote the shift transformation on X,

which is the restriction to X of ¢ on 4. For simplicity, we shall
write o : X — X rather than ox.



We call elements u = uquor---un € 2™ blocks over 2 of length
n (n>1). We use X* to denote the collection of all blocks over
> and the empty block . For a subshift X, we use L,(X) to
denote the collection of all n-blocks appearing in points in X.
The language of X is the collection £(X) = U725 Ln(X), where
Lo(X) = {e}.

Definition 2 The topological entropy of a subshift X is defined
by

R(X) = lim > log |[£n(X)].

n—oo n

We use |E| to denote the cardinality of a set FE.



Higher Edge Graph I

Definition 3 Let G be a graph. For n > 2 we define the nth
higher edge graph Gl of G to have vertex set Ln1(Xa,) and
to have edge set containing exactly one edge from eies---€,_1
to fifzo-- fn—1 whenever esez---e,_1 = f1fo- - fn_2 (Or t(e1) =
i(f1) ifn=2), and none otherwise. The edge is named

erepez--ep_1fn—1 =e1fifo- fn-1-
Forn =1 we set Gl1l = @.



Discretized Dyadic Transformations I

Let T: [0,1] — [0, 1] be the dyadic transformation:
T(x) =2x (mod 1), = € [0, 1].

If we take a Markov partition of [0,1] given by the point 0 <
1/2 < 1, then we obtain the graph G representing the dyadic
transformation.

ol 0 )1 G=Gt=H,.

—



o O )1 oo@@@on

G =G =m.
GlPl = Hs.

For each n (> 1), we obtain Gl = ({0,1}*~1,{0,1}"). Since G!"]
is Eulerian, we have H,, = Gl for each n. The Eulerian circuits
in g™l are called the de Bruijn sequences of length 2™ because of

the following theorem. For the same reason, Gl is called the de
Bruijn graph.

Theorem 1 (de Bruijn, 1946, Flye Sainte-Marie, 1894) For each

positive integer n, there are exactly 22n_1—” Eulerian circuits in
Glnl.



The Topological Entropy of Discretized
Markov Transformation

Let G be the graph representing the Markov transformation. Then
we obtain a sequence (G[n]);?le of higher edge graphs of G. For
each n > 1, we use Hp = (£,-1(X4,), Bn) to denote the Eulerian
subgraph spanning Gl with maximal number of edges, each of
which leads to a discretized Markov transformation T,.

We use v, to denote the number of the full-length sequence in
Hp. Recall that the length is given by |B,|.

Definition 4 The topological entropy of the discretized Markov
transformation T = (T;,)%%_, of T is defined by

h = nl|_>moo B—nl log vp,.



Example 1 The topological entropy of the discretized dyadic
transformation T is given by

1
h+ = —log 2.
T=75 g

Remark 1 Since it is also shown in [de Bruijn, 1946] and [Flye
Sainte-Marie, 1894] that, for each n (> 1), there are exactly

{(k— 1)k ko
Eulerian circuits of length k™ in
G[n] — ({07 17 7k_ 1}?7,—1’{07 17 7k _ 1}7?,),

the topological entropy of the discretized k-adic transformation
is given by

%Iog(k!).



Discretized Golden Mean Transformation I

Let T : [0,1] — [0, 1] be the golden mean transformation:

T(z) =Bz (mod1l), =z€]0,1],

where 8 is the golden mean number %
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G2l = Hy,.
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In view of G2l the set of forbidden blocks is given by F = {11}.



For each n (> 2), we obtain Gl = (Lp_1(XF£), Ln(XF)) and the
Eulerian subgraph H, = (L,,—1(X£), Bn) spanning Gl with max-
imal number of edges. Although G2l is Eulerian, which implies
H, = G2, Gll is not always Eulerian for n (> 3). In fact, Hs is a
proper subgraph of G[3], in symbols Hj ; G138l We observed that
Hn & Gl for any n (> 3).

Noting that the sequence (|Bn|);2, is the Fibonacci numbers de-
fined by the recurrence relation |Bn| = |B,,—1| + |B,—2| (= 4) with
|B>| = 3 and |B3| = 4, we obtain

Bp| =p"+ 8" for n>2, (1)

where 8 = 1_2\/5.

The topological entropy of the discretized golden mean transfor-
mation is given by

Theorem 2

, 1
lim ——loguv, =

1
n=00 | By B(B—B)

log 2.



A Class of Markov Transformations Associated
with Greedy S-Expansion

Now we are in the position to consider the discretized Markov
B-transformations with the alphabet >~ = {0,1,--- ;k—1} (k> 2)
and theset F ={(k—1)¢,--- ,(k—1)(k—1)} (1 <c<k-—-1) of
(k — ¢) forbidden blocks. Setting ¢y = k—1 and ¢ = ¢», B is the
positive solution of t2 — ¢1t — ¢p = O.
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Generally we have

Theorem 3

i, Ty 99 = G- 0
— Co 1



Variational Principle I

Definition 5 If X\ is the Perron-Frobenius eigenvalue of A and

(ug, - - US| — 1) is a strictly positive left e/'genvector and (vg, - - - ,v|z|_1)

Is a strictly positive right eigenvector with Z‘ 0 uzvz = 1, then
we obtain a Markov measure given by a probability vector p =
(po, - - - ,pm_l) and a stochastic matrix P = (p; ;) where

4i,5Y;
)\’U,L' .
We call this measure the Parry measure for o : X4 — X 4.

pi = ujvy and  p;; =

We obtain

— szpz J log p; J — = log A.
1,J

The left hand side is the Shannon entropy for a Markov chain given

by (p, P) while the right hand side is the topological entropy of
o . XA — XA-



Correlational Properties of the de Bruijn
Sequences

Definition 6 The cross-correlation function of time delay ¢ for
the sequences X = (X )z—o andyY = (Y)z—o over> ={0,1,--- ,k—
1} (k > 2) is defined by

N-—1
X Y.
Ry(6X,Y) =Y exp (?7’2%\/—1> exp <— 7’”(2‘00' N)Qm/—1> |
i=0
where¢ =0,1,--- ,N—1 and, forintegersa andb(> 1), a( mod b)
denotes the least residue of a to modulus b. The normalized cross-
correlation function of time delay ¢ for the sequences X andyY is

defined by
1

IfFX =Y, wecall Ry(4; X,X) andry(¢; X, X) the auto-correlation
function and the normalized auto-correlation function, and simply
denote them by Ry (¢; X) and rn(¢; X), respectively.



By the definition, we immediately see the following.
Remark 2 For any X, we have

TN(O; X) = 1.



The following basic properties of the normalized auto-correlation
functions for the de Bruijn sequences are well known [Zhang &
Chen, 1989].

Theorem 4 Let X and Y be the de Bruijn sequences of length
N =2" (n>1). Then we have

N-1
i) > rn(X,Y) =0,
¢=0
i) ry(0; X)=0 for 1<¢<n-—1.

(Zero Correlation Zone (ZCZ))

Observation 1 If (Z,)02 4 is a sequence of independent and iden-
tically distributed (i.i.d.) random variables over {1,—1} with uni-
form distributions, Theorem 4 ii) implies

rn(0; X) =E[ZoZ,] for 0<¢<n-—1.



Correlational Properties of the the Full-Length
Sequences Based on the Discretized Golden
Mean Transformation

In virtue of symbolic analysis of £,(Xx) and By, we obtain
Theorem 5 Let X and Y be full-length sequences based on the

discretized golden mean transformation of length |By|. Then we
obtain

|Bn|—1 N2
(8" — B

S e (6X,Y) = - .

& B XY ) = s 1

Asymptotically, we obtain
Remark 3

lim —— ;) X,Y) = ——.
T N L




Moreover, we obtain

Theorem 6 Let X be a full-length sequence based on the dis-
cretized golden mean transformation of length |By|.

>n2€\

1</<n-—1, we obtain
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On the other hand, for the stationary Markov process (Zn)>2
1

1 1
over {1,—1} with the transition matrix ( f13 % ) we obtain

E[ZoZ,] = — 1+4<5>£ for £>0 (2)
M CEE g —

For a random variable X, we use E[X] to denote the expected
value of X.



Discussions I

Now let us estimate the error of the normalized auto-correlation
function, which is originated from the discretization of the under-
lying transformations. In view of Theorem 6, (2) leads to

Observation 2

14 —\ ¢
rzsnw;X)—E[ZoZe]:{(g) —@ } ()
4+ (5)

and

lim T|Bn|(£; X) = ]E[Z()Zg].

n—oo



The equation (3) implies

i (6 X) = ElZoZ] + O ((g) ) , (a)

where O is the big O notation from the Landau symbol.

-\ N
The error O((g) ) can be regarded as coming from the dis-
cretization of the underlying g-transformation.

It is noteworthy that (4) holds even for the de Bruijn sequences
in the following sense. If the underlying transformation is the
dyadic transformation, we have 8 =2 and 8 = 0. Thus we obtain

—\ 2"
@) ((g) ) — O for the de Bruijn sequences.

In view of Theorem 4 ii) together with this fact, (4) holds for the
de Bruijn sequences if (Zn)52 4 is a sequence of independent and
identically distributed (i.i.d.) random variables over {1,—1} with
uniform distributions.



Full-Length Sequences Based on the
Discretized Markov g-Transformations

We consider the discretized Markov p-transformations with the
alphabet > =4{0,1,--- ,k—1} and theset F ={(k—1)(k—1)} of
forbidden blocks (k > 2).

For > = {0,1,2} and F = {22}, as the underlying transformation,
we have the p-transformation with 8 =1 4+ /3.

1

N

=k

RS
=N



k-Phase Signals I

Binary 3-Phase Q-Phase

-\ £
BlZ0Z = (= 1)21(5 3 ({5 +(k—1)B} + (k — 1)k? (%) )

for ¢ > 0.



By using exactly the same manner as above, we generally obtain
Theorem 7

Ca
S or X Y) = | .
= 8,6 XY ) = e (B2 + B

Asymptotically, we obtain
Remark 4

[Bnl -1 4 1

M 2 e G = G2




Moreover, we obtain

Theorem 8 Let X be a full-length sequence based on the dis-
cretized Markov p-transformation of length |B,| with with the
alphabet > = {0,1,--- ,k—1} and the set F = {(k—1)(k— 1)} of
forbidden blocks. Then for1 </¢<n-—1, we obtain

"Bl %) = 1)21<5 — ) <{B + (03]
—\ n—2¢
+ (k — 1)k? @g- - (2)5 n )
1+ (5)
This implies

s, (6 X) = E[ZoZ(] + O ((5) ) .



Optimum Binary Spreading Sequences of
Markov Chains
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{1, —1}-valued Markov chains with
E[Z,] =0 and E[ZoZ)] = (-2+V3)!, ¢>0.



We consider the Markov g-transformations with the alphabet > =
{0,1,2} and the set F = {22} of forbidden blocks. Then we have
the B-transformation with 8 =1 4+ /3.

1

=N

g
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Design of Simple Functions I

-

-k

B B

@(CE) — 1[0’6%) (x) — 1[’1

E[Z,] = 0, (uniform distribution)

and

E[ZoZ)] = (—2 + \@)12’ ¢ > 0, negative correlation as desired!



Experimental Results I

n | length | # of seq.s | # of seq.s w/ uniform dist.
2 38 12 6
3 20 1728 945

Example 2 For the order n = 3, we have

00010020110121021112 =+ 11101011001010010001,

where in the right hand side, we use O to denote —1 for simplicity.
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Theorem 9 Forl</<n-—1, we obtain

3 14 B 14
T8, (6 X) = (—2+@)€+{<> _ <_> }
B B .

This implies

T8, (6 X) = E[ZoZ] + O (<_




Summary I

In this reserch, we first obtained the topological entropy of the
discretized golden mean transformation. We also generalized this
result and gave the topological entropy of the discretized Markov
B-transformations with the alphabet >~ = {0,1,--- ,k— 1} and the
set F={(k—1)c, -, (k—1)(k—1)} (1 <c<k—-1) of (k—c)
forbidden blocks.

In view of basic properties of the normalized auto-correlation func-
tions for the de Bruijn sequences that can be regarded as the full-
length sequences based on the discretized dyadic transformation,
we obtained correlational properties of the full-length sequences
based on the discretized golden mean transformation.

We generalized this result and gave the correlational properties
of the discretized Markov p-transformations with the alphabet

> ={0,1,--- ,k—1} and theset F = {(k—1)(k—1)} of forbidden
blocks.

We also applied the generalized result to evaluate the auto-correlation

function for the optimum binary spreading sequences of Markov
chains based on discretized S-transformations, where 5 = 1++/3.



