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In this lecture, we address a question raised by M. Entov and L.
Polterovich:

Suppose (ϕt)t∈R is a smooth flow on the smooth manifold M
generated by the vector field X .If A,B ⊂ M are compact subsets,
such that

ϕt(A) ∩ B = ∅, for all t ≥ T ,

show that there exists a smooth function θ : M → R with

Xθ ≤ 1, θ|A ≤ 0, and θ|B > T ,

where Xθ is the derivative of θ in the direction of the vector field
X .
The condition Xθ ≤ 1 means that θ cannot increase faster than
time along an orbit.
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They needed this result to use in the work

M. Entov & L. Polterovich, Lagrangian tetragons and
instabilities in Hamiltonian dynamics, preprint on Arxiv

The positive answer to the question is contained in our work

An Urysohn-type theorem under a dynamical constraint,
Journal of Modern Dynamics, 10 (2016) 331–338.
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In this lecture, we will explain the discrete version.

Consider a continuous map f : X → X of a metric space X .
Suppose that A,B ⊂ X are closed subsets, with A compact, and
n ≥ 1 is an integer.

Question: When is it possible to find a continuous function
θ : X → R such that

θf − θ ≤ 1, θ|A ≤ 0, and θ|B > n.

From the conditions θf − θ ≤ 1 and θ|A ≤ 0, by induction on `, we
get

θ|f `(A) ≤ `, for all ` ≥ 0.
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θ|B > n and θ|f `(A) ≤ `, for all ` ≥ 0.

A f(A) fn(A)

B≤ 0
≤ 1 ≤ n

> n

Impossible!

Therefore the condition B ∩ (∪ni=0f
i (A)) = ∅ is necessary to prove

the existence of θ satisfying

θf − θ ≤ 1, θ|A ≤ 0, and θ|B > n.
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The answer to the question is given by:

Theorem (Discrete Case)

Assume

I f : X → X is a continuous self-map of the metric space X .

I A,B ⊂ X are closed subsets, with A compact,

I B ∩ (∪ni=0f
i (A)) = ∅, where n ≥ 0.

Then we can find a Lipschitz function θ : X → [0,+∞[ such that

I θf − θ ≤ 1 everywhere,

I θ is identically 0 on a neighborhood of A,

I θ is ≥ n + 1 on a neighborhood of B.
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Two remarks

1) If f is the identity, the condition B ∩ (∪ni=0f
i (A)) = ∅ is

independent of n ≥ 1, and boils down to B ∩A = ∅. Moreover, the
condition θf − θ ≤ 1 is obviously satisfied by any function θ, and
the theorem reduces to the usual Urysohn lemma: if B ∩ A = ∅,
then there exists θ with θ ≤ 0 on A and θ ≥ n + 1 on B.

2) As was observed in
L. Buhovsky, M. Entov & L. Polterovich, Poisson
brackets and symplectic invariants, Selecta Math. 18 (2012),
89–157,

there is a case where it is easier to obtain θ.
Assume that f is a homeomorphism. Moreover, instead of the
condition B ∩ (∪ni=0f

i (A)) = ∅, assume the stronger one
B ∩ (∪ni=−nf i (A)) = ∅,

which is equivalent to (∪ni=0f
i (B)) ∩ (∪ni=0f

i (A)) = ∅.
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Assuming also that B is compact, we get that the sets ∪ni=0f
i (A)

and ∪ni=0f
i (B) are closed and disjoint.

Therefore, by Urysohn
lemma, we can find a continuous function θ̄ : X → [0, 1] which is
identically 0 in a neighborhood of ∪ni=0f

i (A) and is identically 1 in
a neighborhood of ∪ni=0f

i (B), then we set θ =
∑n

i=0 θ̄f
i . This θ

satisfies the conclusion of the theorem. Obviously, for x ∈ A (resp.
x ∈ B), we have θ(x) =

∑n
i=0 θ̄f

i (x) = 0 (resp.
θ(x) =

∑n
i=0 θ̄f

i (x) =
∑n

i=0 1 = n + 1). It remains to show that
θf − θ ≤ 1.In fact, we have

θf − θ =
n∑

i=0

θ̄f i+1 −
n∑

i=0

θ̄f i

= θf n+1 − θ
≤ 1,

where the last inequality comes from θ(X ) ⊂ [0, 1].
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We now proceed to prove the theorem.

We will use the method from our previous work

with Pierre Pageault, Aubry-Mather theory for
homeomorphisms, Ergodic Theory Dynam. Systems 35
(2015), 1187–1207.

In the work above, we introduced a kind of Lagrangian for discrete
dynamical systems to obtain orbits as “paths” minimizing action.
It allowed us to study Lyapunov functions.
This was done in the following way: Suppose f : X → X is a
continuous self map of the metric space (X , d).
A discrete path is a sequence (x0, . . . , xn), with n ≥ 1. In fact,
such a sequence is called a chain. We will stick to this terminology.
To measure the deviation of (x0, . . . , xn) from an orbit we
introduce the action A(x0, . . . , xn) of (x0, . . . , xn) by

A(x0, . . . , xn) =
n−1∑
i=0

d(f (xi ), xi+1) ≥ 0.
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x0
x1 xn−1

xn

f(xn−1)

f(xn−2)f(x0)

· · ·

So the action A(x0, . . . , xn) is the sum of the black distances on
the figure.

Of course, using the definition

A(x0, . . . , xn) =
n−1∑
i=0

d(f (xi ), xi+1) ≥ 0,

we have A(x0, . . . , xn) = 0 if and only if the chain (x0, . . . , xn) is
the orbit of x0 up to time n.
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To measure deviation from an orbit, one could replace the action
by different types of quantities.

The first one is

P(x0, . . . , xn) =
n−1
max
i=0

d(f (xi ), xi+1).

As shown by Pierre Pageault, this is adapted to study the chain
recurrent set.
For every p > 0, we could also use

Ap(x0, . . . , xn) =
n−1∑
i=0

d(f (xi ), xi+1)p.

In fact, as we will see, using p = 1, allows to obtain (uniformly)
Lipschitz function.
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We used the action A to study Lyapunov functions, i.e. functions
ψ : X → R such that ψf ≤ ψ, or equivalently ψf − ψ ≤ 0. Since
we want instead the condition ψf − ψ ≤ 1, we have to modify our
action by throwing in the constant potential −1.
For every k > 0, we define the cost ck : X × X → R by

ck(x , y) = kd(f (x), y) + 1.

This is to be compared with the Lagrangian associated to the
motion of a particule of mass m in a potential field with a
potential energy V

L(x , v) =
m

2
‖v‖2 − V (x).

Of course, a discrete speed at the point x is an ordered pair (x , y)
(y = x + v !).
If we compare, k/2 is therefore the mass. By increasing k , we are
making the particle heavier without changing the potential energy
V = −1



To define the action along a path(=chain) (x0, . . . , xn), with n ≥ 1,

we need to integrate the Lagrangian ck(x , y) = kd(f (x), y) + 1,
i.e. the action (called also cost) Ck(x0, . . . , xn) is defined by

Ck(x0, . . . , xn) =
n−1∑
i=0

ck(xi , xi+1) =
n−1∑
i=0

(kd(f (xi ), xi+1) + 1).

Note that Ck(x0, . . . , xn) ≥ n ≥ 1. Therefore n ≤ [Ck(x0, . . . , xn)],
where [r ] is, as usual, the largest integer ≤ r ∈ R.
We will consider the minimal action Γk(x , y) needed to connect
the point x to the point y .
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Therefore, we define Γk : X × X → R by

Γk(x , y) = inf{Ck(x0, . . . , xn) | x0 = x , xn = y} ≥ 1.

It is not difficult to obtain the following properties of Γk .
The function Γk satisfies the following properties:

(i) 1 ≤ Γk(x , y) ≤ kd(f (x), y) + 1, for every x , y ∈ X .

In fact, we have Γk(x , y) ≤ Ck(x , y) = kd(f (x), y) + 1.

(ii) Γk(x , f (x)) = 1, for every x in X .

This follows from (i) with y = f (x).

(iii) Γk(x , y) ≤ Γk(x , z) + Γk(z , y), for every x , y , z in X .

If you have a chain from x to z , and one from z to y , you can
concatenate them. The action of the concatenation is the sum of
the actions. Inequality follows by taking infimum.

(iv) Γk(x , f (y)) ≤ Γk(x , y) + 1, for every x , y ∈ X ;

Γk(x , f (y)) ≤ Γk(x , y) + Γk(y , f (y)) by (iii).
But Γk(y , f (y)) = 1 by (ii).
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(v) for every x , y , z in X , we have

|Γk(x , y)− Γk(x , z)| ≤ kd(y , z),

|Γk(x , y)− Γk(z , y)| ≤ kd(f (y), f (z)).

In particular, the function Γk is continuous, and uniformly
Lipschitz in the second variable with Lipschitz constant k .

We prove the first inequality. The proof of the second inequality is
analogous.
If (x0, . . . , xn) is a chain with x0 = x , xn = y , we define the chain
(x0, x1, . . . , xn−1, z) joining x to z .
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We have

Γk(x , z) ≤ Ck(x0, x1, . . . , xn−1, z)

=
n−2∑
i=0

(kd(f (xi ), xi+1) + 1) + (kd(f (xn−1), z) + 1)

=
n−1∑
i=0

(kd(f (xi ), xi+1) + 1) + [kd(f (xn−1), z)− kd(f (xn−1), y)]

≤ Ck(x0, . . . , xn) + kd(z , y).
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Therefore
Γk(x , z) ≤ Ck(x0, . . . , xn) + kd(z , y).

Taking the infimum over all chains (x0, . . . , xn) with
x0 = x , xn = y , yields

Γk(x , z) ≤ Γk(x , y) + kd(y , z).

The first inequality follows by symmetry.

We now note that if we fix x ∈ X and define ψ : X → R by
ψ(y) = Γk(x , y), we obtain from (v) that

|Γk(x , y)− Γk(x , z)| ≤ kd(y , z),

which shows that ψ is Lipschitz with Lipschitz constant ≤ k .
Moreover, since Γk(x , f (y)) ≤ Γk(x , y) + 1 by (iv), we obtain
ψ(f (y))− ψ(y) ≤ 1.
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Therefore we constructed a large family of equi-Lipschitz functions
ψ such that ψf − ψ ≤ 1.

We should obtain the proof of the
theorem by averaging them in a certain way. This is what we
proceed to do.

with a twist!

We will do an average not in the usual algebra
(+,×) but instead in the algebra (min,+) called
also the idempotent algebra or the tropical algebra.
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It is probably a good time to recall our goal

Theorem

Assume

I f : X → X is a continuous self-map of the metric space X .

I A,B ⊂ X are closed subsets, with A compact,

I B ∩ (∪ni=0f
i (A)) = ∅, where n ≥ 0.

Then we can find a Lipschitz function θ : X → [0,+∞[ such that

I θf − θ ≤ 1 everywhere,

I θ is identically 0 on a neighborhood of A,

I θ is ≥ n + 1 on a neighborhood of B.
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Proof of Theorem

For a subset S ⊂ X , if ε > 0, we denote by

V̄ε(S) = {x ∈ X | d(x , S) ≤ ε}

its closed ε-neighborhood.

For k > 0, we define the function ϕk : X → [0,+∞[ by

ϕk(x) = kd(x , V̄1/k(A)) ≥ 0.

Note that ϕk |V̄1/k(A) ≡ 0, and the function ϕk is k-Lipschitz.It is

not difficult to estimate from below the values of ϕk on V̄1/k(B) by

ϕk |V̄1/k(B) ≥ kd(A,B)− 2, (0.1)

using d(V̄1/k(A), V̄1/k(B)) ≥ d(A,B)− 2/k .
Since A is compact and B is closed, we have d(A,B) > 0. Hence

inf
V̄1/k (B)

ϕk → +∞, as k → +∞.
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We next define θk : X → [0,+∞[ by

θk(x) = min[ϕk(x), inf
y∈X

ϕk(y) + Γk(y , x)].

The second part is indeed an “average” in the (min,+) algebra. In
the usual algebra (+,×), since an infinite (uncountable sum)
should be an integral, this “average” would be∫

ϕk(y)Γk(y , x) dy ,

which is indeed an average with respect to the measure ϕk(y)dy !
We first observe that θk is ≥ 0 everywhere. Moreover, it is
k-Lipschitz, since ϕk is k-Lipschitz, and Γk is uniformly k-Lipschitz
in its second argument.



We next show that θk f ≤ θk + 1.

If x ∈ X , by the definition of θk , we have

θk(f (x)) ≤ inf
y∈X

ϕk(y) + Γk(y , f (x)).

Choosing y = x , we obtain

θk(f (x)) ≤ ϕk(x) + Γk(x , f (x)) = ϕk(x) + 1.

Using Γk(y , f (x)) ≤ Γk(y , x) + Γk(x , f (x)) = Γk(y , x) + 1, we also
obtain

θk(f (x)) ≤ inf
y∈X

ϕk(y) + Γk(y , x) + 1.

Therefore

θk(f (x)) ≤ min[ϕk(x) + 1, inf
y∈X

ϕk(y) + Γk(y , x) + 1]

= θk(x) + 1.
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Since ϕk |V̄1/k(A) ≡ 0 and 0 ≤ θk ≤ ϕk , we do have

θk |V̄1/k(A) ≡ 0.

To finish the proof of the theorem, it remains to show that for k
large enough, we have θk |V̄1/k(B) ≥ n + 1.

We argue by contradiction. If we assume that θk |V̄1/k(B) ≥ n + 1
is not true for k large enough, we can find sequences k` ↗ +∞,
and z` ∈ V̄1/k`(B), such that

θk`(z`) < n + 1.

Since
θk(x) = min[ϕk(x), inf

y∈X
ϕk(y) + Γk(y , x)],

and infV̄1/k (B) ϕk → +∞, as k → +∞, without loss of generality,

we can assume that

θk`(z`) = inf
y∈X

ϕk`(y) + Γk`(y , z`) < n + 1.
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From this inequality

inf
y∈X

ϕk`(y) + Γk`(y , z`) < n + 1,

by the definition of Γk , it follows that for every `, we can find a
sequence y `0, . . . , y

`
n`

, with

I y `n` = z` ∈ V̄1/k`(B),

I ϕk`(y `0) + Ck(y `0, . . . , y
`
n`

) < n + 1.

By the definition of ϕk and Ck , we get

k`d(y `0, V̄1/k`(A)) +

n`−1∑
i=0

[k`d(f (y `i ), y `i+1) + 1] < n + 1,

which can be rewritten as

k`d(y `0, V̄1/k`(A)) + n` +

n`−1∑
i=0

k`d(f (y `i ), y `i+1) < n + 1.
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yields

I n` ≤ n,

I d(y0
` , V̄1/k`(A)) < (n + 1)/k`,

I d(f (y `i ), y `i+1) < (n + 1)/k`, for every i = 0, . . . , n` − 1.

Therefore, extracting if necessary, we can assume that

n` = m ≤ n,

with m independent of `. Moreover, since k` → +∞, the
inequalities above, together with y `m = y `n` = z` ∈ V̄1/k`(B), imply

that, for `→∞, we have d(y `0,A)→ 0, d(y `m,B)→ 0 and
d(f (y `i ), y `i+1)→ 0, for i = 0, . . . ,m − 1.
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