An Urysohn-Type theorem under a DYNAMICAL CONSTRAINT

Albert Fathi

CIRM Marseille, February, 2017

In this lecture, we address a question raised by M. Entov and L. Polterovich:

In this lecture, we address a question raised by M. Entov and L. Polterovich:
Suppose $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ is a smooth flow on the smooth manifold M generated by the vector field X.

In this lecture, we address a question raised by M. Entov and L. Polterovich:
Suppose $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ is a smooth flow on the smooth manifold M generated by the vector field X.If $A, B \subset M$ are compact subsets, such that

In this lecture, we address a question raised by M. Entov and L. Polterovich:
Suppose $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ is a smooth flow on the smooth manifold M generated by the vector field X.If $A, B \subset M$ are compact subsets, such that

$$
\varphi_{t}(A) \cap B=\emptyset, \text { for all } t \geq T
$$

In this lecture, we address a question raised by M. Entov and L. Polterovich:
Suppose $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ is a smooth flow on the smooth manifold M generated by the vector field X.If $A, B \subset M$ are compact subsets, such that

$$
\varphi_{t}(A) \cap B=\emptyset, \text { for all } t \geq T
$$

show that there exists a smooth function $\theta: M \rightarrow \mathbb{R}$ with

In this lecture, we address a question raised by M. Entov and L. Polterovich:
Suppose $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ is a smooth flow on the smooth manifold M generated by the vector field X.If $A, B \subset M$ are compact subsets, such that

$$
\varphi_{t}(A) \cap B=\emptyset, \text { for all } t \geq T
$$

show that there exists a smooth function $\theta: M \rightarrow \mathbb{R}$ with

$$
X \theta \leq 1, \theta \mid A \leq 0, \text { and } \theta \mid B>T
$$

where $X \theta$ is the derivative of θ in the direction of the vector field X.

In this lecture, we address a question raised by M. Entov and L. Polterovich:
Suppose $\left(\varphi_{t}\right)_{t \in \mathbb{R}}$ is a smooth flow on the smooth manifold M generated by the vector field X.If $A, B \subset M$ are compact subsets, such that

$$
\varphi_{t}(A) \cap B=\emptyset, \text { for all } t \geq T
$$

show that there exists a smooth function $\theta: M \rightarrow \mathbb{R}$ with

$$
X \theta \leq 1, \theta \mid A \leq 0, \text { and } \theta \mid B>T
$$

where $X \theta$ is the derivative of θ in the direction of the vector field X.
The condition $X \theta \leq 1$ means that θ cannot increase faster than time along an orbit.

They needed this result to use in the work

They needed this result to use in the work
M. Entov \& L. Polterovich, Lagrangian tetragons and instabilities in Hamiltonian dynamics, preprint on Arxiv

They needed this result to use in the work
M. Entov \& L. Polterovich, Lagrangian tetragons and instabilities in Hamiltonian dynamics, preprint on Arxiv

The positive answer to the question is contained in our work
An Urysohn-type theorem under a dynamical constraint, Journal of Modern Dynamics, 10 (2016) 331-338.

In this lecture, we will explain the discrete version.

In this lecture, we will explain the discrete version.
Consider a continuous map $f: X \rightarrow X$ of a metric space X.

In this lecture, we will explain the discrete version.
Consider a continuous map $f: X \rightarrow X$ of a metric space X. Suppose that $A, B \subset X$ are closed subsets, with A compact, and $n \geq 1$ is an integer.

In this lecture, we will explain the discrete version.
Consider a continuous map $f: X \rightarrow X$ of a metric space X. Suppose that $A, B \subset X$ are closed subsets, with A compact, and $n \geq 1$ is an integer.

Question: When is it possible to find a continuous function $\theta: X \rightarrow \mathbb{R}$ such that

In this lecture, we will explain the discrete version.
Consider a continuous map $f: X \rightarrow X$ of a metric space X. Suppose that $A, B \subset X$ are closed subsets, with A compact, and $n \geq 1$ is an integer.

Question: When is it possible to find a continuous function $\theta: X \rightarrow \mathbb{R}$ such that

$$
\theta f-\theta \leq 1, \theta \mid A \leq 0, \text { and } \theta \mid B>n .
$$

In this lecture, we will explain the discrete version.
Consider a continuous map $f: X \rightarrow X$ of a metric space X. Suppose that $A, B \subset X$ are closed subsets, with A compact, and $n \geq 1$ is an integer.

Question: When is it possible to find a continuous function $\theta: X \rightarrow \mathbb{R}$ such that

$$
\theta f-\theta \leq 1, \theta \mid A \leq 0, \text { and } \theta \mid B>n .
$$

From the conditions $\theta f-\theta \leq 1$ and $\theta \mid A \leq 0$, by induction on ℓ, we get

In this lecture, we will explain the discrete version.
Consider a continuous map $f: X \rightarrow X$ of a metric space X. Suppose that $A, B \subset X$ are closed subsets, with A compact, and $n \geq 1$ is an integer.

Question: When is it possible to find a continuous function $\theta: X \rightarrow \mathbb{R}$ such that

$$
\theta f-\theta \leq 1, \theta \mid A \leq 0, \text { and } \theta \mid B>n .
$$

From the conditions $\theta f-\theta \leq 1$ and $\theta \mid A \leq 0$, by induction on ℓ, we get

$$
\theta \mid f^{\ell}(A) \leq \ell, \text { for all } \ell \geq 0
$$

$\theta \mid B>n$ and $\theta \mid f^{\ell}(A) \leq \ell$, for all $\ell \geq 0$.

$$
\theta \mid B>n \text { and } \theta \mid f^{\ell}(A) \leq \ell, \text { for all } \ell \geq 0 .
$$

Therefore the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$ is necessary to prove the existence of θ satisfying

$$
\theta f-\theta \leq 1, \theta \mid A \leq 0, \text { and } \theta \mid B>n .
$$

The answer to the question is given by:

The answer to the question is given by:
Theorem (Discrete Case)
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.

The answer to the question is given by:
Theorem (Discrete Case)
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,

The answer to the question is given by:
Theorem (Discrete Case)
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,
- $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, where $n \geq 0$.

The answer to the question is given by:
Theorem (Discrete Case)
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,
- $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, where $n \geq 0$.

Then we can find a Lipschitz function $\theta: X \rightarrow[0,+\infty[$ such that

The answer to the question is given by:
Theorem (Discrete Case)
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,
- $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, where $n \geq 0$.

Then we can find a Lipschitz function $\theta: X \rightarrow[0,+\infty[$ such that

- $\theta f-\theta \leq 1$ everywhere,

The answer to the question is given by:
Theorem (Discrete Case)
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,
- $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, where $n \geq 0$.

Then we can find a Lipschitz function $\theta: X \rightarrow[0,+\infty[$ such that

- $\theta f-\theta \leq 1$ everywhere,
- θ is identically 0 on a neighborhood of A,

The answer to the question is given by:
Theorem (Discrete Case)
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,
- $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, where $n \geq 0$.

Then we can find a Lipschitz function $\theta: X \rightarrow[0,+\infty[$ such that

- $\theta f-\theta \leq 1$ everywhere,
- θ is identically 0 on a neighborhood of A,
- θ is $\geq n+1$ on a neighborhood of B.

The answer to the question is given by:
Theorem (Discrete Case)
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,
- $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, where $n \geq 0$.

Then we can find a Lipschitz function $\theta: X \rightarrow[0,+\infty[$ such that

- $\theta f-\theta \leq 1$ everywhere,
- θ is identically 0 on a neighborhood of A,
- θ is $\geq n+1$ on a neighborhood of B.

Two remarks

Two remarks

1) If f is the identity, the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$ is independent of $n \geq 1$, and boils down to $B \cap A=\emptyset$.

Two remarks

1) If f is the identity, the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$ is independent of $n \geq 1$, and boils down to $B \cap A=\emptyset$. Moreover, the condition $\theta f-\theta \leq 1$ is obviously satisfied by any function θ,
2) If f is the identity, the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$ is independent of $n \geq 1$, and boils down to $B \cap A=\emptyset$. Moreover, the condition $\theta f-\theta \leq 1$ is obviously satisfied by any function θ, and the theorem reduces to the usual Urysohn lemma:
3) If f is the identity, the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$ is independent of $n \geq 1$, and boils down to $B \cap A=\emptyset$. Moreover, the condition $\theta f-\theta \leq 1$ is obviously satisfied by any function θ, and the theorem reduces to the usual Urysohn lemma: if $B \cap A=\emptyset$, then there exists θ with $\theta \leq 0$ on A and $\theta \geq n+1$ on B.
4) If f is the identity, the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$ is independent of $n \geq 1$, and boils down to $B \cap A=\emptyset$. Moreover, the condition $\theta f-\theta \leq 1$ is obviously satisfied by any function θ, and the theorem reduces to the usual Urysohn lemma: if $B \cap A=\emptyset$, then there exists θ with $\theta \leq 0$ on A and $\theta \geq n+1$ on B.
5) As was observed in
L. Buhovsky, M. Entov \& L. Polterovich, Poisson brackets and symplectic invariants, Selecta Math. 18 (2012), 89-157,
there is a case where it is easier to obtain θ.
6) If f is the identity, the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$ is independent of $n \geq 1$, and boils down to $B \cap A=\emptyset$. Moreover, the condition $\theta f-\theta \leq 1$ is obviously satisfied by any function θ, and the theorem reduces to the usual Urysohn lemma: if $B \cap A=\emptyset$, then there exists θ with $\theta \leq 0$ on A and $\theta \geq n+1$ on B.
7) As was observed in
L. Buhovsky, M. Entov \& L. Polterovich, Poisson brackets and symplectic invariants, Selecta Math. 18 (2012), 89-157,
there is a case where it is easier to obtain θ.
Assume that f is a homeomorphism. Moreover, instead of the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, assume the stronger one
8) If f is the identity, the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$ is independent of $n \geq 1$, and boils down to $B \cap A=\emptyset$. Moreover, the condition $\theta f-\theta \leq 1$ is obviously satisfied by any function θ, and the theorem reduces to the usual Urysohn lemma: if $B \cap A=\emptyset$, then there exists θ with $\theta \leq 0$ on A and $\theta \geq n+1$ on B.
9) As was observed in
L. Buhovsky, M. Entov \& L. Polterovich, Poisson brackets and symplectic invariants, Selecta Math. 18 (2012), 89-157,
there is a case where it is easier to obtain θ.
Assume that f is a homeomorphism. Moreover, instead of the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, assume the stronger one

$$
B \cap\left(\cup_{i=-n}^{n} f^{i}(A)\right)=\emptyset,
$$

1) If f is the identity, the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$ is independent of $n \geq 1$, and boils down to $B \cap A=\emptyset$. Moreover, the condition $\theta f-\theta \leq 1$ is obviously satisfied by any function θ, and the theorem reduces to the usual Urysohn lemma: if $B \cap A=\emptyset$, then there exists θ with $\theta \leq 0$ on A and $\theta \geq n+1$ on B.
2) As was observed in
L. Buhovsky, M. Entov \& L. Polterovich, Poisson brackets and symplectic invariants, Selecta Math. 18 (2012), 89-157,
there is a case where it is easier to obtain θ.
Assume that f is a homeomorphism. Moreover, instead of the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, assume the stronger one

$$
B \cap\left(\cup_{i=-n}^{n} f^{i}(A)\right)=\emptyset,
$$

which is equivalent to $\left(\cup_{i=0}^{n} f^{i}(B)\right) \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$.

1) If f is the identity, the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$ is independent of $n \geq 1$, and boils down to $B \cap A=\emptyset$. Moreover, the condition $\theta f-\theta \leq 1$ is obviously satisfied by any function θ, and the theorem reduces to the usual Urysohn lemma: if $B \cap A=\emptyset$, then there exists θ with $\theta \leq 0$ on A and $\theta \geq n+1$ on B.
2) As was observed in
L. Buhovsky, M. Entov \& L. Polterovich, Poisson brackets and symplectic invariants, Selecta Math. 18 (2012), 89-157,
there is a case where it is easier to obtain θ.
Assume that f is a homeomorphism. Moreover, instead of the condition $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, assume the stronger one

$$
B \cap\left(\cup_{i=-n}^{n} f^{i}(A)\right)=\emptyset,
$$

which is equivalent to $\left(\cup_{i=0}^{n} f^{i}(B)\right) \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$.

Assuming also that B is compact, we get that the sets $\cup_{i=0}^{n} f^{i}(A)$ and $\cup_{i=0}^{n} f^{i}(B)$ are closed and disjoint.

Assuming also that B is compact, we get that the sets $\cup_{i=0}^{n} f^{i}(A)$ and $\cup_{i=0}^{n} f^{i}(B)$ are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function $\bar{\theta}: X \rightarrow[0,1]$ which is identically 0 in a neighborhood of $\cup_{i=0}^{n} f^{i}(A)$ and is identically 1 in a neighborhood of $\cup_{i=0}^{n} f^{i}(B)$,

Assuming also that B is compact, we get that the sets $\cup_{i=0}^{n} f^{i}(A)$ and $\cup_{i=0}^{n} f^{i}(B)$ are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function $\bar{\theta}: X \rightarrow[0,1]$ which is identically 0 in a neighborhood of $\cup_{i=0}^{n} f^{i}(A)$ and is identically 1 in a neighborhood of $\cup_{i=0}^{n} f^{i}(B)$, then we set $\theta=\sum_{i=0}^{n} \bar{\theta} f^{i}$.

Assuming also that B is compact, we get that the sets $\cup_{i=0}^{n} f^{i}(A)$ and $\cup_{i=0}^{n} f^{i}(B)$ are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function $\bar{\theta}: X \rightarrow[0,1]$ which is identically 0 in a neighborhood of $\cup_{i=0}^{n} f^{i}(A)$ and is identically 1 in a neighborhood of $\cup_{i=0}^{n} f^{i}(B)$, then we set $\theta=\sum_{i=0}^{n} \bar{\theta} f^{i}$. This θ satisfies the conclusion of the theorem.

Assuming also that B is compact, we get that the sets $\cup_{i=0}^{n} f^{i}(A)$ and $\cup_{i=0}^{n} f^{i}(B)$ are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function $\bar{\theta}: X \rightarrow[0,1]$ which is identically 0 in a neighborhood of $\cup_{i=0}^{n} f^{i}(A)$ and is identically 1 in a neighborhood of $\cup_{i=0}^{n} f^{i}(B)$, then we set $\theta=\sum_{i=0}^{n} \bar{\theta} f^{i}$. This θ satisfies the conclusion of the theorem. Obviously, for $x \in A$ (resp. $x \in B$), we have $\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=0$ (resp. $\left.\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=\sum_{i=0}^{n} 1=n+1\right)$.

Assuming also that B is compact, we get that the sets $\cup_{i=0}^{n} f^{i}(A)$ and $\cup_{i=0}^{n} f^{i}(B)$ are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function $\bar{\theta}: X \rightarrow[0,1]$ which is identically 0 in a neighborhood of $\cup_{i=0}^{n} f^{i}(A)$ and is identically 1 in a neighborhood of $\cup_{i=0}^{n} f^{i}(B)$, then we set $\theta=\sum_{i=0}^{n} \bar{\theta} f^{i}$. This θ satisfies the conclusion of the theorem. Obviously, for $x \in A$ (resp. $x \in B$), we have $\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=0$ (resp. $\left.\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=\sum_{i=0}^{n} 1=n+1\right)$. It remains to show that $\theta f-\theta \leq 1$.

Assuming also that B is compact, we get that the sets $\cup_{i=0}^{n} f^{i}(A)$ and $\cup_{i=0}^{n} f^{i}(B)$ are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function $\bar{\theta}: X \rightarrow[0,1]$ which is identically 0 in a neighborhood of $\cup_{i=0}^{n} f^{i}(A)$ and is identically 1 in a neighborhood of $\cup_{i=0}^{n} f^{i}(B)$, then we set $\theta=\sum_{i=0}^{n} \bar{\theta} f^{i}$. This θ satisfies the conclusion of the theorem. Obviously, for $x \in A$ (resp. $x \in B$), we have $\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=0$ (resp. $\left.\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=\sum_{i=0}^{n} 1=n+1\right)$. It remains to show that $\theta f-\theta \leq 1$. In fact, we have

$$
\begin{aligned}
\theta f-\theta & =\sum_{i=0}^{n} \bar{\theta} f^{i+1}-\sum_{i=0}^{n} \bar{\theta} f^{i} \\
& =\theta f^{n+1}-\theta \\
& \leq 1
\end{aligned}
$$

where the last inequality comes from $\theta(X) \subset[0,1]$.

Assuming also that B is compact, we get that the sets $\cup_{i=0}^{n} f^{i}(A)$ and $\cup_{i=0}^{n} f^{i}(B)$ are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function $\bar{\theta}: X \rightarrow[0,1]$ which is identically 0 in a neighborhood of $\cup_{i=0}^{n} f^{i}(A)$ and is identically 1 in a neighborhood of $\cup_{i=0}^{n} f^{i}(B)$, then we set $\theta=\sum_{i=0}^{n} \bar{\theta} f^{i}$. This θ satisfies the conclusion of the theorem. Obviously, for $x \in A$ (resp. $x \in B$), we have $\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=0$ (resp. $\left.\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=\sum_{i=0}^{n} 1=n+1\right)$. It remains to show that $\theta f-\theta \leq 1$. In fact, we have

$$
\begin{aligned}
\theta f-\theta & =\sum_{i=0}^{n} \bar{\theta} f^{i+1}-\sum_{i=0}^{n} \bar{\theta} f^{i} \\
& \leq 1
\end{aligned}
$$

where the last inequality comes from $\theta(X) \subset[0,1]$.

Assuming also that B is compact, we get that the sets $\cup_{i=0}^{n} f^{i}(A)$ and $\cup_{i=0}^{n} f^{i}(B)$ are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function $\bar{\theta}: X \rightarrow[0,1]$ which is identically 0 in a neighborhood of $\cup_{i=0}^{n} f^{i}(A)$ and is identically 1 in a neighborhood of $\cup_{i=0}^{n} f^{i}(B)$, then we set $\theta=\sum_{i=0}^{n} \bar{\theta} f^{i}$. This θ satisfies the conclusion of the theorem. Obviously, for $x \in A$ (resp. $x \in B$), we have $\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=0$ (resp. $\left.\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=\sum_{i=0}^{n} 1=n+1\right)$. It remains to show that $\theta f-\theta \leq 1$. In fact, we have

$$
\begin{aligned}
\theta f-\theta & =\sum_{i=0}^{n} \bar{\theta} f^{i+1}-\sum_{i=0}^{n} \bar{\theta} f^{i} \\
& =\theta f^{n+1}-\theta \\
& \leq 1
\end{aligned}
$$

Assuming also that B is compact, we get that the sets $\cup_{i=0}^{n} f^{i}(A)$ and $\cup_{i=0}^{n} f^{i}(B)$ are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function $\bar{\theta}: X \rightarrow[0,1]$ which is identically 0 in a neighborhood of $\cup_{i=0}^{n} f^{i}(A)$ and is identically 1 in a neighborhood of $\cup_{i=0}^{n} f^{i}(B)$, then we set $\theta=\sum_{i=0}^{n} \bar{\theta} f^{i}$. This θ satisfies the conclusion of the theorem. Obviously, for $x \in A$ (resp. $x \in B$), we have $\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=0$ (resp. $\left.\theta(x)=\sum_{i=0}^{n} \bar{\theta} f^{i}(x)=\sum_{i=0}^{n} 1=n+1\right)$. It remains to show that $\theta f-\theta \leq 1$. In fact, we have

$$
\begin{aligned}
\theta f-\theta & =\sum_{i=0}^{n} \bar{\theta} f^{i+1}-\sum_{i=0}^{n} \bar{\theta} f^{i} \\
& =\theta f^{n+1}-\theta \\
& \leq 1
\end{aligned}
$$

where the last inequality comes from $\theta(X) \subset[0,1]$.

We now proceed to prove the theorem.

We now proceed to prove the theorem.
We will use the method from our previous work
with Pierre Pageault, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems 35 (2015), 1187-1207.

We now proceed to prove the theorem.
We will use the method from our previous work

```
with Pierre Pageault, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems 35 (2015), 1187-1207.
```

In the work above, we introduced a kind of Lagrangian for discrete dynamical systems to obtain orbits as "paths" minimizing action.

We now proceed to prove the theorem.
We will use the method from our previous work
> with Pierre Pageault, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems 35 (2015), 1187-1207.

In the work above, we introduced a kind of Lagrangian for discrete dynamical systems to obtain orbits as "paths" minimizing action. It allowed us to study Lyapunov functions.

We now proceed to prove the theorem.
We will use the method from our previous work
> with Pierre Pageault, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems 35 (2015), 1187-1207.

In the work above, we introduced a kind of Lagrangian for discrete dynamical systems to obtain orbits as "paths" minimizing action. It allowed us to study Lyapunov functions.
This was done in the following way: Suppose $f: X \rightarrow X$ is a continuous self map of the metric space (X, d).

We now proceed to prove the theorem.
We will use the method from our previous work
> with Pierre Pageault, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems 35 (2015), 1187-1207.

In the work above, we introduced a kind of Lagrangian for discrete dynamical systems to obtain orbits as "paths" minimizing action. It allowed us to study Lyapunov functions.
This was done in the following way: Suppose $f: X \rightarrow X$ is a continuous self map of the metric space (X, d).
A discrete path is a sequence $\left(x_{0}, \ldots, x_{n}\right)$, with $n \geq 1$. In fact, such a sequence is called a chain. We will stick to this terminology.

We now proceed to prove the theorem.
We will use the method from our previous work
> with Pierre Pageault, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems 35 (2015), 1187-1207.

In the work above, we introduced a kind of Lagrangian for discrete dynamical systems to obtain orbits as "paths" minimizing action. It allowed us to study Lyapunov functions.
This was done in the following way: Suppose $f: X \rightarrow X$ is a continuous self map of the metric space (X, d).
A discrete path is a sequence $\left(x_{0}, \ldots, x_{n}\right)$, with $n \geq 1$. In fact, such a sequence is called a chain. We will stick to this terminology.
To measure the deviation of $\left(x_{0}, \ldots, x_{n}\right)$ from an orbit we introduce the action $A\left(x_{0}, \ldots, x_{n}\right)$ of $\left(x_{0}, \ldots, x_{n}\right)$ by

$$
A\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} d\left(f\left(x_{i}\right), x_{i+1}\right) \geq 0
$$

So the action $A\left(x_{0}, \ldots, x_{n}\right)$ is the sum of the black distances on the figure.

So the action $A\left(x_{0}, \ldots, x_{n}\right)$ is the sum of the black distances on the figure.
Of course, using the definition

$$
A\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} d\left(f\left(x_{i}\right), x_{i+1}\right) \geq 0
$$

- x_{0}

So the action $A\left(x_{0}, \ldots, x_{n}\right)$ is the sum of the black distances on the figure.
Of course, using the definition

$$
A\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} d\left(f\left(x_{i}\right), x_{i+1}\right) \geq 0
$$

we have $A\left(x_{0}, \ldots, x_{n}\right)=0$ if and only if the chain $\left(x_{0}, \ldots, x_{n}\right)$ is the orbit of x_{0} up to time n.

- x_{0}

So the action $A\left(x_{0}, \ldots, x_{n}\right)$ is the sum of the black distances on the figure.
Of course, using the definition

$$
A\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} d\left(f\left(x_{i}\right), x_{i+1}\right) \geq 0
$$

we have $A\left(x_{0}, \ldots, x_{n}\right)=0$ if and only if the chain $\left(x_{0}, \ldots, x_{n}\right)$ is the orbit of x_{0} up to time n.

To measure deviation from an orbit, one could replace the action by different types of quantities.

To measure deviation from an orbit, one could replace the action by different types of quantities.
The first one is

$$
P\left(x_{0}, \ldots, x_{n}\right)=\max _{i=0}^{n-1} d\left(f\left(x_{i}\right), x_{i+1}\right)
$$

To measure deviation from an orbit, one could replace the action by different types of quantities.
The first one is

$$
P\left(x_{0}, \ldots, x_{n}\right)=\max _{i=0}^{n-1} d\left(f\left(x_{i}\right), x_{i+1}\right)
$$

As shown by Pierre Pageault, this is adapted to study the chain recurrent set.

To measure deviation from an orbit, one could replace the action by different types of quantities.
The first one is

$$
P\left(x_{0}, \ldots, x_{n}\right)=\max _{i=0}^{n-1} d\left(f\left(x_{i}\right), x_{i+1}\right)
$$

As shown by Pierre Pageault, this is adapted to study the chain recurrent set.
For every $p>0$, we could also use

$$
A^{p}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} d\left(f\left(x_{i}\right), x_{i+1}\right)^{p}
$$

To measure deviation from an orbit, one could replace the action by different types of quantities.
The first one is

$$
P\left(x_{0}, \ldots, x_{n}\right)=\max _{i=0}^{n-1} d\left(f\left(x_{i}\right), x_{i+1}\right)
$$

As shown by Pierre Pageault, this is adapted to study the chain recurrent set.
For every $p>0$, we could also use

$$
A^{p}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} d\left(f\left(x_{i}\right), x_{i+1}\right)^{p}
$$

In fact, as we will see, using $p=1$, allows to obtain (uniformly) Lipschitz function.

We used the action A to study Lyapunov functions, i.e. functions $\psi: X \rightarrow \mathbb{R}$ such that $\psi f \leq \psi$, or equivalently $\psi f-\psi \leq 0$. Since we want instead the condition $\psi f-\psi \leq 1$, we have to modify our action by throwing in the constant potential -1 .
For every $k>0$, we define the cost $c_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
c_{k}(x, y)=k d(f(x), y)+1
$$

This is to be compared with the Lagrangian associated to the motion of a particule of mass m in a potential field with a potential energy V

$$
L(x, v)=\frac{m}{2}\|v\|^{2}-V(x) .
$$

Of course, a discrete speed at the point x is an ordered pair (x, y) ($y=x+v!$).
If we compare, $k / 2$ is therefore the mass. By increasing k, we are making the particle heavier without changing the potential energy $V=-1$

To define the action along a path(=chain) $\left(x_{0}, \ldots, x_{n}\right)$, with $n \geq 1$,

To define the action along a path(=chain) $\left(x_{0}, \ldots, x_{n}\right)$, with $n \geq 1$, we need to integrate the Lagrangian $c_{k}(x, y)=k d(f(x), y)+1$,

To define the action along a path(=chain) $\left(x_{0}, \ldots, x_{n}\right)$, with $n \geq 1$, we need to integrate the Lagrangian $c_{k}(x, y)=k d(f(x), y)+1$, i.e. the action (called also cost) $C_{k}\left(x_{0}, \ldots, x_{n}\right)$ is defined by

To define the action along a path(=chain) $\left(x_{0}, \ldots, x_{n}\right)$, with $n \geq 1$, we need to integrate the Lagrangian $c_{k}(x, y)=k d(f(x), y)+1$, i.e. the action (called also cost) $C_{k}\left(x_{0}, \ldots, x_{n}\right)$ is defined by

$$
C_{k}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} c_{k}\left(x_{i}, x_{i+1}\right)=\sum_{i=0}^{n-1}\left(k d\left(f\left(x_{i}\right), x_{i+1}\right)+1\right) .
$$

To define the action along a path(=chain) $\left(x_{0}, \ldots, x_{n}\right)$, with $n \geq 1$, we need to integrate the Lagrangian $c_{k}(x, y)=k d(f(x), y)+1$, i.e. the action (called also cost) $C_{k}\left(x_{0}, \ldots, x_{n}\right)$ is defined by

$$
C_{k}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} c_{k}\left(x_{i}, x_{i+1}\right)=\sum_{i=0}^{n-1}\left(k d\left(f\left(x_{i}\right), x_{i+1}\right)+1\right) .
$$

Note that $C_{k}\left(x_{0}, \ldots, x_{n}\right) \geq n \geq 1$. Therefore $n \leq\left[C_{k}\left(x_{0}, \ldots, x_{n}\right)\right]$, where $[r]$ is, as usual, the largest integer $\leq r \in \mathbb{R}$.

To define the action along a path(=chain) $\left(x_{0}, \ldots, x_{n}\right)$, with $n \geq 1$, we need to integrate the Lagrangian $c_{k}(x, y)=k d(f(x), y)+1$, i.e. the action (called also cost) $C_{k}\left(x_{0}, \ldots, x_{n}\right)$ is defined by

$$
C_{k}\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=0}^{n-1} c_{k}\left(x_{i}, x_{i+1}\right)=\sum_{i=0}^{n-1}\left(k d\left(f\left(x_{i}\right), x_{i+1}\right)+1\right) .
$$

Note that $C_{k}\left(x_{0}, \ldots, x_{n}\right) \geq n \geq 1$. Therefore $n \leq\left[C_{k}\left(x_{0}, \ldots, x_{n}\right)\right]$, where [r] is, as usual, the largest integer $\leq r \in \mathbb{R}$.
We will consider the minimal action $\Gamma_{k}(x, y)$ needed to connect the point x to the point y.

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}.

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}. The function Γ_{k} satisfies the following properties:

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}. The function Γ_{k} satisfies the following properties:
(i) $1 \leq \Gamma_{k}(x, y) \leq k d(f(x), y)+1$, for every $x, y \in X$.

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}. The function Γ_{k} satisfies the following properties:
(i) $1 \leq \Gamma_{k}(x, y) \leq k d(f(x), y)+1$, for every $x, y \in X$.

In fact, we have $\Gamma_{k}(x, y) \leq C_{k}(x, y)=k d(f(x), y)+1$.

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}. The function Γ_{k} satisfies the following properties:
(i) $1 \leq \Gamma_{k}(x, y) \leq k d(f(x), y)+1$, for every $x, y \in X$.

In fact, we have $\Gamma_{k}(x, y) \leq C_{k}(x, y)=k d(f(x), y)+1$.
(ii) $\Gamma_{k}(x, f(x))=1$, for every x in X.

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}. The function Γ_{k} satisfies the following properties:
(i) $1 \leq \Gamma_{k}(x, y) \leq k d(f(x), y)+1$, for every $x, y \in X$.

In fact, we have $\Gamma_{k}(x, y) \leq C_{k}(x, y)=k d(f(x), y)+1$.
(ii) $\Gamma_{k}(x, f(x))=1$, for every x in X.

This follows from (i) with $y=f(x)$.

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}. The function Γ_{k} satisfies the following properties:
(i) $1 \leq \Gamma_{k}(x, y) \leq k d(f(x), y)+1$, for every $x, y \in X$.

In fact, we have $\Gamma_{k}(x, y) \leq C_{k}(x, y)=k d(f(x), y)+1$.
(ii) $\Gamma_{k}(x, f(x))=1$, for every x in X.

This follows from (i) with $y=f(x)$.

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}. The function Γ_{k} satisfies the following properties:
(i) $1 \leq \Gamma_{k}(x, y) \leq k d(f(x), y)+1$, for every $x, y \in X$.

In fact, we have $\Gamma_{k}(x, y) \leq C_{k}(x, y)=k d(f(x), y)+1$.
(ii) $\Gamma_{k}(x, f(x))=1$, for every x in X.

This follows from (i) with $y=f(x)$.
(iii) $\Gamma_{k}(x, y) \leq \Gamma_{k}(x, z)+\Gamma_{k}(z, y)$, for every x, y, z in X.

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}.
The function Γ_{k} satisfies the following properties:
(i) $1 \leq \Gamma_{k}(x, y) \leq k d(f(x), y)+1$, for every $x, y \in X$.

In fact, we have $\Gamma_{k}(x, y) \leq C_{k}(x, y)=k d(f(x), y)+1$.
(ii) $\Gamma_{k}(x, f(x))=1$, for every x in X.

This follows from (i) with $y=f(x)$.
(iii) $\Gamma_{k}(x, y) \leq \Gamma_{k}(x, z)+\Gamma_{k}(z, y)$, for every x, y, z in X.

If you have a chain from x to z, and one from z to y, you can concatenate them. The action of the concatenation is the sum of the actions. Inequality follows by taking infimum.

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}.
The function Γ_{k} satisfies the following properties:
(i) $1 \leq \Gamma_{k}(x, y) \leq k d(f(x), y)+1$, for every $x, y \in X$.

In fact, we have $\Gamma_{k}(x, y) \leq C_{k}(x, y)=k d(f(x), y)+1$.
(ii) $\Gamma_{k}(x, f(x))=1$, for every x in X.

This follows from (i) with $y=f(x)$.
(iii) $\Gamma_{k}(x, y) \leq \Gamma_{k}(x, z)+\Gamma_{k}(z, y)$, for every x, y, z in X.

If you have a chain from x to z, and one from z to y, you can concatenate them. The action of the concatenation is the sum of the actions. Inequality follows by taking infimum.
(iv) $\Gamma_{k}(x, f(y)) \leq \Gamma_{k}(x, y)+1$, for every $x, y \in X$;

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}.
The function Γ_{k} satisfies the following properties:
(i) $1 \leq \Gamma_{k}(x, y) \leq k d(f(x), y)+1$, for every $x, y \in X$.

In fact, we have $\Gamma_{k}(x, y) \leq C_{k}(x, y)=k d(f(x), y)+1$.
(ii) $\Gamma_{k}(x, f(x))=1$, for every x in X.

This follows from (i) with $y=f(x)$.
(iii) $\Gamma_{k}(x, y) \leq \Gamma_{k}(x, z)+\Gamma_{k}(z, y)$, for every x, y, z in X.

If you have a chain from x to z, and one from z to y, you can concatenate them. The action of the concatenation is the sum of the actions. Inequality follows by taking infimum.
(iv) $\Gamma_{k}(x, f(y)) \leq \Gamma_{k}(x, y)+1$, for every $x, y \in X$;
$\Gamma_{k}(x, f(y)) \leq \Gamma_{k}(x, y)+\Gamma_{k}(y, f(y))$ by (iii).

Therefore, we define $\Gamma_{k}: X \times X \rightarrow \mathbb{R}$ by

$$
\Gamma_{k}(x, y)=\inf \left\{C_{k}\left(x_{0}, \ldots, x_{n}\right) \mid x_{0}=x, x_{n}=y\right\} \geq 1
$$

It is not difficult to obtain the following properties of Γ_{k}.
The function Γ_{k} satisfies the following properties:
(i) $1 \leq \Gamma_{k}(x, y) \leq k d(f(x), y)+1$, for every $x, y \in X$.

In fact, we have $\Gamma_{k}(x, y) \leq C_{k}(x, y)=k d(f(x), y)+1$.
(ii) $\Gamma_{k}(x, f(x))=1$, for every x in X.

This follows from (i) with $y=f(x)$.
(iii) $\Gamma_{k}(x, y) \leq \Gamma_{k}(x, z)+\Gamma_{k}(z, y)$, for every x, y, z in X.

If you have a chain from x to z, and one from z to y, you can concatenate them. The action of the concatenation is the sum of the actions. Inequality follows by taking infimum.
(iv) $\Gamma_{k}(x, f(y)) \leq \Gamma_{k}(x, y)+1$, for every $x, y \in X$;
$\Gamma_{k}(x, f(y)) \leq \Gamma_{k}(x, y)+\Gamma_{k}(y, f(y))$ by (iii).
But $\Gamma_{k}(y, f(y))=1$ by (ii).
(v) for every x, y, z in X, we have
(v) for every x, y, z in X, we have

$$
\begin{aligned}
& \left|\Gamma_{k}(x, y)-\Gamma_{k}(x, z)\right| \leq k d(y, z) \\
& \left|\Gamma_{k}(x, y)-\Gamma_{k}(z, y)\right| \leq k d(f(y), f(z)) .
\end{aligned}
$$

(v) for every x, y, z in X, we have

$$
\begin{aligned}
& \left|\Gamma_{k}(x, y)-\Gamma_{k}(x, z)\right| \leq k d(y, z) \\
& \left|\Gamma_{k}(x, y)-\Gamma_{k}(z, y)\right| \leq k d(f(y), f(z)) .
\end{aligned}
$$

In particular, the function Γ_{k} is continuous, and uniformly Lipschitz in the second variable with Lipschitz constant k.
(v) for every x, y, z in X, we have

$$
\begin{aligned}
& \left|\Gamma_{k}(x, y)-\Gamma_{k}(x, z)\right| \leq k d(y, z) \\
& \left|\Gamma_{k}(x, y)-\Gamma_{k}(z, y)\right| \leq k d(f(y), f(z)) .
\end{aligned}
$$

In particular, the function Γ_{k} is continuous, and uniformly Lipschitz in the second variable with Lipschitz constant k.

We prove the first inequality. The proof of the second inequality is analogous.
(v) for every x, y, z in X, we have

$$
\begin{aligned}
& \left|\Gamma_{k}(x, y)-\Gamma_{k}(x, z)\right| \leq k d(y, z) \\
& \left|\Gamma_{k}(x, y)-\Gamma_{k}(z, y)\right| \leq k d(f(y), f(z)) .
\end{aligned}
$$

In particular, the function Γ_{k} is continuous, and uniformly Lipschitz in the second variable with Lipschitz constant k.

We prove the first inequality. The proof of the second inequality is analogous.
If $\left(x_{0}, \ldots, x_{n}\right)$ is a chain with $x_{0}=x, x_{n}=y$, we define the chain $\left(x_{0}, x_{1}, \ldots, x_{n-1}, z\right)$ joining x to z.

- $x_{0}=x{ }^{x_{1}}$
- $x_{0}=x$

We have

$$
\begin{aligned}
\Gamma_{k}(x, z) & \leq C_{k}\left(x_{0}, x_{1}, \ldots, x_{n-1}, z\right) \\
& =\sum_{i=0}^{n-2}\left(k d\left(f\left(x_{i}\right), x_{i+1}\right)+1\right)+\left(k d\left(f\left(x_{n-1}\right), z\right)+1\right) \\
& =\sum_{i=0}^{n-1}\left(k d\left(f\left(x_{i}\right), x_{i+1}\right)+1\right)+\left[k d\left(f\left(x_{n-1}\right), z\right)-k d\left(f\left(x_{n-1}\right), y\right)\right] \\
& \leq C_{k}\left(x_{0}, \ldots, x_{n}\right)+k d(z, y) .
\end{aligned}
$$

Therefore

$$
\Gamma_{k}(x, z) \leq C_{k}\left(x_{0}, \ldots, x_{n}\right)+k d(z, y) .
$$

Therefore

$$
\Gamma_{k}(x, z) \leq C_{k}\left(x_{0}, \ldots, x_{n}\right)+k d(z, y)
$$

Taking the infimum over all chains $\left(x_{0}, \ldots, x_{n}\right)$ with $x_{0}=x, x_{n}=y$, yields

$$
\Gamma_{k}(x, z) \leq \Gamma_{k}(x, y)+k d(y, z)
$$

Therefore

$$
\Gamma_{k}(x, z) \leq C_{k}\left(x_{0}, \ldots, x_{n}\right)+k d(z, y)
$$

Taking the infimum over all chains $\left(x_{0}, \ldots, x_{n}\right)$ with $x_{0}=x, x_{n}=y$, yields

$$
\Gamma_{k}(x, z) \leq \Gamma_{k}(x, y)+k d(y, z) .
$$

The first inequality follows by symmetry.

Therefore

$$
\Gamma_{k}(x, z) \leq C_{k}\left(x_{0}, \ldots, x_{n}\right)+k d(z, y)
$$

Taking the infimum over all chains $\left(x_{0}, \ldots, x_{n}\right)$ with $x_{0}=x, x_{n}=y$, yields

$$
\Gamma_{k}(x, z) \leq \Gamma_{k}(x, y)+k d(y, z) .
$$

The first inequality follows by symmetry.

We now note that if we fix $x \in X$ and define $\psi: X \rightarrow \mathbb{R}$ by $\psi(y)=\Gamma_{k}(x, y)$,

Therefore

$$
\Gamma_{k}(x, z) \leq C_{k}\left(x_{0}, \ldots, x_{n}\right)+k d(z, y)
$$

Taking the infimum over all chains $\left(x_{0}, \ldots, x_{n}\right)$ with $x_{0}=x, x_{n}=y$, yields

$$
\Gamma_{k}(x, z) \leq \Gamma_{k}(x, y)+k d(y, z) .
$$

The first inequality follows by symmetry.

We now note that if we fix $x \in X$ and define $\psi: X \rightarrow \mathbb{R}$ by $\psi(y)=\Gamma_{k}(x, y)$, we obtain from (v) that

$$
\left|\Gamma_{k}(x, y)-\Gamma_{k}(x, z)\right| \leq k d(y, z)
$$

which shows that ψ is Lipschitz with Lipschitz constant $\leq k$.

Therefore

$$
\Gamma_{k}(x, z) \leq C_{k}\left(x_{0}, \ldots, x_{n}\right)+k d(z, y)
$$

Taking the infimum over all chains $\left(x_{0}, \ldots, x_{n}\right)$ with $x_{0}=x, x_{n}=y$, yields

$$
\Gamma_{k}(x, z) \leq \Gamma_{k}(x, y)+k d(y, z)
$$

The first inequality follows by symmetry.

We now note that if we fix $x \in X$ and define $\psi: X \rightarrow \mathbb{R}$ by $\psi(y)=\Gamma_{k}(x, y)$, we obtain from (v) that

$$
\left|\Gamma_{k}(x, y)-\Gamma_{k}(x, z)\right| \leq k d(y, z)
$$

which shows that ψ is Lipschitz with Lipschitz constant $\leq k$. Moreover, since $\Gamma_{k}(x, f(y)) \leq \Gamma_{k}(x, y)+1$ by (iv),

Therefore

$$
\Gamma_{k}(x, z) \leq C_{k}\left(x_{0}, \ldots, x_{n}\right)+k d(z, y)
$$

Taking the infimum over all chains $\left(x_{0}, \ldots, x_{n}\right)$ with $x_{0}=x, x_{n}=y$, yields

$$
\Gamma_{k}(x, z) \leq \Gamma_{k}(x, y)+k d(y, z)
$$

The first inequality follows by symmetry.

We now note that if we fix $x \in X$ and define $\psi: X \rightarrow \mathbb{R}$ by $\psi(y)=\Gamma_{k}(x, y)$, we obtain from (v) that

$$
\left|\Gamma_{k}(x, y)-\Gamma_{k}(x, z)\right| \leq k d(y, z)
$$

which shows that ψ is Lipschitz with Lipschitz constant $\leq k$. Moreover, since $\Gamma_{k}(x, f(y)) \leq \Gamma_{k}(x, y)+1$ by (iv), we obtain $\psi(f(y))-\psi(y) \leq 1$.

Therefore we constructed a large family of equi-Lipschitz functions ψ such that $\psi f-\psi \leq 1$.

Therefore we constructed a large family of equi-Lipschitz functions ψ such that $\psi f-\psi \leq 1$. We should obtain the proof of the theorem by averaging them in a certain way.

Therefore we constructed a large family of equi-Lipschitz functions ψ such that $\psi f-\psi \leq 1$. We should obtain the proof of the theorem by averaging them in a certain way. This is what we proceed to do.

Therefore we constructed a large family of equi-Lipschitz functions ψ such that $\psi f-\psi \leq 1$. We should obtain the proof of the theorem by averaging them in a certain way. This is what we proceed to do.

with a twist!

Therefore we constructed a large family of equi-Lipschitz functions ψ such that $\psi f-\psi \leq 1$. We should obtain the proof of the theorem by averaging them in a certain way. This is what we proceed to do.
with a twist!
We will do an average not in the usual algebra $(+, \times)$ but instead in the algebra ($\min ,+$)

Therefore we constructed a large family of equi-Lipschitz functions ψ such that $\psi f-\psi \leq 1$. We should obtain the proof of the theorem by averaging them in a certain way. This is what we proceed to do.

with a twist!

We will do an average not in the usual algebra $(+, \times)$ but instead in the algebra ($\mathrm{min},+$) called also the idempotent algebra

Therefore we constructed a large family of equi-Lipschitz functions ψ such that $\psi f-\psi \leq 1$. We should obtain the proof of the theorem by averaging them in a certain way. This is what we proceed to do.

with a twist!

We will do an average not in the usual algebra $(+, \times)$ but instead in the algebra ($\mathrm{min},+$) called also the idempotent algebra or the tropical algebra.

It is probably a good time to recall our goal
Theorem
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,
- $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, where $n \geq 0$.

It is probably a good time to recall our goal
Theorem
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,
- $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, where $n \geq 0$.

Then we can find a Lipschitz function $\theta: X \rightarrow[0,+\infty[$ such that

It is probably a good time to recall our goal
Theorem
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,
- $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, where $n \geq 0$.

Then we can find a Lipschitz function $\theta: X \rightarrow[0,+\infty[$ such that

- $\theta f-\theta \leq 1$ everywhere,

It is probably a good time to recall our goal
Theorem
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,
- $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, where $n \geq 0$.

Then we can find a Lipschitz function $\theta: X \rightarrow[0,+\infty[$ such that

- $\theta f-\theta \leq 1$ everywhere,
- θ is identically 0 on a neighborhood of A,

It is probably a good time to recall our goal
Theorem
Assume

- $f: X \rightarrow X$ is a continuous self-map of the metric space X.
- $A, B \subset X$ are closed subsets, with A compact,
- $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$, where $n \geq 0$.

Then we can find a Lipschitz function $\theta: X \rightarrow[0,+\infty[$ such that

- $\theta f-\theta \leq 1$ everywhere,
- θ is identically 0 on a neighborhood of A,
- θ is $\geq n+1$ on a neighborhood of B.

Proof of Theorem

For a subset $S \subset X$, if $\epsilon>0$, we denote by

$$
\bar{V}_{\epsilon}(S)=\{x \in X \mid d(x, S) \leq \epsilon\}
$$

its closed ϵ-neighborhood.

Proof of Theorem

For a subset $S \subset X$, if $\epsilon>0$, we denote by

$$
\bar{V}_{\epsilon}(S)=\{x \in X \mid d(x, S) \leq \epsilon\}
$$

its closed ϵ-neighborhood.
For $k>0$, we define the function $\varphi_{k}: X \rightarrow[0,+\infty[$ by

$$
\varphi_{k}(x)=k d\left(x, \bar{V}_{1 / k}(A)\right) \geq 0 .
$$

Proof of Theorem

For a subset $S \subset X$, if $\epsilon>0$, we denote by

$$
\bar{V}_{\epsilon}(S)=\{x \in X \mid d(x, S) \leq \epsilon\}
$$

its closed ϵ-neighborhood.
For $k>0$, we define the function $\varphi_{k}: X \rightarrow[0,+\infty[$ by

$$
\varphi_{k}(x)=k d\left(x, \bar{V}_{1 / k}(A)\right) \geq 0
$$

Note that $\varphi_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$, and the function φ_{k} is k-Lipschitz.

Proof of Theorem

For a subset $S \subset X$, if $\epsilon>0$, we denote by

$$
\bar{V}_{\epsilon}(S)=\{x \in X \mid d(x, S) \leq \epsilon\}
$$

its closed ϵ-neighborhood.
For $k>0$, we define the function $\varphi_{k}: X \rightarrow[0,+\infty[$ by

$$
\varphi_{k}(x)=k d\left(x, \bar{V}_{1 / k}(A)\right) \geq 0
$$

Note that $\varphi_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$, and the function φ_{k} is k-Lipschitz.lt is not difficult to estimate from below the values of φ_{k} on $\bar{V}_{1 / k}(B)$ by

$$
\begin{equation*}
\varphi_{k} \mid \bar{V}_{1 / k}(B) \geq k d(A, B)-2 \tag{0.1}
\end{equation*}
$$

using $d\left(\bar{V}_{1 / k}(A), \bar{V}_{1 / k}(B)\right) \geq d(A, B)-2 / k$.
Since A is compact and B is closed, we have $d(A, B)>0$. Hence

$$
\inf _{\bar{V}_{1 / k}(B)} \varphi_{k} \rightarrow+\infty, \text { as } k \rightarrow+\infty
$$

We next define $\theta_{k}: X \rightarrow[0,+\infty[$ by

$$
\theta_{k}(x)=\min \left[\varphi_{k}(x), \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, x)\right] .
$$

The second part is indeed an "average" in the ($\mathrm{min},+$) algebra. In the usual algebra $(+, \times)$, since an infinite (uncountable sum) should be an integral, this "average" would be

$$
\int \varphi_{k}(y) \Gamma_{k}(y, x) d y
$$

which is indeed an average with respect to the measure $\varphi_{k}(y) d y$! We first observe that θ_{k} is ≥ 0 everywhere. Moreover, it is k-Lipschitz, since φ_{k} is k-Lipschitz, and Γ_{k} is uniformly k-Lipschitz in its second argument.

We next show that $\theta_{k} f \leq \theta_{k}+1$.

We next show that $\theta_{k} f \leq \theta_{k}+1$.
If $x \in X$, by the definition of θ_{k}, we have

We next show that $\theta_{k} f \leq \theta_{k}+1$.
If $x \in X$, by the definition of θ_{k}, we have

$$
\theta_{k}(f(x)) \leq \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, f(x))
$$

We next show that $\theta_{k} f \leq \theta_{k}+1$.
If $x \in X$, by the definition of θ_{k}, we have

$$
\theta_{k}(f(x)) \leq \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, f(x))
$$

Choosing $y=x$, we obtain

We next show that $\theta_{k} f \leq \theta_{k}+1$.
If $x \in X$, by the definition of θ_{k}, we have

$$
\theta_{k}(f(x)) \leq \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, f(x))
$$

Choosing $y=x$, we obtain

$$
\theta_{k}(f(x)) \leq \varphi_{k}(x)+\Gamma_{k}(x, f(x))=\varphi_{k}(x)+1 .
$$

We next show that $\theta_{k} f \leq \theta_{k}+1$.
If $x \in X$, by the definition of θ_{k}, we have

$$
\theta_{k}(f(x)) \leq \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, f(x))
$$

Choosing $y=x$, we obtain

$$
\theta_{k}(f(x)) \leq \varphi_{k}(x)+\Gamma_{k}(x, f(x))=\varphi_{k}(x)+1 .
$$

Using $\Gamma_{k}(y, f(x)) \leq \Gamma_{k}(y, x)+\Gamma_{k}(x, f(x))=\Gamma_{k}(y, x)+1$, we also obtain

We next show that $\theta_{k} f \leq \theta_{k}+1$.
If $x \in X$, by the definition of θ_{k}, we have

$$
\theta_{k}(f(x)) \leq \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, f(x))
$$

Choosing $y=x$, we obtain

$$
\theta_{k}(f(x)) \leq \varphi_{k}(x)+\Gamma_{k}(x, f(x))=\varphi_{k}(x)+1 .
$$

Using $\Gamma_{k}(y, f(x)) \leq \Gamma_{k}(y, x)+\Gamma_{k}(x, f(x))=\Gamma_{k}(y, x)+1$, we also obtain

$$
\theta_{k}(f(x)) \leq \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, x)+1
$$

We next show that $\theta_{k} f \leq \theta_{k}+1$.
If $x \in X$, by the definition of θ_{k}, we have

$$
\theta_{k}(f(x)) \leq \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, f(x))
$$

Choosing $y=x$, we obtain

$$
\theta_{k}(f(x)) \leq \varphi_{k}(x)+\Gamma_{k}(x, f(x))=\varphi_{k}(x)+1 .
$$

Using $\Gamma_{k}(y, f(x)) \leq \Gamma_{k}(y, x)+\Gamma_{k}(x, f(x))=\Gamma_{k}(y, x)+1$, we also obtain

$$
\theta_{k}(f(x)) \leq \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, x)+1
$$

Therefore

$$
\begin{aligned}
\theta_{k}(f(x)) & \leq \min \left[\varphi_{k}(x)+1, \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, x)+1\right] \\
& =\theta_{k}(x)+1
\end{aligned}
$$

Since $\varphi_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$ and $0 \leq \theta_{k} \leq \varphi_{k}$, we do have $\theta_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$.

Since $\varphi_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$ and $0 \leq \theta_{k} \leq \varphi_{k}$, we do have $\theta_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$.
To finish the proof of the theorem, it remains to show that for k large enough, we have $\theta_{k} \mid \bar{V}_{1 / k}(B) \geq n+1$.

Since $\varphi_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$ and $0 \leq \theta_{k} \leq \varphi_{k}$, we do have $\theta_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$.
To finish the proof of the theorem, it remains to show that for k large enough, we have $\theta_{k} \mid \bar{V}_{1 / k}(B) \geq n+1$.
We argue by contradiction.

Since $\varphi_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$ and $0 \leq \theta_{k} \leq \varphi_{k}$, we do have $\theta_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$.
To finish the proof of the theorem, it remains to show that for k large enough, we have $\theta_{k} \mid \bar{V}_{1 / k}(B) \geq n+1$.
We argue by contradiction. If we assume that $\theta_{k} \mid \bar{V}_{1 / k}(B) \geq n+1$ is not true for k large enough, we can find sequences $k_{\ell} \nearrow+\infty$, and $z_{\ell} \in \bar{V}_{1 / k_{\ell}}(B)$, such that

$$
\theta_{k_{\ell}}\left(z_{\ell}\right)<n+1 .
$$

Since $\varphi_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$ and $0 \leq \theta_{k} \leq \varphi_{k}$, we do have $\theta_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$.
To finish the proof of the theorem, it remains to show that for k large enough, we have $\theta_{k} \mid \bar{V}_{1 / k}(B) \geq n+1$.
We argue by contradiction. If we assume that $\theta_{k} \mid \bar{V}_{1 / k}(B) \geq n+1$ is not true for k large enough, we can find sequences $k_{\ell} \nearrow+\infty$, and $z_{\ell} \in \bar{V}_{1 / k_{\ell}}(B)$, such that

$$
\theta_{k_{\ell}}\left(z_{\ell}\right)<n+1 .
$$

Since

$$
\theta_{k}(x)=\min \left[\varphi_{k}(x), \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, x)\right],
$$

and $\inf _{\bar{v}_{1 / k}(B)} \varphi_{k} \rightarrow+\infty$, as $k \rightarrow+\infty$,

Since $\varphi_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$ and $0 \leq \theta_{k} \leq \varphi_{k}$, we do have $\theta_{k} \mid \bar{V}_{1 / k}(A) \equiv 0$.
To finish the proof of the theorem, it remains to show that for k large enough, we have $\theta_{k} \mid \bar{V}_{1 / k}(B) \geq n+1$.
We argue by contradiction. If we assume that $\theta_{k} \mid \bar{V}_{1 / k}(B) \geq n+1$ is not true for k large enough, we can find sequences $k_{\ell} \nearrow+\infty$, and $z_{\ell} \in \bar{V}_{1 / k_{\ell}}(B)$, such that

$$
\theta_{k_{\ell}}\left(z_{\ell}\right)<n+1 .
$$

Since

$$
\theta_{k}(x)=\min \left[\varphi_{k}(x), \inf _{y \in X} \varphi_{k}(y)+\Gamma_{k}(y, x)\right]
$$

and $\inf _{\bar{V}_{1 / k}(B)} \varphi_{k} \rightarrow+\infty$, as $k \rightarrow+\infty$, without loss of generality, we can assume that

$$
\theta_{k_{\ell}}\left(z_{\ell}\right)=\inf _{y \in X} \varphi_{k_{\ell}}(y)+\Gamma_{k_{\ell}}\left(y, z_{\ell}\right)<n+1
$$

From this inequality

$$
\inf _{y \in X} \varphi_{k_{\ell}}(y)+\Gamma_{k_{\ell}}\left(y, z_{\ell}\right)<n+1
$$

From this inequality

$$
\inf _{y \in X} \varphi_{k_{\ell}}(y)+\Gamma_{k_{\ell}}\left(y, z_{\ell}\right)<n+1,
$$

by the definition of Γ_{k}, it follows that for every ℓ, we can find a sequence $y_{0}^{\ell}, \ldots, y_{n_{\ell}}^{\ell}$, with

From this inequality

$$
\inf _{y \in X} \varphi_{k_{\ell}}(y)+\Gamma_{k_{\ell}}\left(y, z_{\ell}\right)<n+1,
$$

by the definition of Γ_{k}, it follows that for every ℓ, we can find a sequence $y_{0}^{\ell}, \ldots, y_{n_{\ell}}^{\ell}$, with

- $y_{n_{\ell}}^{\ell}=z_{\ell} \in \bar{V}_{1 / k_{\ell}}(B)$,
- $\varphi_{k_{\ell}}\left(y_{0}^{\ell}\right)+C_{k}\left(y_{0}^{\ell}, \ldots, y_{n_{\ell}}^{\ell}\right)<n+1$.

From this inequality

$$
\inf _{y \in X} \varphi_{k_{\ell}}(y)+\Gamma_{k_{\ell}}\left(y, z_{\ell}\right)<n+1
$$

by the definition of Γ_{k}, it follows that for every ℓ, we can find a sequence $y_{0}^{\ell}, \ldots, y_{n_{\ell}}^{\ell}$, with

- $y_{n_{\ell}}^{\ell}=z_{\ell} \in \bar{V}_{1 / k_{\ell}}(B)$,
- $\varphi_{k_{\ell}}\left(y_{0}^{\ell}\right)+C_{k}\left(y_{0}^{\ell}, \ldots, y_{n_{\ell}}^{\ell}\right)<n+1$.

By the definition of φ_{k} and C_{k}, we get

$$
k_{\ell} d\left(y_{0}^{\ell}, \bar{V}_{1 / k_{\ell}}(A)\right)+\sum_{i=0}^{n_{\ell}-1}\left[k_{\ell} d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)+1\right]<n+1
$$

From this inequality

$$
\inf _{y \in X} \varphi_{k_{\ell}}(y)+\Gamma_{k_{\ell}}\left(y, z_{\ell}\right)<n+1
$$

by the definition of Γ_{k}, it follows that for every ℓ, we can find a sequence $y_{0}^{\ell}, \ldots, y_{n_{\ell}}^{\ell}$, with

- $y_{n_{\ell}}^{\ell}=z_{\ell} \in \bar{V}_{1 / k_{\ell}}(B)$,
- $\varphi_{k_{\ell}}\left(y_{0}^{\ell}\right)+C_{k}\left(y_{0}^{\ell}, \ldots, y_{n_{\ell}}^{\ell}\right)<n+1$.

By the definition of φ_{k} and C_{k}, we get

$$
k_{\ell} d\left(y_{0}^{\ell}, \bar{V}_{1 / k_{\ell}}(A)\right)+\sum_{i=0}^{n_{\ell}-1}\left[k_{\ell} d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)+1\right]<n+1
$$

which can be rewritten as

$$
k_{\ell} d\left(y_{0}^{\ell}, \bar{V}_{1 / k_{\ell}}(A)\right)+n_{\ell}+\sum_{i=0}^{n_{\ell}-1} k_{\ell} d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)<n+1 .
$$

This inequality

$$
k_{\ell} d\left(y_{0}^{\ell}, \bar{V}_{1 / k_{\ell}}(A)\right)+n_{\ell}+\sum_{i=0}^{n_{\ell}-1} k_{\ell} d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)<n+1
$$

yields

This inequality

$$
k_{\ell} d\left(y_{0}^{\ell}, \bar{V}_{1 / k_{\ell}}(A)\right)+n_{\ell}+\sum_{i=0}^{n_{\ell}-1} k_{\ell} d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)<n+1
$$

yields

- $n_{\ell} \leq n$,
- $d\left(y_{\ell}^{0}, \bar{V}_{1 / k_{\ell}}(A)\right)<(n+1) / k_{\ell}$,
- $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)<(n+1) / k_{\ell}$, for every $i=0, \ldots, n_{\ell}-1$.

This inequality

$$
k_{\ell} d\left(y_{0}^{\ell}, \bar{V}_{1 / k_{\ell}}(A)\right)+n_{\ell}+\sum_{i=0}^{n_{\ell}-1} k_{\ell} d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)<n+1
$$

yields

- $n_{\ell} \leq n$,
- $d\left(y_{\ell}^{0}, \bar{V}_{1 / k_{\ell}}(A)\right)<(n+1) / k_{\ell}$,
- $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)<(n+1) / k_{\ell}$, for every $i=0, \ldots, n_{\ell}-1$.

Therefore, extracting if necessary, we can assume that

$$
n_{\ell}=m \leq n,
$$

with m independent of ℓ.

This inequality

$$
k_{\ell} d\left(y_{0}^{\ell}, \bar{V}_{1 / k_{\ell}}(A)\right)+n_{\ell}+\sum_{i=0}^{n_{\ell}-1} k_{\ell} d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)<n+1
$$

yields

- $n_{\ell} \leq n$,
- $d\left(y_{\ell}^{0}, \bar{V}_{1 / k_{\ell}}(A)\right)<(n+1) / k_{\ell}$,
- $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)<(n+1) / k_{\ell}$, for every $i=0, \ldots, n_{\ell}-1$.

Therefore, extracting if necessary, we can assume that

$$
n_{\ell}=m \leq n,
$$

with m independent of ℓ. Moreover, since $k_{\ell} \rightarrow+\infty$, the inequalities above, together with $y_{m}^{\ell}=y_{n_{\ell}}^{\ell}=z_{\ell} \in \bar{V}_{1 / k_{\ell}}(B)$, imply that, for $\ell \rightarrow \infty$, we have

This inequality

$$
k_{\ell} d\left(y_{0}^{\ell}, \bar{V}_{1 / k_{\ell}}(A)\right)+n_{\ell}+\sum_{i=0}^{n_{\ell}-1} k_{\ell} d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)<n+1
$$

yields

- $n_{\ell} \leq n$,
- $d\left(y_{\ell}^{0}, \bar{V}_{1 / k_{\ell}}(A)\right)<(n+1) / k_{\ell}$,
- $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right)<(n+1) / k_{\ell}$, for every $i=0, \ldots, n_{\ell}-1$.

Therefore, extracting if necessary, we can assume that

$$
n_{\ell}=m \leq n,
$$

with m independent of ℓ. Moreover, since $k_{\ell} \rightarrow+\infty$, the inequalities above, together with $y_{m}^{\ell}=y_{n_{\ell}}^{\ell}=z_{\ell} \in \bar{V}_{1 / k_{\ell}}(B)$, imply that, for $\ell \rightarrow \infty$, we have $d\left(y_{0}^{\ell}, A\right) \rightarrow 0, d\left(y_{m}^{\ell}, B\right) \rightarrow 0$ and $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right) \rightarrow 0$, for $i=0, \ldots, m-1$.

So we found some $m \leq n$ and for every $\ell \in \mathbb{N}$ a sequence $y_{0}^{\ell}, \ldots, y_{m}^{\ell}$ such that

So we found some $m \leq n$ and for every $\ell \in \mathbb{N}$ a sequence $y_{0}^{\ell}, \ldots, y_{m}^{\ell}$ such that

- $d\left(y_{0}^{\ell}, A\right) \rightarrow 0$,

So we found some $m \leq n$ and for every $\ell \in \mathbb{N}$ a sequence $y_{0}^{\ell}, \ldots, y_{m}^{\ell}$ such that

- $d\left(y_{0}^{\ell}, A\right) \rightarrow 0$,
- $d\left(y_{m}^{\ell}, B\right) \rightarrow 0$,

So we found some $m \leq n$ and for every $\ell \in \mathbb{N}$ a sequence $y_{0}^{\ell}, \ldots, y_{m}^{\ell}$ such that

- $d\left(y_{0}^{\ell}, A\right) \rightarrow 0$,
- $d\left(y_{m}^{\ell}, B\right) \rightarrow 0$,
- $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right) \rightarrow 0$, for $i=0, \ldots, m-1$.

So we found some $m \leq n$ and for every $\ell \in \mathbb{N}$ a sequence $y_{0}^{\ell}, \ldots, y_{m}^{\ell}$ such that

- $d\left(y_{0}^{\ell}, A\right) \rightarrow 0$,
- $d\left(y_{m}^{\ell}, B\right) \rightarrow 0$,
- $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right) \rightarrow 0$, for $i=0, \ldots, m-1$.

In particular, we can find a sequence $x_{\ell} \in A$, such that $d\left(y_{0}^{\ell}, x_{\ell}\right) \rightarrow 0$.

So we found some $m \leq n$ and for every $\ell \in \mathbb{N}$ a sequence $y_{0}^{\ell}, \ldots, y_{m}^{\ell}$ such that

- $d\left(y_{0}^{\ell}, A\right) \rightarrow 0$,
- $d\left(y_{m}^{\ell}, B\right) \rightarrow 0$,
- $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right) \rightarrow 0$, for $i=0, \ldots, m-1$.

In particular, we can find a sequence $x_{\ell} \in A$, such that $d\left(y_{0}^{\ell}, x_{\ell}\right) \rightarrow 0$. By compactness of A, extracting further if necessary, we can assume $x_{\ell} \rightarrow x \in A$.

So we found some $m \leq n$ and for every $\ell \in \mathbb{N}$ a sequence $y_{0}^{\ell}, \ldots, y_{m}^{\ell}$ such that

- $d\left(y_{0}^{\ell}, A\right) \rightarrow 0$,
- $d\left(y_{m}^{\ell}, B\right) \rightarrow 0$,
- $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right) \rightarrow 0$, for $i=0, \ldots, m-1$.

In particular, we can find a sequence $x_{\ell} \in A$, such that $d\left(y_{0}^{\ell}, x_{\ell}\right) \rightarrow 0$. By compactness of A, extracting further if necessary, we can assume $x_{\ell} \rightarrow x \in A$.
Hence $y_{0}^{\ell} \rightarrow x \in A$,

So we found some $m \leq n$ and for every $\ell \in \mathbb{N}$ a sequence $y_{0}^{\ell}, \ldots, y_{m}^{\ell}$ such that

- $d\left(y_{0}^{\ell}, A\right) \rightarrow 0$,
- $d\left(y_{m}^{\ell}, B\right) \rightarrow 0$,
- $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right) \rightarrow 0$, for $i=0, \ldots, m-1$.

In particular, we can find a sequence $x_{\ell} \in A$, such that $d\left(y_{0}^{\ell}, x_{\ell}\right) \rightarrow 0$. By compactness of A, extracting further if necessary, we can assume $x_{\ell} \rightarrow x \in A$. Hence $y_{0}^{\ell} \rightarrow x \in A$, and from $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right) \rightarrow 0$, by induction, we obtain $y_{i+1}^{\ell} \rightarrow f^{i+1}(x)$, for $i=0, \ldots, m-1$.

So we found some $m \leq n$ and for every $\ell \in \mathbb{N}$ a sequence $y_{0}^{\ell}, \ldots, y_{m}^{\ell}$ such that

- $d\left(y_{0}^{\ell}, A\right) \rightarrow 0$,
- $d\left(y_{m}^{\ell}, B\right) \rightarrow 0$,
- $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right) \rightarrow 0$, for $i=0, \ldots, m-1$.

In particular, we can find a sequence $x_{\ell} \in A$, such that $d\left(y_{0}^{\ell}, x_{\ell}\right) \rightarrow 0$. By compactness of A, extracting further if necessary, we can assume $x_{\ell} \rightarrow x \in A$. Hence $y_{0}^{\ell} \rightarrow x \in A$, and from $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right) \rightarrow 0$, by induction, we obtain $y_{i+1}^{\ell} \rightarrow f^{i+1}(x)$, for $i=0, \ldots, m-1$. Since B is closed and $d\left(y_{m}^{\ell}, B\right) \rightarrow 0$, we get $f^{m}(x)=\lim _{\ell \rightarrow+\infty} y_{m}^{\ell} \in B$.

So we found some $m \leq n$ and for every $\ell \in \mathbb{N}$ a sequence $y_{0}^{\ell}, \ldots, y_{m}^{\ell}$ such that

- $d\left(y_{0}^{\ell}, A\right) \rightarrow 0$,
- $d\left(y_{m}^{\ell}, B\right) \rightarrow 0$,
- $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right) \rightarrow 0$, for $i=0, \ldots, m-1$.

In particular, we can find a sequence $x_{\ell} \in A$, such that $d\left(y_{0}^{\ell}, x_{\ell}\right) \rightarrow 0$. By compactness of A, extracting further if necessary, we can assume $x_{\ell} \rightarrow x \in A$. Hence $y_{0}^{\ell} \rightarrow x \in A$, and from $d\left(f\left(y_{i}^{\ell}\right), y_{i+1}^{\ell}\right) \rightarrow 0$, by induction, we obtain $y_{i+1}^{\ell} \rightarrow f^{i+1}(x)$, for $i=0, \ldots, m-1$.
Since B is closed and $d\left(y_{m}^{\ell}, B\right) \rightarrow 0$, we get
$f^{m}(x)=\lim _{\ell \rightarrow+\infty} y_{m}^{\ell} \in B$.
But $x \in A$ and $m \leq n$. This contradicts the hypothesis $B \cap\left(\cup_{i=0}^{n} f^{i}(A)\right)=\emptyset$.

