# An Urysohn-type theorem under a dynamical constraint

Albert Fathi

CIRM Marseille, February, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Suppose  $(\varphi_t)_{t \in \mathbb{R}}$  is a smooth flow on the smooth manifold M generated by the vector field X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose  $(\varphi_t)_{t\in\mathbb{R}}$  is a smooth flow on the smooth manifold M generated by the vector field X.If  $A, B \subset M$  are compact subsets, such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose  $(\varphi_t)_{t\in\mathbb{R}}$  is a smooth flow on the smooth manifold M generated by the vector field X.If  $A, B \subset M$  are compact subsets, such that

$$\varphi_t(A) \cap B = \emptyset$$
, for all  $t \geq T$ ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose  $(\varphi_t)_{t \in \mathbb{R}}$  is a smooth flow on the smooth manifold M generated by the vector field X.If  $A, B \subset M$  are compact subsets, such that

$$\varphi_t(A) \cap B = \emptyset$$
, for all  $t \ge T$ ,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

show that there exists a smooth function  $\theta: M \to \mathbb{R}$  with

Suppose  $(\varphi_t)_{t \in \mathbb{R}}$  is a smooth flow on the smooth manifold M generated by the vector field X.If  $A, B \subset M$  are compact subsets, such that

$$\varphi_t(A) \cap B = \emptyset$$
, for all  $t \ge T$ ,

show that there exists a smooth function  $\theta: M \to \mathbb{R}$  with

$$X\theta \leq 1, \theta | A \leq 0$$
, and  $\theta | B > T$ ,

where  $X\theta$  is the derivative of  $\theta$  in the direction of the vector field X.

Suppose  $(\varphi_t)_{t \in \mathbb{R}}$  is a smooth flow on the smooth manifold M generated by the vector field X.If  $A, B \subset M$  are compact subsets, such that

$$\varphi_t(A) \cap B = \emptyset$$
, for all  $t \ge T$ ,

show that there exists a smooth function  $\theta: M \to \mathbb{R}$  with

$$X\theta \leq 1, \theta | A \leq 0$$
, and  $\theta | B > T$ ,

where  $X\theta$  is the derivative of  $\theta$  in the direction of the vector field X.

The condition  $X\theta \leq 1$  means that  $\theta$  cannot increase faster than time along an orbit.

They needed this result to use in the work

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

They needed this result to use in the work

M. ENTOV & L. POLTEROVICH, Lagrangian tetragons and instabilities in Hamiltonian dynamics, preprint on Arxiv

They needed this result to use in the work

M. ENTOV & L. POLTEROVICH, Lagrangian tetragons and instabilities in Hamiltonian dynamics, preprint on Arxiv

The positive answer to the question is contained in our work

An Urysohn-type theorem under a dynamical constraint, Journal of Modern Dynamics, **10** (2016) 331–338.

In this lecture, we will explain the discrete version.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

In this lecture, we will explain the discrete version. Consider a continuous map  $f : X \to X$  of a metric space X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

QUESTION: When is it possible to find a continuous function  $\theta: X \to \mathbb{R}$  such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

QUESTION: When is it possible to find a continuous function  $\theta: X \to \mathbb{R}$  such that

 $\theta f - \theta \leq 1, \theta | A \leq 0$ , and  $\theta | B > n$ .

QUESTION: When is it possible to find a continuous function  $\theta: X \to \mathbb{R}$  such that

 $\theta f - \theta \leq 1, \theta | A \leq 0$ , and  $\theta | B > n$ .

From the conditions  $\theta f - \theta \leq 1$  and  $\theta | A \leq 0$ , by induction on  $\ell$ , we get

QUESTION: When is it possible to find a continuous function  $\theta: X \to \mathbb{R}$  such that

 $\theta f - \theta \leq 1, \theta | A \leq 0$ , and  $\theta | B > n$ .

From the conditions  $\theta f - \theta \leq 1$  and  $\theta | A \leq 0$ , by induction on  $\ell$ , we get

$$\theta|f^{\ell}(A) \leq \ell$$
, for all  $\ell \geq 0$ .

 $\theta|B > n \text{ and } \theta|f^{\ell}(A) \leq \ell, \text{ for all } \ell \geq 0.$ 





◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 $\theta|B > n \text{ and } \theta|f^{\ell}(A) \leq \ell, \text{ for all } \ell \geq 0.$ 



Therefore the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$  is necessary to prove the existence of  $\theta$  satisfying

 $\theta f - \theta \leq 1, \theta | A \leq 0$ , and  $\theta | B > n$ .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Theorem (Discrete Case)

Assume

•  $f: X \to X$  is a continuous self-map of the metric space X.

Theorem (Discrete Case)

Assume

•  $f: X \to X$  is a continuous self-map of the metric space X.

•  $A, B \subset X$  are closed subsets, with A compact,

Theorem (Discrete Case)

Assume

•  $f: X \to X$  is a continuous self-map of the metric space X.

•  $A, B \subset X$  are closed subsets, with A compact,

• 
$$B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$$
, where  $n \ge 0$ .

Theorem (Discrete Case)

Assume

- $f: X \to X$  is a continuous self-map of the metric space X.
- $A, B \subset X$  are closed subsets, with A compact,

• 
$$B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$$
, where  $n \ge 0$ .

Then we can find a Lipschitz function  $\theta: X \to [0, +\infty[$  such that

Theorem (Discrete Case)

Assume

- $f: X \to X$  is a continuous self-map of the metric space X.
- $A, B \subset X$  are closed subsets, with A compact,

• 
$$B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$$
, where  $n \ge 0$ .

Then we can find a Lipschitz function  $\theta: X \to [0, +\infty[$  such that

•  $\theta f - \theta \leq 1$  everywhere,

Theorem (Discrete Case)

Assume

- $f: X \to X$  is a continuous self-map of the metric space X.
- $A, B \subset X$  are closed subsets, with A compact,

• 
$$B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$$
, where  $n \ge 0$ .

Then we can find a Lipschitz function  $\theta: X \to [0, +\infty[$  such that

- $\theta f \theta \leq 1$  everywhere,
- $\theta$  is identically 0 on a neighborhood of A,

Theorem (Discrete Case)

Assume

- $f: X \to X$  is a continuous self-map of the metric space X.
- $A, B \subset X$  are closed subsets, with A compact,

• 
$$B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$$
, where  $n \ge 0$ .

Then we can find a Lipschitz function  $\theta: X \to [0, +\infty[$  such that

- $\theta f \theta \leq 1$  everywhere,
- $\theta$  is identically 0 on a neighborhood of A,
- $\theta$  is  $\geq n+1$  on a neighborhood of B.

Theorem (Discrete Case)

Assume

- $f: X \to X$  is a continuous self-map of the metric space X.
- $A, B \subset X$  are closed subsets, with A compact,

• 
$$B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$$
, where  $n \ge 0$ .

Then we can find a Lipschitz function  $\theta: X \to [0, +\infty[$  such that

- $\theta f \theta \leq 1$  everywhere,
- $\theta$  is identically 0 on a neighborhood of A,
- $\theta$  is  $\geq n+1$  on a neighborhood of B.

1) If f is the identity, the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$  is independent of  $n \ge 1$ , and boils down to  $B \cap A = \emptyset$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1) If f is the identity, the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$  is independent of  $n \ge 1$ , and boils down to  $B \cap A = \emptyset$ . Moreover, the condition  $\theta f - \theta \le 1$  is obviously satisfied by any function  $\theta$ ,

1) If f is the identity, the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$  is independent of  $n \ge 1$ , and boils down to  $B \cap A = \emptyset$ . Moreover, the condition  $\theta f - \theta \le 1$  is obviously satisfied by any function  $\theta$ , and the theorem reduces to the usual Urysohn lemma:

1) If f is the identity, the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$  is independent of  $n \ge 1$ , and boils down to  $B \cap A = \emptyset$ . Moreover, the condition  $\theta f - \theta \le 1$  is obviously satisfied by any function  $\theta$ , and the theorem reduces to the usual Urysohn lemma: if  $B \cap A = \emptyset$ , then there exists  $\theta$  with  $\theta \le 0$  on A and  $\theta \ge n + 1$  on B.

1) If f is the identity, the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$  is independent of  $n \ge 1$ , and boils down to  $B \cap A = \emptyset$ . Moreover, the condition  $\theta f - \theta \le 1$  is obviously satisfied by any function  $\theta$ , and the theorem reduces to the usual Urysohn lemma: if  $B \cap A = \emptyset$ , then there exists  $\theta$  with  $\theta \le 0$  on A and  $\theta \ge n + 1$  on B.

2) As was observed in L. BUHOVSKY, M. ENTOV & L. POLTEROVICH, *Poisson brackets and symplectic invariants*, Selecta Math. **18** (2012), 89–157,

there is a case where it is easier to obtain  $\theta$ .

1) If f is the identity, the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$  is independent of  $n \ge 1$ , and boils down to  $B \cap A = \emptyset$ . Moreover, the condition  $\theta f - \theta \le 1$  is obviously satisfied by any function  $\theta$ , and the theorem reduces to the usual Urysohn lemma: if  $B \cap A = \emptyset$ , then there exists  $\theta$  with  $\theta \le 0$  on A and  $\theta \ge n + 1$  on B.

2) As was observed in L. BUHOVSKY, M. ENTOV & L. POLTEROVICH, *Poisson brackets and symplectic invariants*, Selecta Math. **18** (2012), 89–157,

there is a case where it is easier to obtain  $\theta$ . Assume that f is a homeomorphism. Moreover, instead of the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$ , assume the stronger one

◆□ → ◆□ → ◆ 三 → ◆ 三 → の < ⊙

## Two remarks

1) If f is the identity, the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$  is independent of  $n \ge 1$ , and boils down to  $B \cap A = \emptyset$ . Moreover, the condition  $\theta f - \theta \le 1$  is obviously satisfied by any function  $\theta$ , and the theorem reduces to the usual Urysohn lemma: if  $B \cap A = \emptyset$ , then there exists  $\theta$  with  $\theta \le 0$  on A and  $\theta \ge n + 1$  on B.

2) As was observed in L. BUHOVSKY, M. ENTOV & L. POLTEROVICH, *Poisson brackets and symplectic invariants*, Selecta Math. **18** (2012), 89–157,

there is a case where it is easier to obtain  $\theta$ . Assume that f is a homeomorphism. Moreover, instead of the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$ , assume the stronger one  $B \cap (\bigcup_{i=-n}^{n} f^{i}(A)) = \emptyset$ ,

## Two remarks

1) If f is the identity, the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$  is independent of  $n \ge 1$ , and boils down to  $B \cap A = \emptyset$ . Moreover, the condition  $\theta f - \theta \le 1$  is obviously satisfied by any function  $\theta$ , and the theorem reduces to the usual Urysohn lemma: if  $B \cap A = \emptyset$ , then there exists  $\theta$  with  $\theta \le 0$  on A and  $\theta \ge n + 1$  on B.

2) As was observed in L. BUHOVSKY, M. ENTOV & L. POLTEROVICH, *Poisson* brackets and symplectic invariants, Selecta Math. **18** (2012), 89–157,

there is a case where it is easier to obtain  $\theta$ . Assume that f is a homeomorphism. Moreover, instead of the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$ , assume the stronger one  $B \cap (\bigcup_{i=-n}^{n} f^{i}(A)) = \emptyset$ ,

which is equivalent to  $(\bigcup_{i=0}^{n} f^{i}(B)) \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$ .

## Two remarks

1) If f is the identity, the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$  is independent of  $n \ge 1$ , and boils down to  $B \cap A = \emptyset$ . Moreover, the condition  $\theta f - \theta \le 1$  is obviously satisfied by any function  $\theta$ , and the theorem reduces to the usual Urysohn lemma: if  $B \cap A = \emptyset$ , then there exists  $\theta$  with  $\theta \le 0$  on A and  $\theta \ge n + 1$  on B.

2) As was observed in L. BUHOVSKY, M. ENTOV & L. POLTEROVICH, *Poisson* brackets and symplectic invariants, Selecta Math. **18** (2012), 89–157,

there is a case where it is easier to obtain  $\theta$ . Assume that f is a homeomorphism. Moreover, instead of the condition  $B \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$ , assume the stronger one  $B \cap (\bigcup_{i=-n}^{n} f^{i}(A)) = \emptyset$ ,

which is equivalent to  $(\bigcup_{i=0}^{n} f^{i}(B)) \cap (\bigcup_{i=0}^{n} f^{i}(A)) = \emptyset$ .

Assuming also that B is compact, we get that the sets  $\bigcup_{i=0}^{n} f^{i}(A)$  and  $\bigcup_{i=0}^{n} f^{i}(B)$  are closed and disjoint.

Assuming also that *B* is compact, we get that the sets  $\bigcup_{i=0}^{n} f^{i}(A)$ and  $\bigcup_{i=0}^{n} f^{i}(B)$  are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function  $\overline{\theta} : X \to [0,1]$  which is identically 0 in a neighborhood of  $\bigcup_{i=0}^{n} f^{i}(A)$  and is identically 1 in a neighborhood of  $\bigcup_{i=0}^{n} f^{i}(B)$ ,

Assuming also that *B* is compact, we get that the sets  $\bigcup_{i=0}^{n} f^{i}(A)$ and  $\bigcup_{i=0}^{n} f^{i}(B)$  are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function  $\overline{\theta} : X \to [0,1]$  which is identically 0 in a neighborhood of  $\bigcup_{i=0}^{n} f^{i}(A)$  and is identically 1 in a neighborhood of  $\bigcup_{i=0}^{n} f^{i}(B)$ , then we set  $\theta = \sum_{i=0}^{n} \overline{\theta} f^{i}$ .

Assuming also that *B* is compact, we get that the sets  $\bigcup_{i=0}^{n} f^{i}(A)$  and  $\bigcup_{i=0}^{n} f^{i}(B)$  are closed and disjoint. Therefore, by Urysohn lemma, we can find a continuous function  $\bar{\theta}: X \to [0,1]$  which is identically 0 in a neighborhood of  $\bigcup_{i=0}^{n} f^{i}(A)$  and is identically 1 in a neighborhood of  $\bigcup_{i=0}^{n} f^{i}(B)$ , then we set  $\theta = \sum_{i=0}^{n} \bar{\theta} f^{i}$ . This  $\theta$  satisfies the conclusion of the theorem.

$$\theta f - \theta = \sum_{i=0}^{n} \bar{\theta} f^{i+1} - \sum_{i=0}^{n} \bar{\theta} f^{i}$$
$$= \theta f^{n+1} - \theta$$
$$\leq 1,$$

(日) (同) (三) (三) (三) (○) (○)

where the last inequality comes from  $\theta(X) \subset [0,1]$ .

$$heta f - heta = \sum_{i=0}^{n} \overline{ heta} f^{i+1} - \sum_{i=0}^{n} \overline{ heta} f^{i}$$

(日) (同) (三) (三) (三) (○) (○)

 $\leq 1$ ,

where the last inequality comes from  $\theta(X) \subset [0, 1]$ .

$$\theta f - \theta = \sum_{i=0}^{n} \bar{\theta} f^{i+1} - \sum_{i=0}^{n} \bar{\theta} f^{i}$$
$$= \theta f^{n+1} - \theta$$
$$\leq 1,$$

$$\theta f - \theta = \sum_{i=0}^{n} \bar{\theta} f^{i+1} - \sum_{i=0}^{n} \bar{\theta} f^{i}$$
$$= \theta f^{n+1} - \theta$$
$$\leq 1,$$

(日) (同) (三) (三) (三) (○) (○)

where the last inequality comes from  $\theta(X) \subset [0,1]$ .

We now proceed to prove the theorem.

<□ > < @ > < E > < E > E のQ @

WITH PIERRE PAGEAULT, *Aubry-Mather theory for homeomorphisms*, Ergodic Theory Dynam. Systems **35** (2015), 1187–1207.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

WITH PIERRE PAGEAULT, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems **35** (2015), 1187–1207.

In the work above, we introduced a kind of Lagrangian for discrete dynamical systems to obtain orbits as "paths" minimizing action.

WITH PIERRE PAGEAULT, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems **35** (2015), 1187–1207.

In the work above, we introduced a kind of Lagrangian for discrete dynamical systems to obtain orbits as "paths" minimizing action. It allowed us to study Lyapunov functions.

WITH PIERRE PAGEAULT, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems **35** (2015), 1187–1207.

In the work above, we introduced a kind of Lagrangian for discrete dynamical systems to obtain orbits as "paths" minimizing action. It allowed us to study Lyapunov functions.

This was done in the following way: Suppose  $f : X \to X$  is a continuous self map of the metric space (X, d).

WITH PIERRE PAGEAULT, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems **35** (2015), 1187–1207.

In the work above, we introduced a kind of Lagrangian for discrete dynamical systems to obtain orbits as "paths" minimizing action. It allowed us to study Lyapunov functions.

This was done in the following way: Suppose  $f : X \to X$  is a continuous self map of the metric space (X, d).

A discrete path is a sequence  $(x_0, \ldots, x_n)$ , with  $n \ge 1$ . In fact, such a sequence is called a chain. We will stick to this terminology.

WITH PIERRE PAGEAULT, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems **35** (2015), 1187–1207.

In the work above, we introduced a kind of Lagrangian for discrete dynamical systems to obtain orbits as "paths" minimizing action. It allowed us to study Lyapunov functions.

This was done in the following way: Suppose  $f : X \to X$  is a continuous self map of the metric space (X, d). A discrete path is a sequence  $(x_0, \ldots, x_n)$ , with  $n \ge 1$ . In fact, such a sequence is called a chain. We will stick to this terminology. To measure the deviation of  $(x_0, \ldots, x_n)$  from an orbit we

introduce the action  $A(x_0, \ldots, x_n)$  of  $(x_0, \ldots, x_n)$  by

$$A(x_0, \ldots, x_n) = \sum_{i=0}^{n-1} d(f(x_i), x_{i+1}) \ge 0.$$





Of course, using the definition

$$A(x_0,\ldots,x_n) = \sum_{i=0}^{n-1} d(f(x_i),x_{i+1}) \ge 0,$$



Of course, using the definition

$$A(x_0,\ldots,x_n) = \sum_{i=0}^{n-1} d(f(x_i),x_{i+1}) \ge 0,$$

we have  $A(x_0, ..., x_n) = 0$  if and only if the chain  $(x_0, ..., x_n)$  is the orbit of  $x_0$  up to time n.



Of course, using the definition

$$A(x_0,\ldots,x_n) = \sum_{i=0}^{n-1} d(f(x_i),x_{i+1}) \ge 0,$$

we have  $A(x_0, ..., x_n) = 0$  if and only if the chain  $(x_0, ..., x_n)$  is the orbit of  $x_0$  up to time n.

$$P(x_0,\ldots,x_n) = \max_{i=0}^{n-1} d(f(x_i),x_{i+1}).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$P(x_0,\ldots,x_n) = \max_{i=0}^{n-1} d(f(x_i),x_{i+1}).$$

As shown by Pierre Pageault, this is adapted to study the chain recurrent set.

$$P(x_0,\ldots,x_n) = \max_{i=0}^{n-1} d(f(x_i),x_{i+1}).$$

As shown by Pierre Pageault, this is adapted to study the chain recurrent set.

For every p > 0, we could also use

$$A^{p}(x_{0},...,x_{n}) = \sum_{i=0}^{n-1} d(f(x_{i}),x_{i+1})^{p}.$$

$$P(x_0,\ldots,x_n) = \max_{i=0}^{n-1} d(f(x_i),x_{i+1}).$$

As shown by Pierre Pageault, this is adapted to study the chain recurrent set.

For every p > 0, we could also use

$$A^{p}(x_{0},...,x_{n}) = \sum_{i=0}^{n-1} d(f(x_{i}),x_{i+1})^{p}.$$

In fact, as we will see, using p = 1, allows to obtain (uniformly) Lipschitz function.

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

We used the action A to study Lyapunov functions, i.e. functions  $\psi: X \to \mathbb{R}$  such that  $\psi f \leq \psi$ , or equivalently  $\psi f - \psi \leq 0$ . Since we want instead the condition  $\psi f - \psi \leq 1$ , we have to modify our action by throwing in the constant potential -1. For every k > 0, we define the cost  $c_k: X \times X \to \mathbb{R}$  by

$$c_k(x,y) = kd(f(x),y) + 1.$$

This is to be compared with the Lagrangian associated to the motion of a particule of mass m in a potential field with a potential energy V

$$L(x,v) = \frac{m}{2} ||v||^2 - V(x).$$

Of course, a discrete speed at the point x is an ordered pair (x, y)(y = x + v!). If we compare, k/2 is therefore the mass. By increasing k, we are making the particle heavier without changing the potential energy V = -1 To define the action along a path(=chain)  $(x_0, \ldots, x_n)$ , with  $n \ge 1$ ,

To define the action along a path(=chain)  $(x_0, \ldots, x_n)$ , with  $n \ge 1$ , we need to integrate the Lagrangian  $c_k(x, y) = kd(f(x), y) + 1$ ,

$$C_k(x_0,\ldots,x_n) = \sum_{i=0}^{n-1} c_k(x_i,x_{i+1}) = \sum_{i=0}^{n-1} (kd(f(x_i),x_{i+1})+1).$$

$$C_k(x_0,\ldots,x_n) = \sum_{i=0}^{n-1} c_k(x_i,x_{i+1}) = \sum_{i=0}^{n-1} (kd(f(x_i),x_{i+1})+1).$$

Note that  $C_k(x_0, \ldots, x_n) \ge n \ge 1$ . Therefore  $n \le [C_k(x_0, \ldots, x_n)]$ , where [r] is, as usual, the largest integer  $\le r \in \mathbb{R}$ .

$$C_k(x_0,\ldots,x_n) = \sum_{i=0}^{n-1} c_k(x_i,x_{i+1}) = \sum_{i=0}^{n-1} (kd(f(x_i),x_{i+1})+1).$$

Note that  $C_k(x_0, \ldots, x_n) \ge n \ge 1$ . Therefore  $n \le [C_k(x_0, \ldots, x_n)]$ , where [r] is, as usual, the largest integer  $\le r \in \mathbb{R}$ . We will consider the minimal action  $\Gamma_k(x, y)$  needed to connect the point x to the point y.



$$\Gamma_k(x, y) = \inf \{ C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y \} \ge 1.$$

<□ > < @ > < E > < E > E のQ @

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

It is not difficult to obtain the following properties of  $\Gamma_k$ .

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

It is not difficult to obtain the following properties of  $\Gamma_k$ . The function  $\Gamma_k$  satisfies the following properties:

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It is not difficult to obtain the following properties of  $\Gamma_k$ . The function  $\Gamma_k$  satisfies the following properties:

(i)  $1 \leq \Gamma_k(x, y) \leq kd(f(x), y) + 1$ , for every  $x, y \in X$ .

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It is not difficult to obtain the following properties of  $\Gamma_k$ . The function  $\Gamma_k$  satisfies the following properties:

(i) 
$$1 \leq \Gamma_k(x, y) \leq kd(f(x), y) + 1$$
, for every  $x, y \in X$ .

In fact, we have  $\Gamma_k(x,y) \leq C_k(x,y) = kd(f(x),y) + 1$ .

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It is not difficult to obtain the following properties of  $\Gamma_k$ . The function  $\Gamma_k$  satisfies the following properties:

(i)  $1 \leq \Gamma_k(x, y) \leq kd(f(x), y) + 1$ , for every  $x, y \in X$ . In fact, we have  $\Gamma_k(x, y) \leq C_k(x, y) = kd(f(x), y) + 1$ . (ii)  $\Gamma_k(x, f(x)) = 1$ , for every x in X.

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

It is not difficult to obtain the following properties of  $\Gamma_k$ . The function  $\Gamma_k$  satisfies the following properties:

(i)  $1 \leq \Gamma_k(x, y) \leq kd(f(x), y) + 1$ , for every  $x, y \in X$ . In fact, we have  $\Gamma_k(x, y) \leq C_k(x, y) = kd(f(x), y) + 1$ . (ii)  $\Gamma_k(x, f(x)) = 1$ , for every x in X. This follows from (i) with y = f(x).

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

It is not difficult to obtain the following properties of  $\Gamma_k$ . The function  $\Gamma_k$  satisfies the following properties:

(i)  $1 \leq \Gamma_k(x, y) \leq kd(f(x), y) + 1$ , for every  $x, y \in X$ . In fact, we have  $\Gamma_k(x, y) \leq C_k(x, y) = kd(f(x), y) + 1$ . (ii)  $\Gamma_k(x, f(x)) = 1$ , for every x in X. This follows from (i) with y = f(x).

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

It is not difficult to obtain the following properties of  $\Gamma_k$ . The function  $\Gamma_k$  satisfies the following properties:

(i) 1 ≤ Γ<sub>k</sub>(x, y) ≤ kd(f(x), y) + 1, for every x, y ∈ X.
In fact, we have Γ<sub>k</sub>(x, y) ≤ C<sub>k</sub>(x, y) = kd(f(x), y) + 1.
(ii) Γ<sub>k</sub>(x, f(x)) = 1, for every x in X.
This follows from (i) with y = f(x).
(iii) Γ<sub>k</sub>(x, y) ≤ Γ<sub>k</sub>(x, z) + Γ<sub>k</sub>(z, y), for every x, y, z in X.

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

It is not difficult to obtain the following properties of  $\Gamma_k$ . The function  $\Gamma_k$  satisfies the following properties:

(i)  $1 \leq \Gamma_k(x, y) \leq kd(f(x), y) + 1$ , for every  $x, y \in X$ . In fact, we have  $\Gamma_k(x, y) \leq C_k(x, y) = kd(f(x), y) + 1$ . (ii)  $\Gamma_k(x, f(x)) = 1$ , for every x in X. This follows from (i) with y = f(x). (iii)  $\Gamma_k(x, y) \leq \Gamma_k(x, z) + \Gamma_k(z, y)$ , for every x, y, z in X. If you have a chain from x to z, and one from z to y, you can concatenate them. The action of the concatenation is the sum of

the actions. Inequality follows by taking infimum.

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

It is not difficult to obtain the following properties of  $\Gamma_k$ . The function  $\Gamma_k$  satisfies the following properties:

(i) 1 ≤ Γ<sub>k</sub>(x, y) ≤ kd(f(x), y) + 1, for every x, y ∈ X.
In fact, we have Γ<sub>k</sub>(x, y) ≤ C<sub>k</sub>(x, y) = kd(f(x), y) + 1.
(ii) Γ<sub>k</sub>(x, f(x)) = 1, for every x in X.
This follows from (i) with y = f(x).
(iii) Γ<sub>k</sub>(x, y) ≤ Γ<sub>k</sub>(x, z) + Γ<sub>k</sub>(z, y), for every x, y, z in X.
If you have a chain from x to z, and one from z to y, you can concatenate them. The action of the concatenation is the sum of the actions. Inequality follows by taking infimum.

(iv) 
$$\Gamma_k(x, f(y)) \leq \Gamma_k(x, y) + 1$$
, for every  $x, y \in X$ ;

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

It is not difficult to obtain the following properties of  $\Gamma_k$ . The function  $\Gamma_k$  satisfies the following properties:

(i)  $1 \leq \Gamma_k(x, y) \leq kd(f(x), y) + 1$ , for every  $x, y \in X$ . In fact, we have  $\Gamma_k(x, y) \leq C_k(x, y) = kd(f(x), y) + 1$ . (ii)  $\Gamma_k(x, f(x)) = 1$ , for every x in X. This follows from (i) with y = f(x). (iii)  $\Gamma_k(x, y) \leq \Gamma_k(x, z) + \Gamma_k(z, y)$ , for every x, y, z in X.

If you have a chain from x to z, and one from z to y, you can concatenate them. The action of the concatenation is the sum of the actions. Inequality follows by taking infimum.

(iv) 
$$\Gamma_k(x, f(y)) \leq \Gamma_k(x, y) + 1$$
, for every  $x, y \in X$ ;  
 $\Gamma_k(x, f(y)) \leq \Gamma_k(x, y) + \Gamma_k(y, f(y))$  by (iii).

$$\Gamma_k(x, y) = \inf\{C_k(x_0, \dots, x_n) \mid x_0 = x, x_n = y\} \ge 1.$$

It is not difficult to obtain the following properties of  $\Gamma_k$ . The function  $\Gamma_k$  satisfies the following properties:

(i) 1 ≤ Γ<sub>k</sub>(x, y) ≤ kd(f(x), y) + 1, for every x, y ∈ X.
In fact, we have Γ<sub>k</sub>(x, y) ≤ C<sub>k</sub>(x, y) = kd(f(x), y) + 1.
(ii) Γ<sub>k</sub>(x, f(x)) = 1, for every x in X.
This follows from (i) with y = f(x).
(iii) Γ<sub>k</sub>(x, y) ≤ Γ<sub>k</sub>(x, z) + Γ<sub>k</sub>(z, y), for every x, y, z in X.

If you have a chain from x to z, and one from z to y, you can concatenate them. The action of the concatenation is the sum of the actions. Inequality follows by taking infimum.

(iv) 
$$\Gamma_k(x, f(y)) \leq \Gamma_k(x, y) + 1$$
, for every  $x, y \in X$ ;  
 $\Gamma_k(x, f(y)) \leq \Gamma_k(x, y) + \Gamma_k(y, f(y))$  by (iii).  
But  $\Gamma_k(y, f(y)) = 1$  by (ii).



$$|\Gamma_k(x,y) - \Gamma_k(x,z)| \le kd(y,z),$$
  
$$|\Gamma_k(x,y) - \Gamma_k(z,y)| \le kd(f(y),f(z)).$$

<□ > < @ > < E > < E > E のQ @

$$\begin{aligned} |\Gamma_k(x,y) - \Gamma_k(x,z)| &\leq kd(y,z), \\ |\Gamma_k(x,y) - \Gamma_k(z,y)| &\leq kd(f(y),f(z)). \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In particular, the function  $\Gamma_k$  is continuous, and uniformly Lipschitz in the second variable with Lipschitz constant k.

$$ert \Gamma_k(x,y) - \Gamma_k(x,z) ert \leq kd(y,z), \ ert \Gamma_k(x,y) - \Gamma_k(z,y) ert \leq kd(f(y),f(z)).$$

In particular, the function  $\Gamma_k$  is continuous, and uniformly Lipschitz in the second variable with Lipschitz constant k.

We prove the first inequality. The proof of the second inequality is analogous.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(v) for every 
$$x, y, z$$
 in  $X$ , we have

$$ert \Gamma_k(x,y) - \Gamma_k(x,z) ert \leq kd(y,z), \ ert \Gamma_k(x,y) - \Gamma_k(z,y) ert \leq kd(f(y),f(z)).$$

In particular, the function  $\Gamma_k$  is continuous, and uniformly Lipschitz in the second variable with Lipschitz constant k.

We prove the first inequality. The proof of the second inequality is analogous.

If  $(x_0, \ldots, x_n)$  is a chain with  $x_0 = x, x_n = y$ , we define the chain  $(x_0, x_1, \ldots, x_{n-1}, z)$  joining x to z.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <





#### We have

$$\begin{split} \Gamma_k(x,z) &\leq C_k(x_0,x_1,\ldots,x_{n-1},z) \\ &= \sum_{i=0}^{n-2} (kd(f(x_i),x_{i+1})+1) + (kd(f(x_{n-1}),z)+1) \\ &= \sum_{i=0}^{n-1} (kd(f(x_i),x_{i+1})+1) + [kd(f(x_{n-1}),z) - kd(f(x_{n-1}),y)] \\ &\leq C_k(x_0,\ldots,x_n) + kd(z,y). \end{split}$$

$$\Gamma_k(x,z) \leq C_k(x_0,\ldots,x_n) + kd(z,y).$$

$$\Gamma_k(x,z) \leq C_k(x_0,\ldots,x_n) + kd(z,y).$$

Taking the infimum over all chains  $(x_0, \ldots, x_n)$  with  $x_0 = x, x_n = y$ , yields

$$\Gamma_k(x,z) \leq \Gamma_k(x,y) + kd(y,z).$$

$$\Gamma_k(x,z) \leq C_k(x_0,\ldots,x_n) + kd(z,y).$$

Taking the infimum over all chains  $(x_0, \ldots, x_n)$  with  $x_0 = x, x_n = y$ , yields

$$\Gamma_k(x,z) \leq \Gamma_k(x,y) + kd(y,z).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The first inequality follows by symmetry.

$$\Gamma_k(x,z) \leq C_k(x_0,\ldots,x_n) + kd(z,y).$$

Taking the infimum over all chains  $(x_0, \ldots, x_n)$  with  $x_0 = x, x_n = y$ , yields

$$\Gamma_k(x,z) \leq \Gamma_k(x,y) + kd(y,z).$$

The first inequality follows by symmetry.

We now note that if we fix  $x \in X$  and define  $\psi : X \to \mathbb{R}$  by  $\psi(y) = \Gamma_k(x, y)$ ,

$$\Gamma_k(x,z) \leq C_k(x_0,\ldots,x_n) + kd(z,y).$$

Taking the infimum over all chains  $(x_0, \ldots, x_n)$  with  $x_0 = x, x_n = y$ , yields

$$\Gamma_k(x,z) \leq \Gamma_k(x,y) + kd(y,z).$$

The first inequality follows by symmetry.

We now note that if we fix  $x \in X$  and define  $\psi : X \to \mathbb{R}$  by  $\psi(y) = \Gamma_k(x, y)$ , we obtain from (v) that

$$|\Gamma_k(x,y)-\Gamma_k(x,z)| \leq kd(y,z),$$

which shows that  $\psi$  is Lipschitz with Lipschitz constant  $\leq k$ .

$$\Gamma_k(x,z) \leq C_k(x_0,\ldots,x_n) + kd(z,y).$$

Taking the infimum over all chains  $(x_0, \ldots, x_n)$  with  $x_0 = x, x_n = y$ , yields

$$\Gamma_k(x,z) \leq \Gamma_k(x,y) + kd(y,z).$$

The first inequality follows by symmetry.

We now note that if we fix  $x \in X$  and define  $\psi : X \to \mathbb{R}$  by  $\psi(y) = \Gamma_k(x, y)$ , we obtain from (v) that

$$|\Gamma_k(x,y)-\Gamma_k(x,z)| \leq kd(y,z),$$

which shows that  $\psi$  is Lipschitz with Lipschitz constant  $\leq k$ . Moreover, since  $\Gamma_k(x, f(y)) \leq \Gamma_k(x, y) + 1$  by (iv),

$$\Gamma_k(x,z) \leq C_k(x_0,\ldots,x_n) + kd(z,y).$$

Taking the infimum over all chains  $(x_0, \ldots, x_n)$  with  $x_0 = x, x_n = y$ , yields

$$\Gamma_k(x,z) \leq \Gamma_k(x,y) + kd(y,z).$$

The first inequality follows by symmetry.

We now note that if we fix  $x \in X$  and define  $\psi : X \to \mathbb{R}$  by  $\psi(y) = \Gamma_k(x, y)$ , we obtain from (v) that

$$|\Gamma_k(x,y)-\Gamma_k(x,z)|\leq kd(y,z),$$

which shows that  $\psi$  is Lipschitz with Lipschitz constant  $\leq k$ . Moreover, since  $\Gamma_k(x, f(y)) \leq \Gamma_k(x, y) + 1$  by (iv), we obtain  $\psi(f(y)) - \psi(y) \leq 1$ . Therefore we constructed a large family of equi-Lipschitz functions  $\psi$  such that  $\psi f - \psi \leq 1.$ 

# with a twist!

## with a twist!

We will do an average not in the usual algebra  $(+, \times)$  but instead in the algebra  $(\min, +)$ 

## with a twist!

We will do an average not in the usual algebra  $(+, \times)$  but instead in the algebra  $(\min, +)$  called also the idempotent algebra

## with a twist!

We will do an average not in the usual algebra  $(+, \times)$  but instead in the algebra  $(\min, +)$  called also the idempotent algebra or the tropical algebra.

It is probably a good time to recall our goal

Theorem

Assume

•  $f: X \to X$  is a continuous self-map of the metric space X.

•  $A, B \subset X$  are closed subsets, with A compact,

• 
$$B \cap (\cup_{i=0}^{n} f^{i}(A)) = \emptyset$$
, where  $n \ge 0$ .

Theorem

Assume

- $f: X \to X$  is a continuous self-map of the metric space X.
- $A, B \subset X$  are closed subsets, with A compact,

• 
$$B \cap (\cup_{i=0}^{n} f^{i}(A)) = \emptyset$$
, where  $n \ge 0$ .

Then we can find a Lipschitz function  $\theta: X \to [0, +\infty[$  such that

Theorem

Assume

- $f: X \to X$  is a continuous self-map of the metric space X.
- $A, B \subset X$  are closed subsets, with A compact,

• 
$$B \cap (\cup_{i=0}^{n} f^{i}(A)) = \emptyset$$
, where  $n \ge 0$ .

Then we can find a Lipschitz function  $\theta: X \to [0, +\infty[$  such that

•  $\theta f - \theta \leq 1$  everywhere,

Theorem

Assume

- $f: X \to X$  is a continuous self-map of the metric space X.
- $A, B \subset X$  are closed subsets, with A compact,

• 
$$B \cap (\cup_{i=0}^{n} f^{i}(A)) = \emptyset$$
, where  $n \ge 0$ .

Then we can find a Lipschitz function  $\theta: X \to [0, +\infty[$  such that

- $\theta f \theta \leq 1$  everywhere,
- $\theta$  is identically 0 on a neighborhood of A,

Theorem

Assume

- $f: X \to X$  is a continuous self-map of the metric space X.
- $A, B \subset X$  are closed subsets, with A compact,

• 
$$B \cap (\cup_{i=0}^{n} f^{i}(A)) = \emptyset$$
, where  $n \ge 0$ .

Then we can find a Lipschitz function  $\theta: X \to [0, +\infty[$  such that

- $\theta f \theta \leq 1$  everywhere,
- $\theta$  is identically 0 on a neighborhood of A,
- $\theta$  is  $\geq n+1$  on a neighborhood of B.

For a subset  $S \subset X$ , if  $\epsilon > 0$ , we denote by

$$ar{V}_\epsilon(S) = \{x \in X \mid d(x,S) \leq \epsilon\}$$

its closed  $\epsilon$ -neighborhood.



For a subset  $S \subset X$ , if  $\epsilon > 0$ , we denote by

$$ar{V}_\epsilon(S) = \{x \in X \mid d(x,S) \leq \epsilon\}$$

its closed  $\epsilon$ -neighborhood.

For k>0, we define the function  $arphi_k:X
ightarrow [0,+\infty[$  by

$$\varphi_k(x) = kd(x, \bar{V}_{1/k}(A)) \ge 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For a subset  $S \subset X$ , if  $\epsilon > 0$ , we denote by

$$ar{V}_\epsilon(S) = \{x \in X \mid d(x,S) \leq \epsilon\}$$

its closed  $\epsilon$ -neighborhood.

For k>0, we define the function  $arphi_k:X
ightarrow [0,+\infty[$  by

$$\varphi_k(x) = kd(x, \overline{V}_{1/k}(A)) \geq 0.$$

Note that  $\varphi_k | \bar{V}_{1/k}(A) \equiv 0$ , and the function  $\varphi_k$  is k-Lipschitz.

For a subset  $S \subset X$ , if  $\epsilon > 0$ , we denote by

$$ar{V}_\epsilon(S) = \{x \in X \mid d(x,S) \leq \epsilon\}$$

its closed  $\epsilon$ -neighborhood.

For k>0, we define the function  $arphi_k:X
ightarrow [0,+\infty[$  by

$$\varphi_k(x) = kd(x, \overline{V}_{1/k}(A)) \geq 0.$$

Note that  $\varphi_k | \bar{V}_{1/k}(A) \equiv 0$ , and the function  $\varphi_k$  is k-Lipschitz.It is not difficult to estimate from below the values of  $\varphi_k$  on  $\bar{V}_{1/k}(B)$  by

$$\varphi_k|\bar{V}_{1/k}(B) \ge kd(A,B) - 2, \tag{0.1}$$

using  $d(\overline{V}_{1/k}(A), \overline{V}_{1/k}(B)) \ge d(A, B) - 2/k$ . Since A is compact and B is closed, we have d(A, B) > 0. Hence

$$\inf_{\bar{V}_{1/k}(B)}\varphi_k\to +\infty, \text{ as } k\to +\infty.$$

We next define  $\theta_k : X \to [0, +\infty[$  by

$$\theta_k(x) = \min[\varphi_k(x), \inf_{y \in X} \varphi_k(y) + \Gamma_k(y, x)].$$

The second part is indeed an "average" in the  $(\min, +)$  algebra. In the usual algebra  $(+, \times)$ , since an infinite (uncountable sum) should be an integral, this "average" would be

$$\int \varphi_k(y) \Gamma_k(y, x) \, dy$$

which is indeed an average with respect to the measure  $\varphi_k(y)dy!$ We first observe that  $\theta_k$  is  $\geq 0$  everywhere. Moreover, it is k-Lipschitz, since  $\varphi_k$  is k-Lipschitz, and  $\Gamma_k$  is uniformly k-Lipschitz in its second argument.

<ロ> <@> < E> < E> E のQの

If  $x \in X$ , by the definition of  $\theta_k$ , we have

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If  $x \in X$ , by the definition of  $\theta_k$ , we have

$$\theta_k(f(x)) \leq \inf_{y \in X} \varphi_k(y) + \Gamma_k(y, f(x)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If  $x \in X$ , by the definition of  $\theta_k$ , we have

$$\theta_k(f(x)) \leq \inf_{y \in X} \varphi_k(y) + \Gamma_k(y, f(x)).$$

Choosing y = x, we obtain



If  $x \in X$ , by the definition of  $\theta_k$ , we have

$$\theta_k(f(x)) \leq \inf_{y \in X} \varphi_k(y) + \Gamma_k(y, f(x)).$$

Choosing y = x, we obtain

$$heta_k(f(x)) \leq \varphi_k(x) + \Gamma_k(x, f(x)) = \varphi_k(x) + 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If  $x \in X$ , by the definition of  $\theta_k$ , we have

$$\theta_k(f(x)) \leq \inf_{y \in X} \varphi_k(y) + \Gamma_k(y, f(x)).$$

Choosing y = x, we obtain

$$\theta_k(f(x)) \leq \varphi_k(x) + \Gamma_k(x, f(x)) = \varphi_k(x) + 1.$$

Using  $\Gamma_k(y, f(x)) \leq \Gamma_k(y, x) + \Gamma_k(x, f(x)) = \Gamma_k(y, x) + 1$ , we also obtain

If  $x \in X$ , by the definition of  $\theta_k$ , we have

$$\theta_k(f(x)) \leq \inf_{y \in X} \varphi_k(y) + \Gamma_k(y, f(x)).$$

Choosing y = x, we obtain

$$\theta_k(f(x)) \leq \varphi_k(x) + \Gamma_k(x, f(x)) = \varphi_k(x) + 1.$$

Using  $\Gamma_k(y, f(x)) \leq \Gamma_k(y, x) + \Gamma_k(x, f(x)) = \Gamma_k(y, x) + 1$ , we also obtain

$$heta_k(f(x)) \leq \inf_{y \in X} \varphi_k(y) + \Gamma_k(y, x) + 1.$$

If  $x \in X$ , by the definition of  $\theta_k$ , we have

$$\theta_k(f(x)) \leq \inf_{y \in X} \varphi_k(y) + \Gamma_k(y, f(x)).$$

Choosing y = x, we obtain

$$\theta_k(f(x)) \leq \varphi_k(x) + \Gamma_k(x, f(x)) = \varphi_k(x) + 1.$$

Using  $\Gamma_k(y, f(x)) \leq \Gamma_k(y, x) + \Gamma_k(x, f(x)) = \Gamma_k(y, x) + 1$ , we also obtain

$$\theta_k(f(x)) \leq \inf_{y \in X} \varphi_k(y) + \Gamma_k(y, x) + 1.$$

Therefore

$$egin{aligned} & heta_k(f(x)) \leq \min[arphi_k(x)+1, \inf_{y\in X}arphi_k(y) + \Gamma_k(y,x)+1] \ &= heta_k(x) + 1. \end{aligned}$$

To finish the proof of the theorem, it remains to show that for k large enough, we have  $\theta_k | \overline{V}_{1/k}(B) \ge n+1$ .

Since  $\varphi_k | \bar{V}_{1/k}(A) \equiv 0$  and  $0 \le \theta_k \le \varphi_k$ , we do have  $\theta_k | \bar{V}_{1/k}(A) \equiv 0$ . To finish the proof of the theorem, it remains to show that for k

large enough, we have  $heta_k | ar{V}_{1/k}(B) \geq n+1.$ 

We argue by contradiction.

To finish the proof of the theorem, it remains to show that for k large enough, we have  $\theta_k | \overline{V}_{1/k}(B) \ge n+1$ .

We argue by contradiction. If we assume that  $\theta_k | \bar{V}_{1/k}(B) \ge n+1$  is not true for k large enough, we can find sequences  $k_\ell \nearrow +\infty$ , and  $z_\ell \in \bar{V}_{1/k_\ell}(B)$ , such that

 $\theta_{k_\ell}(z_\ell) < n+1.$ 

To finish the proof of the theorem, it remains to show that for k large enough, we have  $\theta_k | \overline{V}_{1/k}(B) \ge n+1$ .

We argue by contradiction. If we assume that  $\theta_k | \bar{V}_{1/k}(B) \ge n+1$  is not true for k large enough, we can find sequences  $k_\ell \nearrow +\infty$ , and  $z_\ell \in \bar{V}_{1/k_\ell}(B)$ , such that

$$\theta_{k_\ell}(z_\ell) < n+1.$$

Since

$$\theta_k(x) = \min[\varphi_k(x), \inf_{y \in X} \varphi_k(y) + \Gamma_k(y, x)],$$

(日) (同) (三) (三) (三) (○) (○)

and  $\inf_{\bar{V}_{1/k}(B)} \varphi_k \to +\infty$ , as  $k \to +\infty$ ,

To finish the proof of the theorem, it remains to show that for k large enough, we have  $\theta_k | \overline{V}_{1/k}(B) \ge n+1$ .

We argue by contradiction. If we assume that  $\theta_k | \bar{V}_{1/k}(B) \ge n+1$  is not true for k large enough, we can find sequences  $k_\ell \nearrow +\infty$ , and  $z_\ell \in \bar{V}_{1/k_\ell}(B)$ , such that

$$\theta_{k_\ell}(z_\ell) < n+1.$$

Since

$$\theta_k(x) = \min[\varphi_k(x), \inf_{y \in X} \varphi_k(y) + \Gamma_k(y, x)],$$

and  $\inf_{\bar{V}_{1/k}(B)}\varphi_k \to +\infty$ , as  $k \to +\infty$ , without loss of generality, we can assume that

$$heta_{k_\ell}(z_\ell) = \inf_{y \in X} arphi_{k_\ell}(y) + \Gamma_{k_\ell}(y, z_\ell) < n+1.$$

$$\inf_{y \in X} \varphi_{k_{\ell}}(y) + \Gamma_{k_{\ell}}(y, z_{\ell}) < n+1,$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\inf_{y \in X} \varphi_{k_{\ell}}(y) + \Gamma_{k_{\ell}}(y, z_{\ell}) < n+1,$$

(ロ)、(型)、(E)、(E)、 E) の(の)

by the definition of  $\Gamma_k$ , it follows that for every  $\ell$ , we can find a sequence  $y_0^\ell, \ldots, y_{n_\ell}^\ell$ , with

$$\inf_{y \in X} \varphi_{k_{\ell}}(y) + \Gamma_{k_{\ell}}(y, z_{\ell}) < n+1,$$

by the definition of  $\Gamma_k$ , it follows that for every  $\ell$ , we can find a sequence  $y_0^\ell, \ldots, y_{n_\ell}^\ell$ , with

$$\inf_{y \in X} \varphi_{k_{\ell}}(y) + \Gamma_{k_{\ell}}(y, z_{\ell}) < n+1,$$

by the definition of  $\Gamma_k$ , it follows that for every  $\ell$ , we can find a sequence  $y_0^\ell, \ldots, y_{n_\ell}^\ell$ , with

▶ 
$$y_{n_{\ell}}^{\ell} = z_{\ell} \in \bar{V}_{1/k_{\ell}}(B),$$
  
▶  $\varphi_{k_{\ell}}(y_{0}^{\ell}) + C_{k}(y_{0}^{\ell}, \dots, y_{n_{\ell}}^{\ell}) < n + 1.$ 

By the definition of  $\varphi_k$  and  $C_k$ , we get

$$k_\ell d(y_0^\ell, ar V_{1/k_\ell}(A)) + \sum_{i=0}^{n_\ell-1} [k_\ell d(f(y_i^\ell), y_{i+1}^\ell) + 1] < n+1,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\inf_{y \in X} \varphi_{k_{\ell}}(y) + \Gamma_{k_{\ell}}(y, z_{\ell}) < n+1,$$

by the definition of  $\Gamma_k$ , it follows that for every  $\ell$ , we can find a sequence  $y_0^\ell, \ldots, y_{n_\ell}^\ell$ , with

▶ 
$$y_{n_{\ell}}^{\ell} = z_{\ell} \in \bar{V}_{1/k_{\ell}}(B),$$
  
▶  $\varphi_{k_{\ell}}(y_{0}^{\ell}) + C_{k}(y_{0}^{\ell}, \dots, y_{n_{\ell}}^{\ell}) < n + 1.$ 

By the definition of  $\varphi_k$  and  $C_k$ , we get

$$k_\ell d(y_0^\ell, ar V_{1/k_\ell}(A)) + \sum_{i=0}^{n_\ell-1} [k_\ell d(f(y_i^\ell), y_{i+1}^\ell) + 1] < n+1,$$

which can be rewritten as

$$k_\ell d(y_0^\ell, ar V_{1/k_\ell}(A)) + n_\ell + \sum_{i=0}^{n_\ell-1} k_\ell d(f(y_i^\ell), y_{i+1}^\ell) < n+1.$$

$$k_\ell d(y_0^\ell, ar V_{1/k_\ell}(A)) + n_\ell + \sum_{i=0}^{n_\ell-1} k_\ell d(f(y_i^\ell), y_{i+1}^\ell) < n+1$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

yields

$$k_{\ell}d(y_0^{\ell}, \bar{V}_{1/k_{\ell}}(A)) + n_{\ell} + \sum_{i=0}^{n_{\ell}-1} k_{\ell}d(f(y_i^{\ell}), y_{i+1}^{\ell}) < n+1$$

yields

►  $n_{\ell} \leq n$ ,

• 
$$d(y_{\ell}^0, \bar{V}_{1/k_{\ell}}(A)) < (n+1)/k_{\ell},$$

• 
$$d(f(y_i^{\ell}), y_{i+1}^{\ell}) < (n+1)/k_{\ell}$$
, for every  $i = 0, \ldots, n_{\ell} - 1$ .

$$k_{\ell}d(y_0^{\ell}, \bar{V}_{1/k_{\ell}}(A)) + n_{\ell} + \sum_{i=0}^{n_{\ell}-1} k_{\ell}d(f(y_i^{\ell}), y_{i+1}^{\ell}) < n+1$$

yields

►  $n_{\ell} \leq n$ ,

• 
$$d(y_{\ell}^0, \bar{V}_{1/k_{\ell}}(A)) < (n+1)/k_{\ell},$$

• 
$$d(f(y_i^{\ell}), y_{i+1}^{\ell}) < (n+1)/k_{\ell}$$
, for every  $i = 0, \ldots, n_{\ell} - 1$ .

Therefore, extracting if necessary, we can assume that

$$n_\ell = m \leq n,$$

(ロ)、(型)、(E)、(E)、 E) の(の)

with *m* independent of  $\ell$ .

$$k_{\ell}d(y_0^{\ell}, \bar{V}_{1/k_{\ell}}(A)) + n_{\ell} + \sum_{i=0}^{n_{\ell}-1} k_{\ell}d(f(y_i^{\ell}), y_{i+1}^{\ell}) < n+1$$

yields

►  $n_{\ell} \leq n$ ,

• 
$$d(y_{\ell}^0, \bar{V}_{1/k_{\ell}}(A)) < (n+1)/k_{\ell},$$

•  $d(f(y_i^{\ell}), y_{i+1}^{\ell}) < (n+1)/k_{\ell}$ , for every  $i = 0, \ldots, n_{\ell} - 1$ .

Therefore, extracting if necessary, we can assume that

$$n_\ell = m \leq n$$

with *m* independent of  $\ell$ . Moreover, since  $k_{\ell} \to +\infty$ , the inequalities above, together with  $y_m^{\ell} = y_{n_{\ell}}^{\ell} = z_{\ell} \in \overline{V}_{1/k_{\ell}}(B)$ , imply that, for  $\ell \to \infty$ , we have

$$k_{\ell}d(y_0^{\ell}, \bar{V}_{1/k_{\ell}}(A)) + n_{\ell} + \sum_{i=0}^{n_{\ell}-1} k_{\ell}d(f(y_i^{\ell}), y_{i+1}^{\ell}) < n+1$$

yields

►  $n_{\ell} \leq n$ ,

• 
$$d(y_{\ell}^0, \bar{V}_{1/k_{\ell}}(A)) < (n+1)/k_{\ell},$$

•  $d(f(y_i^{\ell}), y_{i+1}^{\ell}) < (n+1)/k_{\ell}$ , for every  $i = 0, ..., n_{\ell} - 1$ .

Therefore, extracting if necessary, we can assume that

$$n_\ell = m \leq n_\ell$$

with *m* independent of  $\ell$ . Moreover, since  $k_{\ell} \to +\infty$ , the inequalities above, together with  $y_m^{\ell} = y_{n_{\ell}}^{\ell} = z_{\ell} \in \overline{V}_{1/k_{\ell}}(B)$ , imply that, for  $\ell \to \infty$ , we have  $d(y_0^{\ell}, A) \to 0, d(y_m^{\ell}, B) \to 0$  and  $d(f(y_i^{\ell}), y_{i+1}^{\ell}) \to 0$ , for  $i = 0, \ldots, m-1$ .

• 
$$d(y_0^\ell, A) \to 0$$
,

- ►  $d(y_0^\ell, A) \rightarrow 0$ ,
- ►  $d(y_m^\ell, B) \rightarrow 0$ ,

- ►  $d(y_0^\ell, A) \rightarrow 0$ ,
- ►  $d(y_m^\ell, B) \rightarrow 0$ ,
- $d(f(y_i^{\ell}), y_{i+1}^{\ell}) \to 0$ , for i = 0, ..., m 1.

- ►  $d(y_0^\ell, A) \rightarrow 0$ ,
- ►  $d(y_m^\ell, B) \rightarrow 0$ ,

• 
$$d(f(y_i^{\ell}), y_{i+1}^{\ell}) \to 0$$
, for  $i = 0, ..., m-1$ .

In particular, we can find a sequence  $x_\ell \in A$ , such that  $d(y_0^\ell, x_\ell) o 0.$ 

- ►  $d(y_0^\ell, A) \rightarrow 0$ ,
- $d(y_m^\ell, B) \to 0$ ,

• 
$$d(f(y_i^{\ell}), y_{i+1}^{\ell}) \to 0$$
, for  $i = 0, ..., m-1$ .

In particular, we can find a sequence  $x_{\ell} \in A$ , such that  $d(y_0^{\ell}, x_{\ell}) \to 0$ . By compactness of A, extracting further if necessary, we can assume  $x_{\ell} \to x \in A$ .

- ►  $d(y_0^\ell, A) \rightarrow 0$ ,
- $d(y_m^\ell, B) \to 0$ ,

• 
$$d(f(y_i^{\ell}), y_{i+1}^{\ell}) \to 0$$
, for  $i = 0, ..., m-1$ .

In particular, we can find a sequence  $x_{\ell} \in A$ , such that  $d(y_0^{\ell}, x_{\ell}) \to 0$ . By compactness of A, extracting further if necessary, we can assume  $x_{\ell} \to x \in A$ . Hence  $y_0^{\ell} \to x \in A$ ,

- $d(y_0^\ell, A) \to 0$ ,
- $d(y_m^\ell, B) \to 0$ ,

•  $d(f(y_i^{\ell}), y_{i+1}^{\ell}) \to 0$ , for i = 0, ..., m-1.

In particular, we can find a sequence  $x_{\ell} \in A$ , such that  $d(y_0^{\ell}, x_{\ell}) \to 0$ . By compactness of A, extracting further if necessary, we can assume  $x_{\ell} \to x \in A$ . Hence  $y_0^{\ell} \to x \in A$ , and from  $d(f(y_i^{\ell}), y_{i+1}^{\ell}) \to 0$ , by induction, we obtain  $y_{i+1}^{\ell} \to f^{i+1}(x)$ , for  $i = 0, \ldots, m-1$ .

(日) (同) (三) (三) (三) (○) (○)

- $d(y_0^\ell, A) \to 0$ ,
- $d(y_m^\ell, B) \to 0$ ,

•  $d(f(y_i^{\ell}), y_{i+1}^{\ell}) \to 0$ , for i = 0, ..., m-1.

In particular, we can find a sequence  $x_{\ell} \in A$ , such that  $d(y_0^{\ell}, x_{\ell}) \to 0$ . By compactness of A, extracting further if necessary, we can assume  $x_{\ell} \to x \in A$ . Hence  $y_0^{\ell} \to x \in A$ , and from  $d(f(y_i^{\ell}), y_{i+1}^{\ell}) \to 0$ , by induction, we obtain  $y_{i+1}^{\ell} \to f^{i+1}(x)$ , for  $i = 0, \ldots, m-1$ . Since B is closed and  $d(y_m^{\ell}, B) \to 0$ , we get  $f^m(x) = \lim_{\ell \to +\infty} y_m^{\ell} \in B$ .

(日) (同) (三) (三) (三) (○) (○)

- $d(y_0^\ell, A) \to 0$ ,
- $d(y_m^\ell, B) \to 0$ ,

•  $d(f(y_i^{\ell}), y_{i+1}^{\ell}) \to 0$ , for i = 0, ..., m-1.

In particular, we can find a sequence  $x_{\ell} \in A$ , such that  $d(y_0^{\ell}, x_{\ell}) \to 0$ . By compactness of A, extracting further if necessary, we can assume  $x_{\ell} \to x \in A$ . Hence  $y_0^{\ell} \to x \in A$ , and from  $d(f(y_i^{\ell}), y_{i+1}^{\ell}) \to 0$ , by induction, we obtain  $y_{i+1}^{\ell} \to f^{i+1}(x)$ , for i = 0, ..., m-1. Since B is closed and  $d(y_m^{\ell}, B) \to 0$ , we get  $f^m(x) = \lim_{\ell \to +\infty} y_m^{\ell} \in B$ . But  $x \in A$  and  $m \le n$ . This contradicts the hypothesis  $B \cap (\bigcup_{i=0}^n f^i(A)) = \emptyset$ .