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The condition X6 < 1 means that 6 cannot increase faster than
time along an orbit.
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The positive answer to the question is contained in our work

An Urysohn-type theorem under a dynamical constraint,
Journal of Modern Dynamics, 10 (2016) 331-338. J
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6|B > n and 0|f‘(A) < ¢, for all £ > 0.

AW ()
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Impossible!

Therefore the condition B N (UT_,f'(A)) = () is necessary to prove
the existence of 6 satisfying

Of —0 < 1,0/A<0, and 6|B > n.
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continuous self map of the metric space (X, d).

A discrete path is a sequence (xo, ..., Xs), with n > 1. In fact,
such a sequence is called a chain. We will stick to this terminology.
To measure the deviation of (xp, ..., x,) from an orbit we
introduce the action A(xo, ..., Xn) of (xo,...,Xn) by

n—1
A(xo, - xn) = Y d(f(xi), Xit1) > 0.
i=0
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recurrent set.
For every p > 0, we could also use

n—1

AP(x0,. . xn) = > d(F(x;), Xit1)P.
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In fact, as we will see, using p = 1, allows to obtain (uniformly)
Lipschitz function.



We used the action A to study Lyapunov functions, i.e. functions
¥ : X — R such that ¢f < 1), or equivalently ¢)f — 1 < 0. Since
we want instead the condition ¥f — 1 < 1, we have to modify our
action by throwing in the constant potential —1.

For every k > 0, we define the cost ¢, : X x X — R by

ck(x,y) = kd(f(x),y) + 1.

This is to be compared with the Lagrangian associated to the
motion of a particule of mass m in a potential field with a
potential energy V

Lo v) = VI = V().

Of course, a discrete speed at the point x is an ordered pair (x, y)
(y =x+v!).

If we compare, k/2 is therefore the mass. By increasing k, we are
making the particle heavier without changing the potential energy
V=-1
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Note that Cx(xo,...,xn) > n > 1. Therefore n < [Ci(xo, ..., Xn)],
where [r] is, as usual, the largest integer < r € R.

We will consider the minimal action I',(x, y) needed to connect
the point x to the point y.
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This follows from (i) with y = f(x).
(i) Tr(x,y) <Tik(x,z) 4+ Tk(z,y), for every x,y,z in X.

If you have a chain from x to z, and one from z to y, you can

concatenate them. The action of the concatenation is the sum of
the actions. Inequality follows by taking infimum.

(iv) Tr(x,f(y)) < Ti(x,y)+1, for every x,y € X;

Ce(x, f(y)) < Th(x,y) + Ti(y, f(y)) by (iii).
But I'k(y, f(y)) =1 by (ii).
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analogous.

If (xo0,--.,Xn) is a chain with xg = x, x, = y, we define the chain
(x0, X1, -+, Xn—1,2) jOining x to z.






x| Tn—-1 f(x’n,—l)
/f (o) N /f(xn_Z) &
Tp =Y :
We have
Me(x,2) < C(x0, X1, -+ -5 Xn—1, 2)
n—2
= (ka7 x)oxisn) + 1) + (K 1),2) + 1)
-
= (kd(f(x), xi41) + 1) + [kd(f(xn-1), 2) — kd(F(xn-1),¥)]
i=0
< Ci(x0y - -5 xn) + kd(z,y).
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Therefore
Mk(x,2) < Ce(x0,--.,xn) + kd(z,y).

Taking the infimum over all chains (xg, . .., x,) with
Xp = X, Xp =y, yields

rk(X’ Z) < rk(X7Y) + kd(yvz)'

The first inequality follows by symmetry.

We now note that if we fix x € X and define ¢ : X — R by
¥(y) = Tk(x,y), we obtain from (v) that

\Fk(x,y) - rk(X7 Z)| < kd(y,z),

which shows that ¢ is Lipschitz with Lipschitz constant < k.
Moreover, since 'x(x, f(y)) < k(x,y) + 1 by (iv), we obtain

P(f(y)) —v(y) <1
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Therefore we constructed a large family of equi-Lipschitz functions
1 such that ¥f — 1 < 1. We should obtain the proof of the
theorem by averaging them in a certain way. This is what we
proceed to do.

with a twist!

We will do an average not in the usual algebra
(4, x) but instead in the algebra (min, +) called
also the idempotent algebra or the tropical algebra.
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Theorem

Assume
» f: X — X is a continuous self~map of the metric space X.
» A B C X are closed subsets, with A compact,
» BN (ULof'(A)) =0, where n > 0.

Then we can find a Lipschitz function 6 : X — [0, 4+o00[ such that
» O0f — 0 <1 everywhere,
> 0 is identically 0 on a neighborhood of A,
> 0 is > n+1 on a neighborhood of B.
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Proof of Theorem

For a subset S C X, if € > 0, we denote by
V(S)={xe X |d(x,S) <¢}

its closed e-neighborhood.
For k > 0, we define the function ¢y : X — [0, 4o00[ by

pi(x) = kd(x, Vii(A)) = 0.

Note that x| V;/k(A) = 0, and the function ¢y is k-Lipschitz.It is
not difficult to estimate from below the values of ¢, on Vl/k(B) by

(pk’\_/l/k(B) > kd(A7 B) -2, (01)

using d(Vy (A), Vi 4(B)) = d(A, B) - 2/k.
Since A is compact and B is closed, we have d(A, B) > 0. Hence

_inf px = +00, as k = +o0.
Vi/(B)



We next define 6 : X — [0, 4+o00[ by
01 (x) = min[p(x), inf @i(y) + Tely, x)]-
yeX

The second part is indeed an “average” in the (min, +) algebra. In
the usual algebra (+, x), since an infinite (uncountable sum)
should be an integral, this “average” would be

/ k)T x) dy.

which is indeed an average with respect to the measure i (y)dy!
We first observe that 0 is > 0 everywhere. Moreover, it is
k-Lipschitz, since ¢ is k-Lipschitz, and [y is uniformly k-Lipschitz
in its second argument.
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We next show that 0,f < 6, + 1.

If x € X, by the definition of 6, we have
O(F(x)) < inf or(y) + Ty, F(x))-
Choosing y = x, we obtain
01 (F(x)) < wi(x) + Ti(x, f(x)) = wi(x) + 1.

Using Tk(y, f(x)) < T(y, x) 4+ Tk(x, f(x)) = Tk(y,x) + 1, we also
obtain

Ok(f(x)) < y'2§< or(y) + Te(y, x) + 1.

Therefore

O(f(x)) = min[oi(x) + 1, inf @i(y) + Tuy, x) +1]

= Hk(X) + 1.
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Since npk\\_/l/k(A) =0and 0 < 0, < @k, we do have

Ok|Vi/k(A) = 0.

To finish the proof of the theorem, it remains to show that for k
large enough, we have 9,(]\_/1/,((8) >n+1

We argue by contradiction. If we assume that 0k|\_/1/k(B) >n+1
is not true for k large enough, we can find sequences k; " +0o0,
and z € \_/1/,(2(8), such that

%(ze) <n+1.

Since
Ok(x) = min[@k(X)vyig( or(y) + Ti(y, x)],

and infvl/k(B) Yk — +00, as k — +o0o, without loss of generality,
we can assume that

Ok, (z¢) = y'g( i (¥) + Ti, (v, 2z0) < n+ 1.
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From this inequality
inf ok, (y) + Tk (v, 20) <n+1,
yveX

by the definition of I, it follows that for every ¢, we can find a
sequence yg, .. ,y,fe, with

> yrlflg =2z € ‘_/l/kg(B)'

> 0k, (%6) + Clygs -, va) <n+ L.
By the definition of ¢, and Cy, we get

ny—1

ked (Y6, Vik,(A) + D Tked(F(yf), yfia) + 11 < n+ 1,
i=0
which can be rewritten as

ng—].

ked (yg: Vi, (A)) + ne + > ked(F(yv), yi1) < n+1.
i—0
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ked(v5, Vaji,(A)) + e+ > ked(F(yf), 1) <n+1
i=0
yields
> ng < n,

> d(yps Vask,(A) < (n+1)/ke,
> d(f(yf),yfq) < (n+1)/k, for every i=0,...,n — 1.
Therefore, extracting if necessary, we can assume that

ngp=m<n,

with m independent of £. Moreover, since ky — 400, the
inequalities above, together with yt, = yf;e =z € \71/,([(8), imply
that, for £ — oo, we have d(y§,A) — 0,d(y5, B) — 0 and
d(f(yf),y,ﬂl) —0, fori=0,...,m—1.



So we found some m < n and for every £ € N a sequence
yg, ..., y% such that



So we found some m < n and for every £ € N a sequence
yg, ..., y% such that
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So we found some m < n and for every £ € N a sequence
yg, ..., y% such that

> d(y§,A) =0,
> d(yh,B) =0,



So we found some m < n and for every £ € N a sequence
yg, ..., y% such that

> d(y{, A) =0,
> d(yh, B) =0,
> d(f(yf),yl1) =0, fori=0,....m—1.



So we found some m < n and for every £ € N a sequence
yg, ..., y% such that

> d(y{, A) =0,
> d(yh, B) =0,
> d(f(yf),yl1) =0, fori=0,....m—1.

In particular, we can find a sequence x; € A, such that
d(yg,Xg) — 0.



So we found some m < n and for every £ € N a sequence
yg, ..., y% such that

> d(yg,A) — 0,
» d(y.,B) =0,
> d(f(yf),yf1) =0, fori=0,...,m—1.
In particular, we can find a sequence x; € A, such that

d(y§,x/) — 0. By compactness of A, extracting further if
necessary, we can assume x; — x € A.



So we found some m < n and for every £ € N a sequence
yg, ..., y% such that

> d(ygv A) — 0,

» d(y.,B) =0,

> d(f(yf),yf1) =0, fori=0,...,m—1.
In particular, we can find a sequence x; € A, such that
d(y§,x/) — 0. By compactness of A, extracting further if

necessary, we can assume x; — x € A.
Hence yg — X €A,



So we found some m < n and for every £ € N a sequence
yg, ..., y% such that
> d(y§,A) =0,
> d(ym B) =0,
> d(f(yf),yf1) =0, fori=0,...,m—1.
In particular, we can find a sequence x; € A, such that
d(y§,x/) — 0. By compactness of A, extracting further if
necessary, we can assume x; — x € A.
Hence y§ — x € A, and from d(f(yf),yﬂ_l) — 0, by induction, we
obtain yf, ; — fi*1(x), for i=0,...,m—1.



So we found some m < n and for every £ € N a sequence
yg, ..., y% such that

> d(yg,A) — 0,
» d(y.,B) =0,
> d(f(yf),ny) —0,fori=0,...,m—1.
In particular, we can find a sequence x; € A, such that
d(y§,x/) — 0. By compactness of A, extracting further if
necessary, we can assume x; — x € A.
Hence y§ — x € A, and from d(f(yf),yﬂ_l) — 0, by induction, we
obtain yf, ; — fi*1(x), for i=0,...,m—1.
Since B is closed and d(y.,, B) — 0, we get
fM(x) = limy_ 400 v € B.



So we found some m < n and for every £ € N a sequence
yg, ..., y% such that

> d(y§,A) =0,

> d(yf, B) =0,

> d(f(yf),ny) —0,fori=0,...,m—1.
In particular, we can find a sequence x; € A, such that
d(y§,x/) — 0. By compactness of A, extracting further if
necessary, we can assume x; — x € A.
Hence y§ — x € A, and from d(f(yf),yﬂ_l) — 0, by induction, we
obtain yf, ; — fi*1(x), for i=0,...,m—1.
Since B is closed and d(y.,, B) — 0, we get
F™(x) = limyso0 vl € B.
But x € A and m < n. This contradicts the hypothesis
BN (U_yf'(A)) =0.



