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Previously on New Advances in SD

From Thierry Monteil’s lecture

It allowed me to survive a lot of talks on Rauzy Fractals



In the 80’s , G. Rauzy introduces the Rauzy fractal associated with
the Tribonacci substitution

σ : 1 7→ 12, 1 7→ 13, 3 7→ 1

In 1991 S. Ito and M. Kimura write the seminal paper On Rauzy
fractal on the generation of the boundary of the Rauzy fractal via
free group morphisms by using Dekking’s method
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on the two-dimensional torus T2

Rβ : T2 → T2, x 7→ x + (1/β, 1/β2)

In 1991 S. Ito and M. Kimura write the seminal paper On Rauzy
fractal on the generation of the boundary of the Rauzy fractal via
free group morphisms by using Dekking’s method



In the 80’s , G. Rauzy introduces the Rauzy fractal associated with
the Tribonacci substitution

σ : 1 7→ 12, 1 7→ 13, 3 7→ 1

In 1991 S. Ito and M. Kimura write the seminal paper On Rauzy
fractal on the generation of the boundary of the Rauzy fractal via
free group morphisms by using Dekking’s method

and then in 2000
P. Arnoux and S. Ito introduce in the formalism of

Dual Substitutions....



How to survive a talk on

Dual Substitutions?



DS are fun and fashion



DS have a nice name



DS have a nice name

OK... why not trying Ê1?













Genesis of a star



DS like diagrams

“There is certainly an underlying homological theory”
[Arnoux-Ito-Sano]



Dual substitutions act on unit faces

Unit faces [x, i ]∗

position x ∈ Z3

type i ∈ {1, 2, 3}

e1 e2

e3

[(0, 0, 0), 1]∗ [(0,−1, 1), 2]∗ [(−2, 1, 0), 3]∗



Dual substitutions

Let σ be a substitution on the alphabet A

Abelianisation

Let d be the cardinality of A. Let ~l : A? → Nd be the
abelianisation map

~l(w) = (|w |1, |w |2, · · · , |w |d)

Dual substitutions [P. Arnoux-S. Ito]

Let σ be a unimodular substitution

E∗1(σ)([~x , i∗]) =
∑
j∈A

∑
P, σ(j)=PiS

[
M−1σ

(
~x +~l(S)

)
, j∗
]



Example : σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

E∗1(σ)([~x , i∗]) =
∑
j∈A

∑
P, σ(j)=PiS

[
M−1σ

(
~x +~l(S)

)
, j∗
]

E∗
1 (σ)([x, 1]

∗) = M−1
σ x+ [(1, 0,−1), 1]∗ ∪ [(0, 1,−1), 2]∗ ∪ [(0, 0, 0), 3]∗

E∗
1 (σ)([x, 2]

∗) = M−1
σ x+ [(0, 0, 0), 1]∗

E∗
1 (σ)([x, 3]

∗) = M−1
σ x+ [(0, 0, 0), 2]∗

7→ 7→ 7→



Examples

7→ 7→ 7→ 7→ 7→

7→ 7→ 7→ 7→ 7→



DS generate Rauzy fractals



Geometric representation vs. symbolic models

Looking for geometric representation
Theorem [Rauzy’82]

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

(Xσ,S) is measure-theoretically isomorphic to the translation Rβ
on the two-dimensional torus T2

Rβ : T2 → T2, x 7→ x + (1/β, 1/β2)

Looking for symbolic models–Arithmetic dynamics

We want to find symbolic realizations for Kronecker maps
(toral translations)

We want to reach nonalgebraic parameters

We consider not only one substitution



Geometric representation vs. symbolic models
Looking for geometric representation
Theorem [Rauzy’82]

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

(Xσ,S) is measure-theoretically isomorphic to the translation Rβ
on the two-dimensional torus T2

Rβ : T2 → T2, x 7→ x + (1/β, 1/β2)

Looking for symbolic models–Arithmetic dynamics

We want to find symbolic realizations for a.e. Kronecker maps
(toral translations)
We want to reach nonalgebraic parameters by considering
convergent products of matrices
We consider not only one substitution but a sequence of
substitutions S-adic formalism Non-stationary dynamics

Continued fractions algorithm  renormalization



Given a translation on R2/Z2

Rα : x 7→ x + α mod 1, α = (α1, α2), x = (x1, x2)

Find a suitable partition of T2 which provides a symbolic coding
(Xα,S) of (T2,Rα) up to measure-theoretic isomorphism

T2 Rα−→ T2y y
Xα −→

S
Xα

with factor complexity 2n + 1

such that the atoms corresponding to factors are Bounded
Remainder Sets

|Card {0 ≤ n ≤ N;Rα(x) ∈ A} − Nµ(A)| ≤ C ∀N a.e. x

Balancedness on factors



Given a translation on R2/Z2

Rα : x 7→ x + α mod 1, α = (α1, α2), x = (x1, x2)

Find a suitable partition of T2 which provides a symbolic coding
(Xα,S) of (T2,Rα) up to measure-theoretic isomorphism

T2 Rα−→ T2y y
Xα −→

S
Xα

with factor complexity 2n + 1

such that the atoms corresponding to factors are Bounded
Remainder Sets

In dimension 1, Sturmian words provide a coding with factor
complexity n + 1

(Xα,S) has pure discrete spectrum “Rauzy fractals tile”

For a.e. every α, Brun algorithm does the job with a
conjectured linear factor complexity [B.-Steiner-Thuswaldner]



DS are elegant



DS are algebraically robust and elegant

They rely on duality

They behave well with respect to S-adic formalism σ1 · · ·σn

M1 · · ·Mn  
t(M1 · · ·Mn)

E ∗1 (τ ◦ σ) = E ∗1 (σ) ◦ E ∗1 (τ)

Start from a dynamical system endowed with an
induction/renormalization interval exchange transformation
toral translation  a symbolic S-adic coding

Exduction  build a fundamental domain for a toral
translation Rα

Characterization for pure discrete spectrum

A geometric version of the IFS satisfied by Rauzy fractals
(beyond Peron-Frobenius’ arguments)



Exduction







DS are powerful tools in discrete geometry

Theorem [Arnoux-Ito, Fernique]
Let σ be a unimodular substitution. The image of a discrete plane
with normal vector v is a discrete plane with normal vector tMσv

7−→

 2d Sturmian words, codings of Z2-actions by rotations on T,
Cut and project schemes



Generation of discrete planes

Chose a vector v with positive entries

Expand v with any continued fraction algorithm
v = M1 · · ·Mnvn

Select substitutions σ1, . . . , σn with matrices tM1, . . . ,
tMn

Apply the substitutions starting from the unit cube U ⊂ Pv
Build increasing pieces of the discrete plane Pv

E ∗1 (σ1) · · ·E ∗1 (σn)(U) ⊆ Pv

7→ 7→

7→

7→ · · ·
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3d continued fraction algorithms Cheat Sheets by S. Labbé

MCF Algorithms Cheat Sheets 8 Cassaigne algorithm

Cassaigne algorithm
Definition
On � = R3

+, the map is [4]

F (x1, x2, x3) =
;

(x1 ≠ x3, x3, x2) if x1 > x3
(x2, x1, x3 ≠ x1) if x1 < x3.

Matrix Definition
The partition of the cone is � = fifiœS3�fi where

�1 = {(x1, x2, x3) œ � | x1 > x3},
�2 = {(x1, x2, x3) œ � | x1 < x3}.

The matrices are given by the rule
M(x) = Mi if and only if x œ �i.

The map F on � and the projective map f on
� = {x œ � | ÎxÎ1 = 1} are:

F (x) = M(x)≠1x and f(x) = F (x)
ÎF (x)Î1

.

Matrices

M1 =

A
1 1 0
0 0 1
0 1 0

B
M2 =

A
0 1 0
1 0 0
0 1 1

B

Cylinders

1

2

Density function
The density function of the invariant measure of f : � æ � for the
Cassaigne algorithm is [1]

1
(1 ≠ x1)(1 ≠ x3)

.

Invariant measure

Natural extension
Two sequences (xn+1)nØ0 and (an+1)nØ0 defined such that

xn+1 = M(xn)≠1xn and an+1 = M(xn)€an.

Lyapunov exponents
(using 30 orbits of 100000000 iterations each)

30 succesfull orbits min mean max std
◊1 0.1824 0.1827 0.1829 0.00013
◊2 ≠0.07083 ≠0.07072 ≠0.07060 0.000054
1 ≠ ◊2/◊1 1.38698 1.38712 1.38725 0.000070

Substitutions

‡1 =

I
1 ‘æ 1
2 ‘æ 13
3 ‘æ 2

‡2 =

I
1 ‘æ 2
2 ‘æ 13
3 ‘æ 3

S-adic word example
Using vector v = (1, e,fi):

w = ‡2‡1‡2‡1‡1‡1‡1‡2‡1‡1 · · · (1)
= 2323213232323132323213232321323231323232...

Factor Complexity of w is (pw(n))0ÆnÆ20 =

(1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41)

Discrepancy
Discrepancy [10] for all 19701 S-adic words with directions v œ N3

>0
such that v1 + v2 + v3 = 200:

Dual substitutions

‡ú
1 =

I
1 ‘æ 12
2 ‘æ 3
3 ‘æ 2

‡ú
2 =

I
1 ‘æ 2
2 ‘æ 1
3 ‘æ 23

E one star
Using vector v = (1, e,fi), the 13-th iteration on the unit cube is:

Eú
1 (‡ú

2)Eú
1 (‡ú

1)Eú
1 (‡ú

2)Eú
1 (‡ú

1)Eú
1 (‡ú

1) · · · ( ) =



Cassaigne/Selmer algoritm

Selmer algorithm Subtract the smallest entry to the largest entry
An absorbing set

TODO list

Use E ∗1 to prove pure discrete spectrum

Balancedness on factors?





Markov partition

One takes the Rauzy fractal in the contracting plane
One lifts each piece along the expanding direction
Periodic tiling  a fundamental domain for T3

c© Timo Jolivet
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Dictionary

S-adic description of a minimal symbolic dynamical system 

multidimensional continued fraction algorithm that governs its

letter frequency vector/ invariant measure

S-adic expansion

Unique ergodicity

Linear recurrence

Balance and Pisot
properties

Two-sided sequences
of substitutions

Shift on sequences of
substitutions

Continued fraction

Convergence

Bounded partial
quotients

Strong convergence

Natural extension

Continued fraction map

Continued fractions algorithm  renormalization



S-adic Pisot dynamics

Theorem [B.-Steiner-Thuswaldner]

For almost every (α, β) ∈ [0, 1]2, the translation by (α, β) on
the torus T2 admits a natural symbolic coding provided by the
S-adic system associated with Brun multidimensional
continued fraction algorithm applied to (α, β)

For almost every Arnoux-Rauzy word, the associated S-adic
system has pure discrete spectrum



S-adic Pisot dynamics

Theorem [B.-Steiner-Thuswaldner]

For almost every (α, β) ∈ [0, 1]2, the S-adic system provided
by the Brun multidimensional continued fraction algorithm
applied to (α, β) is measurably conjugate to the translation by
(α, β) on the torus T2

Proof Based on Dual substitutions

“adic IFS”

Finite products of Brun substitutions have pure point
spectrum [B.-Bourdon-Jolivet-Siegel]



S-adic Pisot dynamics
Theorem [B.-Steiner-Thuswaldner]

For almost every (α, β) ∈ [0, 1]2, the S-adic system provided
by the Brun multidimensional continued fraction algorithm
applied to (α, β) is measurably conjugate to the translation by
(α, β) on the torus T2

For almost every Arnoux-Rauzy word, the associated S-adic
system has pure point spectrum

Proof Based on Dual substitutions

“adic IFS”

Theorem [Avila-Delecroix]

The Arnoux-Rauzy S-adic system is Pisot

Theorem [Avila-Hubert-Skripchenko]

A measure of maximal entropy for the Rauzy gasket

Finite products of Brun/Arnoux-Rauzy substitutions have
pure point spectrum [B.-Bourdon-Jolivet-Siegel]



Mapping families [Arnoux-Fisher 2005]

Sequence of d-dimensional Riemann manifolds (Xn)n∈Z

X =
∐
n∈Z

Xn

Let fn : Xn → Xn+1 be a C 1-diffeomorphism and define

f : X → X with f (x) = fn(x) for x ∈ Xn

(X , f ) is a mapping family.

· · · f−2−−→ X−1
f−1−−→ X0

f0−−→ X1
f1−−→ · · ·



S-adic mapping families

· · · f−2−−→ X−1
f−1−−→ X0

f0−−→ X1
f1−−→ · · · .

Let σ be a two-sided sequence of substitutions over an alphabet
of cardinality d . For all i , let Mi be the incidence matrix of σi .

Consider the non-stationary composition of toral automorphisms

· · ·
M−1

−2−−−→ Td
−1

M−1
−1−−−→ Td

0

M−1
0−−−→ Td

1

M−1
1−−−→ · · ·

T =
∐
n∈Z

Td
n

fσ : T→ T, fσ(x) = M−1n (x) for x ∈ Td
n

(T, fσ) = mapping family

Nature of the mapping family, e.g. hyperbolicity?

Tool: Oseledets’ multiplicative ergodic theorem



Eventually Anosov mapping family
Let σ be a two-sided sequence of substitutions over an alphabet of
cardinality d

The mapping family associated with σ is eventually Anosov if

there exist splittings E
(n)
s ⊕ E

(n)
u of Rd so that the following

properties hold

f -invariance For all n, fn(E
(n)
s ) = E

(n+1)
s , fn(E

(n)
u ) = E

(n+1)
u

Hyperbolicity For some (and hence for all) k ∈ Z

lim
n→+∞

inf{‖M−1[k,n) x‖/‖x‖ : x ∈ E
(k)
u \ {0}} = +∞, n > k ,

lim
n→+∞

sup{‖M−1[k,n) x‖/‖x‖ : x ∈ E
(k)
s \ {0}} = 0, n > k ,

lim
n→−∞

sup{‖M[n,k) x‖/‖x‖ : x ∈ E
(k)
u \ {0}} = 0, n < k ,

lim
n→−∞

inf{‖M[n,k) x‖/‖x‖ : x ∈ E
(k)
s \ {0}} = +∞, n < k .



Our result d = 3

Theorem [Arnoux-B.-Minervino-Steiner-Thuswaldner] For a.e. pair
of vectors, the associated two-sided orbit of Brun algorithm yields
a mapping family which is eventually Anosov and whose stable and
unstable spaces are provided by this pair of vectors, and the
partition made of the suspensions of the Rauzy fractals form a
Markov partition.

Remark The pieces of the associated Markov partition are
connected [B.-Bourdon-Jolivet-Siegel] Dual substitutions!



Dynamically

One has the shift acting on zero entropy systems (codings of
toral translations)  Basis of the Markov partition

One has the shift acting on positive entropy systems
(sequences of substitutions produced by Brun algorithm)  
Lifting of the Markov partition

One has a renormalization cocycle given by the incidence
matrices of the substitutions (inverse of the matrices of the
Brun algorithm) Positive entropy, random shift of finite type

We apply Oseledets theorem to get a splitting of the spaces to
define stable and unstable spaces

Dual substitutions formalise the cut and stack action

Toward a flow for Brun algorithm?
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(sequences of substitutions produced by Brun algorithm)  
Lifting of the Markov partition

One has a renormalization cocycle given by the incidence
matrices of the substitutions (inverse of the matrices of the
Brun algorithm) Positive entropy, random shift of finite type

We apply Oseledets theorem to get a splitting of the spaces to
define stable and unstable spaces

Dual substitutions formalise the cut and stack action

Toward a flow for Brun algorithm?



DS restack





Un message de la part d’Anne Siegel
Pierre m’a fait découvrir les systèmes dynamiques et a encadré mes
premiers pas dans la recherche ; il a gardé un oeil sur moi depuis
ma thèse, mêmeme si les pistes que j’ai explorées (biologie,
topologie ou théorie des nombres) ne sont pas ses thèmes préférés.
En plus des règles du métier, il m’a appris à prendre le temps
d’identifier l’essentiel derrière une problématique. Il est pour moi
un modèle d’intégrité, et je reste admirative de sa capacité à
décrire l’essentiel d’un article obscur de 30 pages en moins de 10
lignes limpides.

Pour l’anecdote, les quelques fois où Pierre m’a fait ”quelques”
suggestions de corrections sur un article, l’article était raturé
INTEGRALEMENT au feutre rouge toujours présent dans la poche
droite.... La déprime à la vue de tout ce qu’il fallait faire... Et 20
ans plus tard je réalise que je fais pareil avec mes doctorant.e.s...






