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1. Isoperimetric inequalities and Monge–Ampère with drift

What follows is a joint work with Paata Ivanisvili.

Theorem

If a real valued function M(x , y) is such that
M(x ,

√
y) ∈ C 2(Ω×R+) and it satisfies the differential inequalities[

Mxx +
My

y Mxy

Mxy Myy

]
≤ 0 and My ≤ 0, (1)

then for any f ∈ C∞0 (Rn; Ω) we have∫
Rn

M(f , ‖∇f ‖)dγ ≤ M

(∫
Rn

fdγ, 0

)
. (2)
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2. Log-Sobolev inequality

M(x , y) = x ln x − y2

2x
, x > 0 and y ≥ 0. (3)

Notice that M(x , y) satisfies (1). Indeed, My = − y
x ≤ 0 and

[
Mxx +

My

y Mxy

Mxy Myy

]
=

[
− y2

x3
y
x2

y
x2 − 1

x

]
≤ 0. (4)

Log-Sobolev inequality of Gross states that∫
Rn

|f |2 ln |f |2dγ −
(∫

Rn

|f |2dγ
)

ln

(∫
Rn

|f |2dγ
)
≤ 2

∫
Rn

‖∇f ‖2dγ

(5)

whenever the right hand side of (5) is well-defined and finite for
complex-valued f .
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3. Beckner–Sobolev and spectral gap inequality

Beckner:
For f ∈ L2(dγ) and 1 ≤ p ≤ 2 we have∫

|f |pdγ −
(∫
|f |dγ

)p

≤ p(p − 1)

2

∫
Rn

f p−2‖∇f ‖2dγ (6)

For p = 2 this is
∫
|f |2dγ −

(∫
|f |dγ

)2 ≤
∫
Rn ‖∇f ‖2dγ. This

shows that the spectral gap i.e. the first nontrivial eigenvalue of
the self-adjoint positive operator L = −∆ + x · ∇ in L2(Rn, dγ) is
bounded from below by 1.
M(x , y) = xp − p(p−1)

2 xp−2y2 where x , y ≥ 0 1 ≤ p ≤ 2. If
q = 2/p[
Mxx +

My

y Mxy

Mxy Myy

]
=

−2(2−q)(1−q)(2−3q)x
2
q−4

y2

q4 −4(2−q)(1−q)x
2
q−3

y
q3

−4(2−q)(1−q)x
2
q−3

y
q3 −4(2−q)x

2
q−2

q2

 ≤ 0.

(7)
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4. Improving Beckner’s inequality for p = 3/2.

Consider

M(x , y) =
1√
2

(
2x −

√
x2 + y2

)√
x +

√
x2 + y2 where x , y ≥ 0.

We have

(
Mxx +

My

y Mxy

Mxy Myy

)
=

3
√

2

8
√
x2 + y2


− y2

(x+
√

x2+y2)3/2

y√
x+
√

x2+y2

y√
x+
√

x2+y2
−
√

x +
√
x2 + y2

 .

(8)
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5. Sharper than Beckner–Sobolev inequality.

∫
Rn

1√
2

(
2f −

√
f 2 + ‖∇f ‖2

)√
f +

√
f 2 + ‖∇f ‖2dγ ≤

≤
(∫

Rn

fdγ

)3/2

.

Notice that

x3/2 − 3

8
x−1/2y2 ≤ M(x , y) =

1√
2

(
2x −

√
x2 + y2

)√
x +

√
x2 + y2 where x , y ≥ 0.

So this inequality is better than the Beckner’s one:∫
Rn

f 3/2dµ− 3

8

∫
Rn

f −1/2|∇f |2dµ ≤
(∫

Rn

fdγ

)3/2

.
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6. Bobkov’s inequality: Gaussian isoperimetry

Bobkov:
For a Lipschitz function f : Rn → [0, 1], we have

I

(∫
Rn

fdγ

)
≤
∫
Rn

√
I 2(f ) + ‖∇f ‖2dγ , (9)

where Φ(x) = 1√
2π

∫ x
−∞ e−x

2/2dx , and I (x) := Φ′(Φ−1(x)).

Testing (9) for f (x) = 1A where A is a Borel subset of Rn one
obtains Gaussian isoperimetry: for any Borel measurable set
A ⊂ Rn

γ+(A) ≥ Φ′(Φ−1(γ(A))) , (10)

where γ+(A) := lim infε→0
γ(Aε)−γ(A)

ε denotes Gaussian perimeter
of A, here Aε = {x ∈ Rn : distRn(A, x) < ε}.
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7. Bobkov’s inequality: Gaussian isoperimetry

M(x , y) = −
√
I 2(x) + y2 where x ∈ [0, 1], y ≥ 0. (11)

Then My = −y√
I 2(x)+y2

≤ 0 and

[
Mxx +

My

y Mxy

Mxy Myy

]
=

− (I ′(x))2y2

(I 2(x)+y2)3/2 + I (x)I ′′(x)+1√
I 2(x)+y2

y I (x)I ′(x)

(I 2(x)+y2)3/2

y I (x)I ′(x)

(I 2(x)+y2)3/2 − I 2(x)

(I 2(x)+y2)3/2 .


(12)

Notice that I ′′(x)I (x) = −1, therefore (12) is negative semidefinite.
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8. Monge–Ampère eq. with drift: how to find M

In general finding M(x , y) will be based purely on solving PDEs.
First notice that in log-Sobolev (5) and in Bobkov’s inequality (9)
determinant of the matrices (4) and (12) are zero. In
Beckner–Sobolev inequality (6) determinant of (7) is zero if and
only if p = 1, 2. We will seek M(x , y) among those functions
which in addition with (1) also satisfy Monge–Ampére equation
with a drift:

det

[
Mxx +

My

y Mxy

Mxy Myy

]
= MxxMyy −M2

xy +
MyMyy

y
= 0 (13)

for (x , y) ∈ Ω× R+.
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9. Reduction to the exterior differential systems and
backwards heat equation

Let us make the following observation: consider

(x , y , p, q) = (x , y ,Mx(x , y),My (x , y))

in xypq-space. This is a surface Σ in 4-space on which
Υ = dx ∧ dy is nonvanishing but to which the two 2-forms

Υ1 = dp ∧ dx + dq ∧ dy and Υ2 = (ydp + qdx) ∧ dq

pull back to be zero. Consider a simply connected surface Σ in
xypq-space (with y > 0) on which Υ is nonvanishing but to which
Υ1 and Υ2 pullback to be zero. The 1-form pdx + qdy pull back
to Σ to be closed (since Υ1 vanishes on Σ) and hence exact, and
so there exists a function m : Σ→ R such that dm = pdx + qdy
on Σ. We then have, m = M(x , y) on Σ and, by its definition, we
have p = Mx(x , y) and q = My (x , y) on the surface. Υ2 vanishes
when pulled back to Σ implies that M(x , y) satisfies the desired
equation (13) of slide 41.
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10. Exterior differential systems of Bryant–Griffiths

Thus, we have encoded the given PDE as an exterior differential
system on R4. Note, that we can make a change of variables on
the open set where q < 0: Set y = qr and let t = 1

2q
2. then, using

these new coordinates on this domain, we have

Υ1 = dp ∧ dx + dt ∧ dr and Υ2 = (rdp + dx) ∧ dt.

Now, when we take an integral surface Σ on these 2-forms on
which dp ∧ dt is not vanishing, it can be written locally as a graph
of the form

(p, t, x , r) = (p, t, up(p, t), ut(p, t))

(since Σ is an integral of Υ1), where u(p, t) satisfies ut + upp = 0
(since on Σ 0 = Υ2 = utdp ∧ dt + dup ∧ dt = (ut + upp)dp ∧ dt).
Thus, “generically” our PDE is equivalent to the backwards heat
equation, up to a change of variables.
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11. Parametrization of Bellman function M

Thus the function M(x , y) can be parametrized as follows:

x = up

(
p,

1

2
q2

)
; y = qut

(
p,

1

2
q2

)
; (14)

M(x , y) = pup

(
p,

1

2
q2

)
+ q2ut

(
p,

1

2
q2

)
− u

(
p,

1

2
q2

)
, (15)

where
ut + upp = 0 .

M(x ,
√
y) ∈ C 2(Ω× R+) therefore My (x , 0) = 0. By choosing

q = 0 in (14), we have y = 0, and we obtain the boundary
condition:

x = up(p, 0) = up(Mx(x , 0), 0)

Or, if to denote boundary function M(x , 0) by f (x), then u has
initial conditions

u′(f ′(x), 0) = x .
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11a. Definiteness of matrix

Non-negativity of matrix also implies one more condition

u2
t − 2t(Hess u) ≥ 0 . (16)
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12. Applications: how to find Bellman log-Sobolev function

Inequality (5) shows us sharp lower bounds of the expression(∫
gdγ

)
ln
(∫

gdγ
)
. Therefore, we should take M(x , 0) = x ln x .

Boundary condition then can be rewritten as u′(ln x + 1, 0) = x or

u(p, 0) = ep−1 for all p ∈ R. If we set D = ∂2

∂p2 then

u(p, t) = e−tDep−1 =
∞∑
k=0

(−t)k

k!
ep−1 = ep−t−1 for all t ≥ 0.

Clearly u(p, t) satisfies (16) because det(Hess u) = 0. Notice that
we have ut < 0,x = ep−

q2

2
−1;

y = −qep−
q2

2
−1;

then

{
q = − y

x ;

p = ln x + y2

2x2 + 1.

Therefore we obtain
M(x , y)=xp+qy−u

(
p, 1

2q
2
)

=x ln x + y2

2x +x− y2

x −x =x ln x− y2

2x .
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13. Applications: how to find Bobkov’s Bellman function

In this case we are interested for the sharp lower bounds of the
expression −I (

∫
fdγ) in terms of

∫
M(f , ‖∇f ‖)dγ. We have

M(x , 0) = −I (x). Boundary condition takes the form

u(p, 0) = pΦ(p) + Φ′(p) for all p ∈ R. (17)

In fact, Mx(x , 0) = −I ′(x) and −I ′(x) = Φ−1(x):

I ′(x) =

[
e−

[Φ−1]2

2

]′
and (Φ−1)′ = e

[Φ−1]2

2 . First: usual heat

extension of u(p, 0), ũpp = ũt , and then we try to consider the
formal candidate u(p, t) := ũ(p,−t). The heat extension of

Φ′(p) = 1√
2π
e−p

2/2 is 1√
2π
√

1+2t
e
− p2

2(1+2t) . Heat extension of Φ(p)

is Φ
(

p√
1+2t

)
. Indeed, the heat extension of the function

1(−∞,0](p) at time t = 1/2 is Φ(p). By the semigroup property the
heat extension of Φ(p) at time t will be the heat extension of

1(−∞,0](p) at time 1/2 + t which equals to Φ
(

p√
1+2t

)
.
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14. Applications: how to find Bobkov’s Bellman function

Therefore, the heat extension of pΦ(p) can be found as follows:

2t√
2π
√

1 + 2t
e
− p2

2(1+2t) + pΦ

(
p√

1 + 2t

)
.

Thus we obtain that

ũ(p, t) =
√

1 + 2t Φ′
(

p√
1 + 2t

)
+ pΦ

(
p√

1 + 2t

)
.

This expression is well defined even for t ∈ (0,−1/2). Therefore if
we set

u(p, t) = ũ(p,−t) =
√

1− 2t Φ′
(

p√
1− 2t

)
+ pΦ

(
p√

1− 2t

)
for p ∈ R, t ∈

[
0,

1

2

)
,
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15. Applications: how to find Bobkov’s Bellman function

Direct computations show that u(p, t) satisfies ut + upp = 0 , the
boundary condition (17) and (16) because

det(Hess u) = −
(

Φ′( p√
1−2t

)

1−2t

)2

< 0. We have ut = −
Φ′( p√

1−2t
)

√
1−2t

< 0

and up = Φ
(

p√
1−2t

)
. Therefore,

x = Φ

(
p√

1−q2

)
;

y = qr = qut = −q√
1−q2

Φ′( p√
1−q2

);
then

Φ−1(x) = p√
1−q2

;

y = −q√
1−q2

Φ′(Φ−1(x)).

From the last equalities we obtain My = q = − y√
I 2(x)+y2

and

Mx = p = I (x)Φ−1(x)√
I 2(x)+y2

where we remind that I (x) = Φ′(Φ−1(x)).

Then it is clear that

M(x , y) = −
√
I 2(x) + y2.
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16. Isoperimetric inequalities for all!

Let u(p, 0) = g(p) then condition u(f ′(x), 0) = xf ′(x)− f (x)
where f (x) = M(x , 0) implies that g(f ′(x)) = xf ′(x)− f (x). By
taking derivative we obtain

g ′(f ′(x)) = x

Thus up(p, 0) is the inverse of Mx(x , 0) i.e.,

M(x , 0) =

∫
(up(p, 0))−1dp

Example of u(p, 0) = − sin p:
Then u(p, t) = −et sin(p). Notice that ut ≤ 0 for p ∈ [0, π], and

u2
t − 2t det(Hess u) = e2t(2t + sin2(x)) ≥ 0.

We also notice that

M(x , 0) = x arccos(−x) +
√

1− x2 for x ∈ [−1, 1]
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17. Isoperimetric inequalities for all!

The following conditions

x = up(p, q2/2); y = qut(p, q
2/2);

M(x , y) = px + qy − u(p, q2/2).

can be rewritten as follows

x = −eq2/2 cos(p, y = −qeq2/2 sin(p)

M(x , y) = px + qy + eq
2/2 sin(p) = px + qy − y

q
, x ∈ [−1, 1], y ≥ 0.

It follows that the negative number q satisfies the equation

− q
√
eq2 − x2 = y (18)

And then p = arccos(−xe−q2/2). Thus we obtain

M(x , y) = x arccos(−xe−q2/2) + (1− q2)
√

eq2 − x2

where a negative number q is the unique solution of (18).
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18. Isoperimetric inequalities for all!

Thus we obtain that∫
Rn

f arccos(−f e−F (f ,|∇f |)/2) + (1− F (f , |∇f |))
√
eF (f ,|∇f |) − f 2dγn ≤(∫

f

)
arccos

(
−
∫

f

)
+

√
1−

(∫
f

)2

for any f : Rn → (−1, 1) where F (u, v) > 0 solves the equation

|∇f |2 = F (eF − f 2)
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19. Isoperimetric inequalities for all!

∫
Rn

f arccos(−f e−F (f ,|∇f |)/2) + (1− F (f , |∇f |))
√
eF (f ,|∇f |) − f 2dγn ≤(∫

f

)
arccos

(
−
∫

f

)
+

√
1−

(∫
f

)2

for any f : Rn → (−1, 1) where F (u, v) > 0 solves the equation

|∇f |2 = F (eF − f 2)

This can be rewritten (since arccos(−x) = π − arccos(x)) as
follows:where r solves the equation |∇f |2 = r(er − f 2)∫

[(1− r)
√

1− (fe−r/2)2 − fe−r/2 arccos(f e−r/2)]er/2dγ ≤√
1−

(∫
f

)2

−
(∫

f

)
arccos

(∫
f

)
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20. Jensen’s correction. Poincaré inequality follows.

It is very interesting because Ψ(x) =
√

1− x2 − x arccos(x) is
decreasing convex function on [−1, 1] therefore when r → 0 one
should expect opposite integral inequality (By Jensen’s inequality)
however the condition r → 0 enforces f ≈ const. For example, the
inequality can be rewritten as follows∫

Ψ(fe−r/2)er/2dγ ≤ Ψ

(∫
fdγ

)
+

∫
|∇f |
√
rdγ.

For example if f is positive then Ψ(fe−r/2)er/2 ≥ Ψ(f )er/2 ≥ Ψ(f )
so one obtains the reverse to Jensen’s inequality∫

Ψ(f )dγ ≤ Ψ
(∫

fdγ
)

+
∫
|∇f |
√
rdγ. Since

√
r = |∇f |2

er−f 2 ≤ |∇f |
2

1−f 2

one can go further and write

Ψ

(∫
fdγ

)
≤
∫

Ψ(f )dγ ≤ Ψ

(∫
fdγ

)
+

∫
|∇f |2

1− f 2
dγ.

One can obtain Poincare inequality, indeed notice that
Ψ(x) = 1− 1

2πx + 1
2x

2 + O(x3) for |x | < 1. Take fε = εf and send
ε→ 0.
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21. A shortcut to become an applied mathematician:
Two-point inequality for M .

Our primary goal will be to understand for which M(x , y), for any
n ≥ 1 and any f : {−1, 1}n → Ω ⊂ R the following function

B(t) := EM(Pdi
t f , |∇Pt f |), t ∈ [0,∞) (19)

is monotonically increasing where

Pdi
t f =

∑
S⊂2n

e−|S|t f̂ (S)WS(x)

is a semigroup, WS(x) is the standard Walsh system on
({−1, 1}n, dµ), and dµ is the uniform counting measure on the
cube {−1, 1}n.
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22.

Let Pt be Ornestein–Uhlenbeck semigroup:
pt f = e−tLf , L = −∆ + x · ∇. Function

t →
∫
Rn

M(Pt f , |∇Pt f |)dγn (20)

is increasing provided that M is such that
M(x ,

√
y) ∈ C 2(Ω× R+) and it satisfies PDI(

Mxx +
My

y Mxy

Mxy Myy

)
≤ 0 (21)

In fact, we will prove that PDI is equivalent to a stronger
statement:

PtM(f , |∇f |) ≤ M(Pt f , |∇Pt f |) (22)
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23. Prove of monotonicity

PtM(f , |∇f |) ≤ M(Pt f , |∇Pt f |) (23)

In fact, “concavity” (23) is stronger than monotonicity of (24):

t →
∫
Rn

M(Pt f , |∇Pt f |)dγn (24)

Indeed, Integrating PhM(Pt f , |∇Pt f |) ≤ M(Pt+hf , |∇Pt+hf |) we
get

∫
M(Pt f , |∇Pt f |) ≤

∫
M(Pt+hf , |∇Pt+hf |) and (24) follows.

To prove that negativity of the matrix implies (23) we put
V (x , t) := PtM(f , |∇f |)−M(Pt f , |∇Pt f |). Then V (x , 0) = 0. If
we prove that

(
∂
∂t − L

)
V (x , t) ≤ 0 then by maximum principle

V (x , t) ≤ 0(
∂

∂t
− L

)
V (x , t) =

(
L− ∂

∂t

)
M(Pt f , |∇Pt f |) = Tr(WΓ(DPt f )) ≤ 0 ????

where Dg := (g , ∂1g , . . . , ∂ng), Γ(X ) = 〈∇Xi ,∇Xj〉, g = Pt f , and
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23a. The end of calculation of
(
L− ∂

∂t

)
M(Ptf , |∇Ptf |)

W = S

(
W1 +

My

‖∇f ‖
W2

)
S

where S is a diagonal matrix with diagonal (1, ∇Pt f
‖∇Pt f ‖), and W1,

W2 are corresponding matrices


Mxx +

My

‖∇f ‖ Mxy . . . Mxy

Mxy Myy . . . Myy

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mxy Myy . . . Myy




0 0 0 . . . 0

0 ‖∇Pt f ‖2

(Pt fx1 )2 − 1 −1 · · · − 1

0 −1 ‖∇Pt f ‖2

(Pt fx2 )2 − 1 . . . −1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 −1 · · · − 1 ‖∇Pt f ‖2

(Pt fxn )2−1


It is clear that W1 ≤ 0 because M satisfies (21) of slide 22.
W2 ≥ 0 by Hölder inequality. And My ≤ 0.
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25. Discrete PDE are tough

We saw that (
Mxx +

My

y Mxy

Mxy Myy

)
≤ 0 (25)

ensures that

EM(f , |∇f |) ≤ M(Ef , 0), where E =

∫
. . . d γn .

If En = 1
2n
∑
. . . on discrete cube {−1, 1}n, we need the discrete

inequality, which become (25) in its infinitesimal version. Then we
hope to get

EnM(f , |∇f |) ≤ M(Enf , 0), where
1

2n

∑
. . . .

But there are many ways to discretize (25). We need a correct one.
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26. Bobkov’s inequality on Hamming cube.

We will see now discrete version of monotonicity on 1D discrete
cube: E1M(Pdi

t f , |∇Pdi
t f | increases when t → +∞. Here

M(x , y) = −
√
I 2(x) + y2. Let us consider the equation

I ′′I = −1, I (0) = I (1) = 0 . (26)

and its solution I0(x) = φ ◦ Φ−1(x), where

Φ(x) =
1√
2π

∫ x

−∞
e−x

2/2dx , φ(x) = Φ′(x) .

Bobkov proved (by direct tedious calculations) that function I0
satisfies not only (26), but also a more general discrete inequality

I0(x) ≤ 1

2

√
I 2
0 (x + ε) + ε2 +

1

2

√
I 2
0 (x − ε) + ε2, I0(0) = I0(1) = 0 .

(27)
Moreover, the RHS decreases in ε. When ε→ 0 one restores
(26)–it is an infinitesimal version of more general (27).
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27. Full Bobkov’s inequality on Hamming cube.

Consider M(x , y) := −
√

I 2(x) + y2. Then 1D Bobkov’s inequality
(27) from slide 27 is precisely

E1M(f , |∇f |) ≤ M(E1f , 0) , (28)

where E1 is the expectation with (1/2, 1/2) measure on function
on one dimensional Hamming cube (= two points).
Bobkov managed to prove by induction that then

EnM(f , |∇f |) ≤ M(Enf , 0) (29)

independently of dimension n. The precise form of M played
very important part in his proof.
How to have a general class of M(x , y) for which induction works?
Full Bobkov’s inequality on discrete cube leads to Gaussian (slide 6)

I

(∫
Rn

fdγ

)
≤
∫
Rn

√
I 2(f ) + ‖∇f ‖2dγn (30)

by the CLT. But Gaussian version can be proved independently by
change of variable in PDE and by monotonicity of flow.
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28. Function 3/2.

Consider the function

M(x , y) =
1√
2

(
2x −

√
x2 + y2

)√
x +

√
x2 + y2 where x , y ≥ 0.

We know that in Gaussian world it gives an estimate better than
Beckner–Sobolev one.
Question. Does it have a discrete analog on Hamming cube?
Do we have

EM(f , |∇f |) ≤ M(Ef , 0) (31)

for function our M above? If E is Gaussian then YES.
What if E = E1?
What if E = En?
(Induction works?)
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29. Sly induction works.

We need to invent an inductable claim. It turns out that

EnM(f ,
√
|∇f |2 + |v |2) ≤ M(Enf , |Env |) (32)

if true for n can be easily inducted to n + 1.

The next question would be
What about the base of induction, n = 1?
First, let us prove that this induction will finish the proof of our
inequality on Hamming cube:

M(Enf , 0) ≥ EnM(f , |∇f |).
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30. f as martingale

Define the martingale {fk}nk=0 as follows: let fk = E(f |Fk) to be
the average of the function f with respect to the variables
(xk+1, . . . , xn). For example

fn = f ;

fn−1 =
1

2
(f (x1, . . . , xn−1, 1) + f (x1, . . . , xn−1,−1)) ;

. . .

f0 =
1

2n

∑
x∈{−1,1}n

f (x) = Ef .

Thus fk lives on {−1, 1}k for 1 ≤ k ≤ n.
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30a. Supermartingale appears

Next we would like to know how the next generation k + 1 is
related to the previous generation k . For x ∈ {−1, 1}k+1 let
x = (x ′, xk+1) where x ′ ∈ {−1, 1}k . Notice that

fk+1(x ′, xk+1) = fk(x ′) + xk+1 · g(x ′);

|∇fk+1(x ′, xk+1)|2 = |∇x ′(fk(x ′) + xk+1 · g(x ′))|2 + |g(x ′)|2.

where g = gk is a function on {−1, 1}k , and ∇x ′ denotes gradient
taken in x ′.
We claim that the following process

zk = M(fk , |∇fk |), 0 ≤ k ≤ n

is a supermartingale.
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30b. Our inequality on Hamming cube

After which our inequality follows immediately:

M(Ef , 0) = z0 ≥ Ezn = EM(f , |∇f |). (33)

To verify the claim we notice that

E(zk+1|Fk)(x ′) =
1

2

(
zk+1(x ′, 1) + zk+1(x ′,−1)

)
=

1

2

(
M(fk(x ′) + g(x ′),

√
|∇x ′(fk(x ′) + g(x ′))|2 + |g(x ′)|2)+

M(fk(x ′)− g(x ′),
√
|∇x ′(fk(x ′)− g(x ′))|2 + |g(x ′)|2)

)
≤

M(fk(x ′), |∇fk(x ′)|) = zk .

The last inequality follows from (34) (next slide) where we set
x = fk(x ′), a = g(x ′), y = ∇x ′fk(x ′) and b = ∇x ′g(x ′).
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31. The base of induction. Elementary?

Whenever x + a, x − a, y + b, y − b ≥ 0 we have

M(x , y) ≥ 1

2

(
M(x + a,

√
a2 + (y + b)2) + M(x − a,

√
a2 + (y − b)2)

)
,

(34)
where

M(x , y) =
(

2x −
√

x2 + y2
)√

x +
√
x2 + y2 where x , y ≥ 0.

Looks like too many square roots.... .Can it be made a rational
expression?
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32. Start.

Consider the function

f (t) := M(x + at,
√

(at)2 + (y + bt)2) + M(x − at,
√

(at)2 + (y − bt)2), t ∈ [0, 1]

It is enough to show that f (t) is decreasing for t ∈ [0, 1]. Change
variable at → t and consider f (t) on the interval [0, a] (but now
b → b/a) Notice that

f ′(t) = M+
x + M+

y

t + b(y + bt)√
t2 + (y + bt)2

−M−x + M−y
t − b(y − bt)√
t2 + (y − bt)2

=

9

4M+
x

[
(x + t) +

√
(x + t)2 + t2 + (y + bt)2 − (t + b(y + bt))

]
−

− 9

4M−x

[
(x − t) +

√
(x − t)2 + t2 + (y − bt)2 + (t − b(y − bt))

]
Where M+ and M− are computed at the points
(x + t,

√
t2 + (y + bt)2) and (x − t,

√
t2 + (y − bt)2)

correspondingly.
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32a. Explanation.

This is why the last equality of slide 32 holds:

M+
x =

3

2

√√
(x + t)2 + t2 + (y + bt)2 + (x + t),

M+
y = −3

2

√√
(x + t)2 + t2 + (y + bt)2 − (x + t),

M+
x M+

y = −9

4

√
t2 + (y + bt)2.
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33. Main.

Next we can always assume (by homogeneity of M and considering
new variables x̃ = xt, ỹ = yt) that we need to show that

x − by − b2 +
√

(x + 1)2 + 1 + (y + b)2√
x + 1 +

√
(x + 1)2 + 1 + (y + b)2

≤ (35)

x − by + b2 +
√

(x − 1)2 + 1 + (y − b)2√
x − 1 +

√
(x − 1)2 + 1 + (y − b)2

(36)

and |b| ≤ y .
If b = 0 then inequality (35) is true.

Let F (x) := LHS − RHS .
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34. At both infinities

Lemma

We have

F (x) = −b2
√

2 · x−1/2 + O(x−3/2) as x →∞;

F (x) =

−

√
−2x

(
(1 + b2 + by)

√
1 + (y − b)2 + (1 + b2 − by)

√
1 + (y + b)2

)
√

(1 + (y + b)2)(1 + (y − b)2)

+ O((−x)−1/2)

as x → −∞;

And the signs of f (x) are negative at ±∞.
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35. Squaring and squaring.

After squaring (35) of slide 33 and simplifying the expressions we
end up with the following inequality

CA · A + CB · B + CAB · A · B + L = 0 (37)

where

CA := 4by − 4b2x + b2 − b2y2 + 2b3y − b4 − 2− y2

CB := −4b2x + b2y2 + 2b3y + b4 + 2 + y2 + 4by − b2

L := −4− 4b2x2 + 4b3yx − 2b4 + 8byx − 2b2 − 2b2y2 − 2y2

A :=
√

(x + 1)2 + 1 + (y + b)2

B :=
√

(x − 1)2 + 1 + (y − b)2.
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36. Squaring again.

After moving terms L,CAB · A · B to the RHS and squaring and
moving some terms again we finally obtain that

(C 2
A · A2 + C 2

B · B2 − L2 − C 2
AB · A2 · B2)2−

4 · A2 · B2 · (CAB · L− CA · CB)2 = 0

Lets denote the LHS of the equation by P(x). This is a 3rd degree
polynomial in x

Alexander Volberg Old and new geometric isoperimetric inequalities, Monge–Ampère equation with drifts



37. Here is P(x ; b, y).

P(x) =

− 128b3y3(b2y2 + y2 + 2 + 4by + 3b2 + 2b3y+

b4)(b2y2 + y2 + 2− 4by + 3b2 − 2b3y + b4)x3+

(−64y8b8 + 1088b6y6 − 3392b8y4 + 8128b10y2+

384b10y6 − 704b12y4 + 960b8y6 − 3136b10y4

+ 3392b12y2 + 512b14y2 − 64y8b6 + 64y8b4+

64y8b2 − 960b4y6 + 960b6y4 + 64b2y6

− 2816b4y2 + 1280b4y4 + 1088b6y2−
640b2y4 + 7872b8y2 − 1280b2y2 − 10880b8

− 8960b10 − 3072b4 − 128b16 − 7808b6 − 512b2−
4352b12 − 1152b14)x2

(−1792b5y3 + 256b7y7 − 5504b7y3 − 1408b5y7+
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38.

3456b7y5 − 384y7b3 + 640b9y5+

2752b5y5 + 1536b3y3 − 5760b9y3 − 3840b11y3−
768b3y5 + 512by + 3072b3y+

1024by3 + 1984b13y + 384b15y + 32b17y+

32by9 + 10272b9y + 768by5+

5760b11y + 256by7 + 32b9y9 − 128b11y7−
1408b13y3 − 64b5y9

− 640b9y7 + 1664b11y5 + 192b13y5 − 128b15y3+

7936b5y + 11520b7y)x+

− 256− 144b18 − 16y10 + 688y8b8 + 1504b6y6−
1920b8y4 − 3440b10y2

− 2304b10y6 + 2592b12y4 − 192b8y6 + 3264b10y4−
4448b12y2 − 352b14
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39.

y2 − 288y8b6 − 224y8b4 + 48y8b2 − 736b4y6−
1376b6y4 − 320b2y6 − 2816b4y2

− 480b4y4 + 2496b6y2 − 1792b2y4 + 3056b8y2−
3072b2y2 − 768y2 − 512y6 − 896y4

− 144y8 − 3344b8 + 1584b10 − 4992b4 − 336b16−
6656b6 − 1792b2 + 2528b12+

608b14 − 64b16y4 + 96b14y6 + 16y10b2 + 32y10b4+

624b16y2 − 864b14y4

+ 416b12y6 − 64b12y8 − 16b10y8 − 16b8y10+

16b10y10 − 32y10b6 + 16b18y2
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40. b = 0.

If b = 0 then

P(x) = −16(y2 + 1)(y2 + 2)4 < 0.

This means that F (x) does not have roots when b = 0. Therefore
further we assume that b 6= 0.
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41. y = 0.

Next if y = 0 then

P(x) = −16(b2 + 1)5(8b2(b2 + 2)2x2 + (3b2 + 2)2(b2 − 2)2) < 0,

Which again means that F (x) does not have roots and hence
F (x) < 0 in this case as well. Next we assume that b, y 6= 0.

Alexander Volberg Old and new geometric isoperimetric inequalities, Monge–Ampère equation with drifts



42. The discriminant.

The discriminant of this polynomial is

∆ = 16777216 · (1 + b2)2 · (−8− 16b2 − 8b4 − 8y2 + 20b2y2 + b4y2 − 2y4 − 2b2y4)·
(−b4y2 + 2b2y2 − y2 − 2− 3b2 + b6)2(b2y2 + y2 + 2 + 4by + 3b2 + 2b3y + b4)2·
(b2y2 + y2 + 2− 4by + 3b2 − 2b3y + b4)2·
(4 + 24b2 + 3b12 + 76b6 + 54b8 + 20b10 + 4y8 + 14y6 + 17y4 + 12y2 + 59b4 − 14b6y6

+ 19b8y4 − 12b10y2 + 4y8b4 + 8y8b2 − 22b4y6 + 46b6y4 + 6b2y6 + 4b4y2 + 20b4y4

− 52b6y2 + 26b2y4 − 48b8y2 + 32b2y2)2 · b6 =

16777216 · (1 + b2)2 · T1 · T 2
2 · T 2

3 · T 2
4 · T 2

5 · b6.

Discriminant does not vanish except when

y =
(b2 + 1)

√
b2 − 2

b2 − 1
;
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F (x) is the LHS-RHS of the slide 33.
In this case P(x) has a root of multiplicity 2 which is
x = b

√
b2 − 2. We just need to make sure that at this root F (x)

is not zero. Then F (x) may have at most 1 root but since it has

negative signs at ±∞ we are done. So assuming y = (b2+1)
√
b2−2

b2−1

and x = b
√
b2 − 2 we obtain that in the LHS of F (x) we have

x − by − b2 +
√

(x + 1)2 + 1 + (y + b)2 =

− b(2
√
b2 − 2 + b3 − b)

b2 − 1
+

√
b2(2
√
b2 − 2 + b3 − b)2

(b2 − 1)2
= 0.

On the other hand lets see what is the RHS of F (x):

x − by + b2 +
√

(x − 1)2 + 1 + (y − b)2 =

− b(2
√
b2 − 2− b3 + b)

b2 − 1
+

√
b2(2
√
b2 − 2− b3 + b)2

(b2 − 1)2
=

− 2 · b(2
√
b2 − 2− b3 + b)

b2 − 1
> 0 for |b| ≥

√
2
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A new edge-isoperimetric inequality on Hamming cube

Again:

Ef 3/2 − (Ef )3/2 ≤ 1√
2
E|∇f |3/2, f : {−1, 1}N → R+. (38)

Next, let A ⊂ {−1, 1}n, and let wA(x) denotes the number of
neighbor vertices from the complement of the set where x belongs,
i.e., it counts opposite neighbors. Clearly wA(x) lives on the
boundary of the set A: wA(x) = 4|∇1A|2. If A has cardinality 2n−1

then the classical edge isoperimetric inequality of Harper (J.
Combin. Theory, 1996) states that

∑
x∈{−1,1}n wA(x) ≥ 2n. On

the other hand, taking f = 1A in (38) gives∑
x∈{−1,1}n

wA(x)3/4 ≥ (2−
√

2)2n

which is a new edge-isoperimetric inequality and does not follow
from the classical one.
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