Old and new geometric isoperimetric inequalities, Monge–Ampère equation with drifts. Shortcut to applied math: sharp Beckner–Sobolev inequality on Hamming cube

joint work by Paata Ivanisvili and Alexander Volberg

MSRI, MSU

Spring 2017

Alexander Volberg Old and new geometric isoperimetric inequalities, Monge–Ampère

1. Isoperimetric inequalities and Monge-Ampère with drift

What follows is a joint work with Paata Ivanisvili.

Theorem

If a real valued function M(x, y) is such that $M(x, \sqrt{y}) \in C^2(\Omega \times \mathbb{R}_+)$ and it satisfies the differential inequalities

$$\begin{bmatrix} M_{xx} + \frac{M_y}{y} & M_{xy} \\ M_{xy} & M_{yy} \end{bmatrix} \le 0 \quad \text{and} \quad M_y \le 0, \tag{1}$$

then for any $f \in C_0^\infty(\mathbb{R}^n; \Omega)$ we have

$$\int_{\mathbb{R}^n} M(f, \|\nabla f\|) d\gamma \leq M\left(\int_{\mathbb{R}^n} f d\gamma, 0\right).$$
(2)

2. Log-Sobolev inequality

$$M(x,y) = x \ln x - \frac{y^2}{2x}, \quad x > 0 \quad \text{and} \quad y \ge 0.$$
 (3)

Notice that M(x, y) satisfies (1). Indeed, $M_y = -\frac{y}{x} \leq 0$ and

$$\begin{bmatrix} M_{xx} + \frac{M_y}{y} & M_{xy} \\ M_{xy} & M_{yy} \end{bmatrix} = \begin{bmatrix} -\frac{y^2}{x^3} & \frac{y}{x^2} \\ \frac{y}{x^2} & -\frac{1}{x} \end{bmatrix} \le 0.$$
(4)

Log-Sobolev inequality of Gross states that

$$\int_{\mathbb{R}^n} |f|^2 \ln |f|^2 d\gamma - \left(\int_{\mathbb{R}^n} |f|^2 d\gamma \right) \ln \left(\int_{\mathbb{R}^n} |f|^2 d\gamma \right) \le 2 \int_{\mathbb{R}^n} \|\nabla f\|^2 d\gamma$$
(5)

whenever the right hand side of (5) is well-defined and finite for complex-valued f.

3. Beckner-Sobolev and spectral gap inequality

Beckner: For $f \in L^2(d\gamma)$ and $1 \le p \le 2$ we have $\int |f|^p d\gamma - \left(\int |f| d\gamma\right)^p \le \frac{p(p-1)}{2} \int_{\mathbb{R}^n} f^{p-2} \|\nabla f\|^2 d\gamma \quad (6)$ For p = 2 this is $\int |f|^2 d\gamma - \left(\int |f| d\gamma\right)^2 \le \int_{\mathbb{R}^n} \|\nabla f\|^2 d\gamma$. This shows that the spectral gap i.e. the first nontrivial eigenvalue of the self-adjoint positive operator $L = -\Delta + x \cdot \nabla$ in $L^2(\mathbb{R}^n, d\gamma)$ is bounded from below by 1.

 $M(x, y) = x^{p} - \frac{p(p-1)}{2}x^{p-2}y^{2}$ where $x, y \ge 0$ $1 \le p \le 2$. If q = 2/p

$$\begin{bmatrix} M_{xx} + \frac{M_{y}}{y} & M_{xy} \\ M_{xy} & M_{yy} \end{bmatrix} = \begin{bmatrix} -\frac{2(2-q)(1-q)(2-3q)x^{\frac{2}{q}-4}y^{2}}{q^{4}} & -\frac{4(2-q)(1-q)x^{\frac{2}{q}-3}y}{q^{3}} \\ -\frac{4(2-q)(1-q)x^{\frac{2}{q}-3}y}{q^{3}} & -\frac{4(2-q)x^{\frac{2}{q}-2}}{q^{2}} \end{bmatrix} \leq 0$$
(7)

4. Improving Beckner's inequality for p = 3/2.

Consider

$$M(x,y) = rac{1}{\sqrt{2}} \left(2x - \sqrt{x^2 + y^2}\right) \sqrt{x + \sqrt{x^2 + y^2}} \quad ext{where} \quad x,y \geq 0.$$

We have

A 10

→ 3 → 4 3

э

5. Sharper than Beckner–Sobolev inequality.

$$egin{aligned} &\int_{\mathbb{R}^n}rac{1}{\sqrt{2}}\left(2f-\sqrt{f^2+\|
abla f\|^2}
ight)\sqrt{f+\sqrt{f^2+\|
abla f\|^2}}d\gamma \leq \ &\leq \left(\int_{\mathbb{R}^n}fd\gamma
ight)^{3/2}. \end{aligned}$$

Notice that

$$x^{3/2} - \frac{3}{8}x^{-1/2}y^2 \le M(x,y) = \frac{1}{\sqrt{2}}\left(2x - \sqrt{x^2 + y^2}\right)\sqrt{x + \sqrt{x^2 + y^2}}$$

So this inequality is better than the Beckner's one:

$$\int_{\mathbb{R}^n} f^{3/2} d\mu - \frac{3}{8} \int_{\mathbb{R}^n} f^{-1/2} |\nabla f|^2 d\mu \leq \left(\int_{\mathbb{R}^n} f d\gamma \right)^{3/2}$$

.

Bobkov:

For a Lipschitz function $f : \mathbb{R}^n \to [0, 1]$, we have

$$I\left(\int_{\mathbb{R}^n} f d\gamma\right) \leq \int_{\mathbb{R}^n} \sqrt{I^2(f) + \|\nabla f\|^2} d\gamma, \qquad (9)$$

where $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-x^2/2} dx$, and $I(x) := \Phi'(\Phi^{-1}(x))$. Testing (9) for $f(x) = 1_A$ where A is a Borel subset of \mathbb{R}^n one obtains Gaussian isoperimetry: for any Borel measurable set $A \subset \mathbb{R}^n$

$$\gamma^{+}(A) \ge \Phi'(\Phi^{-1}(\gamma(A))), \qquad (10)$$

where $\gamma^+(A) := \liminf_{\varepsilon \to 0} \frac{\gamma(A_\varepsilon) - \gamma(A)}{\varepsilon}$ denotes Gaussian perimeter of A, here $A_\varepsilon = \{x \in \mathbb{R}^n : \operatorname{dist}_{\mathbb{R}^n}(A, x) < \varepsilon\}.$

7. Bobkov's inequality: Gaussian isoperimetry

$$M(x,y) = -\sqrt{I^2(x) + y^2}$$
 where $x \in [0,1], y \ge 0.$ (11)

Then $M_y = \frac{-y}{\sqrt{I^2(x)+y^2}} \le 0$ and

$$\begin{bmatrix} M_{xx} + \frac{M_{y}}{y} & M_{xy} \\ M_{xy} & M_{yy} \end{bmatrix} = \begin{bmatrix} -\frac{(l'(x))^{2}y^{2}}{(l^{2}(x)+y^{2})^{3/2}} + \frac{l(x)l''(x)+1}{\sqrt{l^{2}(x)+y^{2}}} & y\frac{l(x)l'(x)}{(l^{2}(x)+y^{2})^{3/2}} \\ y\frac{l(x)l'(x)}{(l^{2}(x)+y^{2})^{3/2}} & -\frac{l^{2}(x)}{(l^{2}(x)+y^{2})^{3/2}}. \end{bmatrix}$$
(12)

Notice that I''(x)I(x) = -1, therefore (12) is negative semidefinite.

向下 イヨト イヨト 三日

In general finding M(x, y) will be based purely on solving PDEs. First notice that in log-Sobolev (5) and in Bobkov's inequality (9) determinant of the matrices (4) and (12) are zero. In Beckner–Sobolev inequality (6) determinant of (7) is zero if and only if p = 1, 2. We will seek M(x, y) among those functions which in addition with (1) also satisfy *Monge–Ampére equation with a drift*:

$$\det \begin{bmatrix} M_{xx} + \frac{M_y}{y} & M_{xy} \\ M_{xy} & M_{yy} \end{bmatrix} = M_{xx}M_{yy} - M_{xy}^2 + \frac{M_yM_{yy}}{y} = 0 \quad (13)$$

for $(x, y) \in \Omega \times \mathbb{R}_+$.

9. Reduction to the exterior differential systems and backwards heat equation

Let us make the following observation: consider

$$(x, y, p, q) = (x, y, M_x(x, y), M_y(x, y))$$

in *xypq*-space. This is a surface Σ in 4-space on which $\Upsilon = dx \wedge dy$ is nonvanishing but to which the two 2-forms

$$\Upsilon_1 = \mathrm{d} p \wedge \mathrm{d} x + \mathrm{d} q \wedge \mathrm{d} y$$
 and $\Upsilon_2 = (y \mathrm{d} p + q \mathrm{d} x) \wedge \mathrm{d} q$

pull back to be zero. Consider a simply connected surface Σ in *xypq*-space (with y > 0) on which Υ is nonvanishing but to which Υ_1 and Υ_2 pullback to be zero. The 1-form pdx + qdy pull back to Σ to be closed (since Υ_1 vanishes on Σ) and hence exact, and so there exists a function $m : \Sigma \to \mathbb{R}$ such that dm = pdx + qdy on Σ . We then have, m = M(x, y) on Σ and, by its definition, we have $p = M_x(x, y)$ and $q = M_y(x, y)$ on the surface. Υ_2 vanishes when pulled back to Σ implies that M(x, y) satisfies the desired equation (13) of slide 41.

10. Exterior differential systems of Bryant-Griffiths

Thus, we have encoded the given PDE as an exterior differential system on \mathbb{R}^4 . Note, that we can make a change of variables on the open set where q < 0: Set y = qr and let $t = \frac{1}{2}q^2$. then, using these new coordinates on this domain, we have

$$\Upsilon_1 = \mathrm{d} p \wedge \mathrm{d} x + \mathrm{d} t \wedge \mathrm{d} r$$
 and $\Upsilon_2 = (r \mathrm{d} p + \mathrm{d} x) \wedge \mathrm{d} t$.

Now, when we take an integral surface Σ on these 2-forms on which $dp \wedge dt$ is not vanishing, it can be written locally as a graph of the form

$$(p, t, x, r) = (p, t, u_p(p, t), u_t(p, t))$$

(since Σ is an integral of Υ_1), where u(p, t) satisfies $u_t + u_{pp} = 0$ (since on $\Sigma \ 0 = \Upsilon_2 = u_t dp \wedge dt + du_p \wedge dt = (u_t + u_{pp}) dp \wedge dt$). Thus, "generically" our PDE is equivalent to the backwards heat equation, up to a change of variables.

11. Parametrization of Bellman function M

Thus the function M(x, y) can be parametrized as follows:

$$x = u_{p}\left(p, \frac{1}{2}q^{2}\right); \quad y = qu_{t}\left(p, \frac{1}{2}q^{2}\right);$$
(14)
$$M(x, y) = pu_{p}\left(p, \frac{1}{2}q^{2}\right) + q^{2}u_{t}\left(p, \frac{1}{2}q^{2}\right) - u\left(p, \frac{1}{2}q^{2}\right)$$
(15)

$$W(x,y) = pu_p\left(p, \frac{1}{2}q\right) + q u_t\left(p, \frac{1}{2}q\right) - u\left(p, \frac{1}{2}q\right), \quad (15)$$

where

$$u_t+u_{pp}=0.$$

 $M(x, \sqrt{y}) \in C^2(\Omega \times \mathbb{R}_+)$ therefore $M_y(x, 0) = 0$. By choosing q = 0 in (14), we have y = 0, and we obtain the boundary condition:

$$x = u_p(p,0) = u_p(M_x(x,0),0)$$

Or, if to denote boundary function M(x,0) by f(x), then u has initial conditions

$$u'(f'(x),0)=x.$$

Non-negativity of matrix also implies one more condition

$$u_t^2 - 2t(Hess u) \ge 0.$$
 (16)

A B + A B +

э

12. Applications: how to find Bellman log-Sobolev function

Inequality (5) shows us sharp lower bounds of the expression $(\int g d\gamma) \ln (\int g d\gamma)$. Therefore, we should take $M(x,0) = x \ln x$. Boundary condition then can be rewritten as $u'(\ln x + 1, 0) = x$ or $u(p,0) = e^{p-1}$ for all $p \in \mathbb{R}$. If we set $D = \frac{\partial^2}{\partial p^2}$ then

$$u(p,t) = e^{-tD}e^{p-1} = \sum_{k=0}^{\infty} \frac{(-t)^k}{k!}e^{p-1} = e^{p-t-1}$$
 for all $t \ge 0$.

Clearly u(p, t) satisfies (16) because det(Hess u) = 0. Notice that we have $u_t < 0$,

 $\begin{cases} x = e^{p - \frac{q^2}{2} - 1}; \\ y = -q e^{p - \frac{q^2}{2} - 1}; \end{cases} \text{ then } \begin{cases} q = -\frac{y}{x}; \\ p = \ln x + \frac{y^2}{2x^2} + 1. \end{cases}$

Therefore we obtain $M(x, y) = xp + qy - u(p, \frac{1}{2}q^2) = x \ln x + \frac{y^2}{2x} + x - \frac{y^2}{2x} - x = x \ln x - \frac{y^2}{2x}.$

13. Applications: how to find Bobkov's Bellman function

In this case we are interested for the sharp lower bounds of the expression $-I(\int f d\gamma)$ in terms of $\int M(f, ||\nabla f||) d\gamma$. We have M(x, 0) = -I(x). Boundary condition takes the form

$$u(p,0) = p\Phi(p) + \Phi'(p)$$
 for all $p \in \mathbb{R}$. (17)

In fact, $M_x(x,0) = -I'(x)$ and $-I'(x) = \Phi^{-1}(x)$: $I'(x) = \left[e^{-\frac{[\phi^{-1}]^2}{2}}\right]' \text{ and } (\Phi^{-1})' = e^{\frac{[\phi^{-1}]^2}{2}}.$ First: usual heat extension of u(p,0), $\tilde{u}_{pp} = \tilde{u}_t$, and then we try to consider the formal candidate $u(p, t) := \tilde{u}(p, -t)$. The heat extension of $\Phi'(p) = \frac{1}{\sqrt{2\pi}}e^{-p^2/2}$ is $\frac{1}{\sqrt{2\pi}\sqrt{1+2t}}e^{-\frac{p^2}{2(1+2t)}}$. Heat extension of $\Phi(p)$ is $\Phi\left(\frac{p}{\sqrt{1+2t}}\right)$. Indeed, the heat extension of the function $1_{(-\infty,0]}(p)$ at time t = 1/2 is $\Phi(p)$. By the semigroup property the heat extension of $\Phi(p)$ at time t will be the heat extension of $1_{(-\infty,0]}(p)$ at time 1/2 + t which equals to $\Phi\left(\frac{p}{\sqrt{1+2t}}\right)_{-1}$

14. Applications: how to find Bobkov's Bellman function

Therefore, the heat extension of $p\Phi(p)$ can be found as follows:

$$\frac{2t}{\sqrt{2\pi}\sqrt{1+2t}}e^{-\frac{p^2}{2(1+2t)}}+p\Phi\left(\frac{p}{\sqrt{1+2t}}\right).$$

Thus we obtain that

$$\widetilde{u}(p,t) = \sqrt{1+2t} \Phi'\left(rac{p}{\sqrt{1+2t}}
ight) + p\Phi\left(rac{p}{\sqrt{1+2t}}
ight).$$

This expression is well defined even for $t \in (0, -1/2)$. Therefore if we set

$$\begin{split} u(p,t) &= \tilde{u}(p,-t) = \sqrt{1-2t} \, \Phi'\left(\frac{p}{\sqrt{1-2t}}\right) + p \Phi\left(\frac{p}{\sqrt{1-2t}}\right) \\ \text{for} \quad p \in \mathbb{R}, \quad t \in \left[0,\frac{1}{2}\right), \end{split}$$

15. Applications: how to find Bobkov's Bellman function

Direct computations show that u(p, t) satisfies $u_t + u_{pp} = 0$, the boundary condition (17) and (16) because

$$\det(\operatorname{Hess} u) = -\left(\frac{\Phi'(\frac{p}{\sqrt{1-2t}})}{1-2t}\right)^2 < 0. \text{ We have } u_t = -\frac{\Phi'(\frac{p}{\sqrt{1-2t}})}{\sqrt{1-2t}} < 0$$

and $u_p = \Phi\left(\frac{p}{\sqrt{1-2t}}\right)$. Therefore,

$$\begin{cases} x = \Phi\left(\frac{p}{\sqrt{1-q^2}}\right); \\ y = qr = qu_t = \frac{-q}{\sqrt{1-q^2}} \Phi'(\frac{p}{\sqrt{1-q^2}}); \end{cases} \text{ then } \begin{cases} \Phi^{-1}(x) = \frac{p}{\sqrt{1-q^2}}; \\ y = \frac{-q}{\sqrt{1-q^2}} \Phi'(\Phi^{-1}(x)) \end{cases}$$

From the last equalities we obtain $M_y = q = -\frac{y}{\sqrt{I^2(x)+y^2}}$ and $M_x = p = \frac{I(x)\Phi^{-1}(x)}{\sqrt{I^2(x)+y^2}}$ where we remind that $I(x) = \Phi'(\Phi^{-1}(x))$. Then it is clear that

$$M(x,y) = -\sqrt{I^2(x) + y^2}.$$

16. Isoperimetric inequalities for all!

Let u(p,0) = g(p) then condition u(f'(x),0) = xf'(x) - f(x)where f(x) = M(x,0) implies that g(f'(x)) = xf'(x) - f(x). By taking derivative we obtain

g'(f'(x)) = x

Thus $u_p(p,0)$ is the *inverse* of $M_x(x,0)$ i.e.,

$$M(x,0)=\int (u_p(p,0))^{-1}dp$$

Example of $u(p, 0) = -\sin p$: Then $u(p, t) = -e^t \sin(p)$. Notice that $u_t \le 0$ for $p \in [0, \pi]$, and

$$u_t^2 - 2t \det(\text{Hess } u) = e^{2t}(2t + \sin^2(x)) \ge 0.$$

We also notice that

$$M(x,0) = x \arccos(-x) + \sqrt{1-x^2}$$
 for $x \in [-1,1]$

17. Isoperimetric inequalities for all!

The following conditions

$$x = u_p(p, q^2/2); y = qu_t(p, q^2/2);$$

 $M(x, y) = px + qy - u(p, q^2/2).$

can be rewritten as follows

$$\begin{aligned} x &= -e^{q^2/2}\cos(p, \ y = -qe^{q^2/2}\sin(p) \\ M(x,y) &= px + qy + e^{q^2/2}\sin(p) = px + qy - \frac{y}{q}, \quad x \in [-1,1], \ y \ge 0. \end{aligned}$$

It follows that the negative number q satisfies the equation

$$-q\sqrt{e^{q^2}-x^2}=y \tag{18}$$

And then $p = \arccos(-xe^{-q^2/2})$. Thus we obtain

$$M(x, y) = x \arccos(-xe^{-q^2/2}) + (1 - q^2)\sqrt{e^{q^2} - x^2}$$

where a negative number q is the unique solution of (18).

Thus we obtain that

$$\int_{\mathbb{R}^{n}} f \arccos(-f \ e^{-F(f,|\nabla f|)/2}) + (1 - F(f,|\nabla f|))\sqrt{e^{F(f,|\nabla f|)} - f^{2}} d\gamma_{n} \leq \left(\int f\right) \arccos\left(-\int f\right) + \sqrt{1 - \left(\int f\right)^{2}}$$

for any $f:\mathbb{R}^n
ightarrow(-1,1)$ where F(u,v)>0 solves the equation

$$|\nabla f|^2 = F(e^F - f^2)$$

★ 3 → < 3</p>

$$\begin{split} &\int_{\mathbb{R}^n} f \arccos(-f \ e^{-F(f,|\nabla f|)/2}) + (1 - F(f,|\nabla f|))\sqrt{e^{F(f,|\nabla f|)} - f^2} d\gamma_n \leq \\ & \left(\int f\right) \arccos\left(-\int f\right) + \sqrt{1 - \left(\int f\right)^2} \\ & \text{for any } f : \mathbb{R}^n \to (-1,1) \text{ where } F(u,v) > 0 \text{ solves the equation} \\ & |\nabla f|^2 = F(e^F - f^2) \end{split}$$

This can be rewritten (since $\arccos(-x) = \pi - \arccos(x)$) as follows:where *r* solves the equation $|\nabla f|^2 = r(e^r - f^2)$

$$\int [(1-r)\sqrt{1-(fe^{-r/2})^2} - fe^{-r/2} \arccos(f \ e^{-r/2})]e^{r/2} d\gamma \le \sqrt{1-\left(\int f\right)^2} - \left(\int f\right) \arccos\left(\int f\right)$$

20. Jensen's correction. Poincaré inequality follows.

It is very interesting because $\Psi(x) = \sqrt{1 - x^2} - x \arccos(x)$ is decreasing convex function on [-1, 1] therefore when $r \to 0$ one should expect opposite integral inequality (By Jensen's inequality) however the condition $r \to 0$ enforces $f \approx const$. For example, the inequality can be rewritten as follows

$$\int \Psi(fe^{-r/2})e^{r/2}d\gamma \leq \Psi\left(\int fd\gamma\right) + \int |\nabla f|\sqrt{r}d\gamma.$$

For example if f is positive then $\Psi(fe^{-r/2})e^{r/2} \ge \Psi(f)e^{r/2} \ge \Psi(f)$ so one obtains the reverse to Jensen's inequality

 $\int \Psi(f) d\gamma \leq \Psi\left(\int f d\gamma\right) + \int |\nabla f| \sqrt{r} d\gamma$. Since $\sqrt{r} = \frac{|\nabla f|^2}{e^r - f^2} \leq \frac{|\nabla f|^2}{1 - f^2}$ one can go further and write

$$\Psi\left(\int f d\gamma\right) \leq \int \Psi(f) d\gamma \leq \Psi\left(\int f d\gamma\right) + \int \frac{|\nabla f|^2}{1-f^2} d\gamma.$$

One can obtain Poincare inequality, indeed notice that $\Psi(x) = 1 - \frac{1}{2}\pi x + \frac{1}{2}x^2 + O(x^3)$ for |x| < 1. Take $f_{\varepsilon} = \varepsilon f$ and send $\varepsilon \to 0$.

21. A shortcut to become an applied mathematician: Two-point inequality for M.

Our primary goal will be to understand for which M(x, y), for any $n \ge 1$ and any $f : \{-1, 1\}^n \to \Omega \subset \mathbb{R}$ the following function

$$B(t) := \mathbb{E} M(P_t^{di}f, |\nabla P_tf|), \quad t \in [0, \infty)$$
(19)

is monotonically increasing where

$$P_t^{di}f = \sum_{S \subset 2^n} e^{-|S|t}\hat{f}(S)W_S(x)$$

is a semigroup, $W_S(x)$ is the standard Walsh system on $(\{-1,1\}^n, d\mu)$, and $d\mu$ is the uniform counting measure on the cube $\{-1,1\}^n$.

Let P_t be Ornestein–Uhlenbeck semigroup: $p_t f = e^{-tL} f$, $L = -\Delta + x \cdot \nabla$. Function

$$t \to \int_{\mathbb{R}^n} M(P_t f, |\nabla P_t f|) d\gamma_n \tag{20}$$

is increasing provided that M is such that $M(x,\sqrt{y}) \in C^2(\Omega \times \mathbb{R}_+)$ and it satisfies PDI

$$\begin{pmatrix} M_{xx} + \frac{M_y}{y} & M_{xy} \\ M_{xy} & M_{yy} \end{pmatrix} \le 0$$
 (21)

In fact, we will prove that PDI is equivalent to a stronger statement:

$$P_t M(f, |\nabla f|) \le M(P_t f, |\nabla P_t f|)$$
(22)

$$P_t M(f, |\nabla f|) \le M(P_t f, |\nabla P_t f|)$$
(23)

In fact, "concavity" (23) is stronger than monotonicity of (24):

$$t \to \int_{\mathbb{R}^n} M(P_t f, |\nabla P_t f|) d\gamma_n$$
 (24)

Indeed, Integrating $P_h M(P_t f, |\nabla P_t f|) \leq M(P_{t+h} f, |\nabla P_{t+h} f|)$ we get $\int M(P_t f, |\nabla P_t f|) \leq \int M(P_{t+h} f, |\nabla P_{t+h} f|)$ and (24) follows. To prove that negativity of the matrix implies (23) we put $V(x, t) := P_t M(f, |\nabla f|) - M(P_t f, |\nabla P_t f|)$. Then V(x, 0) = 0. If we prove that $(\frac{\partial}{\partial t} - L) V(x, t) \leq 0$ then by maximum principle $V(x, t) \leq 0$

$$\left(\frac{\partial}{\partial t}-L\right)V(x,t)=\left(L-\frac{\partial}{\partial t}\right)M(P_tf,|\nabla P_tf|)=Tr(W\Gamma(DP_tf))\leq 0$$

where $Dg := (g, \partial_1 g, \dots, \partial_n g)$, $\Gamma(X) = \langle \nabla X_i, \nabla X_j \rangle$, $g = P_t f$, and $f \in \mathcal{D} \setminus \mathcal{D}$

23a. The end of calculation of $\left(L - \frac{\partial}{\partial t}\right) M(P_t f, |\nabla P_t f|)$

$$W = S\left(W_1 + \frac{M_y}{\|\nabla f\|}W_2\right)S$$

where S is a diagonal matrix with diagonal $(1, \frac{\nabla P_t f}{\|\nabla P_t f\|})$, and W_1 , W_2 are corresponding matrices

$$\begin{bmatrix} M_{xx} + \frac{M_y}{\|\nabla f\|} & M_{xy} & \dots & M_{xy} \\ M_{xy} & M_{yy} & \dots & M_{yy} \\ \dots & \dots & \dots & \dots \\ M_{xy} & M_{yy} & \dots & M_{yy} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & \frac{\|\nabla P_t f\|^2}{(P_t f_{x_1})^2} - 1 & -1 & \dots & -1 \\ 0 & -1 & \frac{\|\nabla P_t f\|^2}{(P_t f_{x_2})^2} - 1 & \dots \\ 0 & -1 & \dots & \dots & \dots \\ 0 & -1 & \dots & -1 & \frac{\|\nabla P_t f\|^2}{(P_t f_{x_1})^2} - 1 \end{bmatrix}$$

It is clear that $W_1 \leq 0$ because M satisfies (21) of slide 22. $W_2 \geq 0$ by Hölder inequality. And $M_y \leq 0$.

25. Discrete PDE are tough

We saw that

$$\begin{pmatrix} M_{xx} + \frac{M_y}{y} & M_{xy} \\ M_{xy} & M_{yy} \end{pmatrix} \le 0$$
 (25)

ensures that

$$\mathbb{E}M(f, |
abla f|) \leq M(\mathbb{E}f, 0), ext{ where } \mathbb{E} = \int \ldots d\, \gamma_n \,.$$

If $\mathbb{E}_n = \frac{1}{2^n} \sum \ldots$ on discrete cube $\{-1, 1\}^n$, we need the discrete inequality, which become (25) in its infinitesimal version. Then we hope to get

$$\mathbb{E}_n M(f, |
abla f|) \leq M(\mathbb{E}_n f, 0), ext{ where } rac{1}{2^n} \sum \dots \, .$$

But there are many ways to discretize (25). We need a correct one.

26. Bobkov's inequality on Hamming cube.

We will see now discrete version of monotonicity on 1D discrete cube: $\mathbb{E}_1 M(P_t^{di}f, |\nabla P_t^{di}f|)$ increases when $t \to +\infty$. Here $M(x, y) = -\sqrt{I^2(x) + y^2}$. Let us consider the equation

$$I''I = -1, I(0) = I(1) = 0.$$
 (26)

and its solution $I_0(x) = \phi \circ \Phi^{-1}(x)$, where

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-x^2/2} dx, \quad \phi(x) = \Phi'(x).$$

Bobkov proved (by direct tedious calculations) that function I_0 satisfies not only (26), but also a more general discrete inequality

$$I_{0}(x) \leq \frac{1}{2}\sqrt{I_{0}^{2}(x+\varepsilon)+\varepsilon^{2}} + \frac{1}{2}\sqrt{I_{0}^{2}(x-\varepsilon)+\varepsilon^{2}}, I_{0}(0) = I_{0}(1) = 0.$$
(27)

Moreover, the RHS decreases in ε . When $\varepsilon \to 0$ one restores (26)–it is an infinitesimal version of more general (27).

27. Full Bobkov's inequality on Hamming cube.

Consider $M(x, y) := -\sqrt{I^2(x) + y^2}$. Then 1D Bobkov's inequality (27) from slide 27 is precisely

$$\mathbb{E}_1 M(f, |\nabla f|) \le M(\mathbb{E}_1 f, 0), \qquad (28)$$

where \mathbb{E}_1 is the expectation with (1/2, 1/2) measure on function on one dimensional Hamming cube (= two points). Bobkov managed to prove by induction that then

$$\mathbb{E}_n M(f, |\nabla f|) \le M(\mathbb{E}_n f, 0)$$
(29)

independently of dimension n. The precise form of M played very important part in his proof.

How to have a general class of M(x, y) for which induction works? Full Bobkov's inequality on discrete cube leads to Gaussian (slide 6)

$$I\left(\int_{\mathbb{R}^n} f d\gamma\right) \le \int_{\mathbb{R}^n} \sqrt{I^2(f) + \|\nabla f\|^2} d\gamma_n \tag{30}$$

by the CLT. But Gaussian version can be proved independently by change of variable in PDE and by monotonicity of flow.

Consider the function

$$M(x,y) = rac{1}{\sqrt{2}} \left(2x - \sqrt{x^2 + y^2}
ight) \sqrt{x + \sqrt{x^2 + y^2}} \quad ext{where} \quad x,y \geq 0.$$

We know that in Gaussian world it gives an estimate better than Beckner–Sobolev one.

Question. Does it have a discrete analog on Hamming cube? Do we have

$$\mathbb{E}M(f,|\nabla f|) \le M(\mathbb{E}f,0) \tag{31}$$

for function our *M* above? If \mathbb{E} is Gaussian then YES. What if $\mathbb{E} = \mathbb{E}_1$? What if $\mathbb{E} = \mathbb{E}_n$? (Induction works?) We need to invent an inductable claim. It turns out that

$$\mathbb{E}_n M(f, \sqrt{|\nabla f|^2 + |v|^2}) \le M(\mathbb{E}_n f, |\mathbb{E}_n v|)$$
(32)

if true for n can be easily inducted to n + 1.

The next question would be

What about the base of induction, n = 1?

First, let us prove that this induction will finish the proof of our inequality on Hamming cube:

$$M(\mathbb{E}_n f, 0) \geq \mathbb{E}_n M(f, |\nabla f|).$$

Define the martingale $\{f_k\}_{k=0}^n$ as follows: let $f_k = \mathbb{E}(f|\mathcal{F}_k)$ to be the average of the function f with respect to the variables (x_{k+1}, \ldots, x_n) . For example

$$f_n = f;$$

$$f_{n-1} = \frac{1}{2} (f(x_1, \dots, x_{n-1}, 1) + f(x_1, \dots, x_{n-1}, -1));$$

...

$$f_0 = \frac{1}{2^n} \sum_{x \in \{-1,1\}^n} f(x) = \mathbb{E}f.$$

Thus f_k lives on $\{-1,1\}^k$ for $1 \le k \le n$.

Next we would like to know how the next generation k + 1 is related to the previous generation k. For $x \in \{-1, 1\}^{k+1}$ let $x = (x', x_{k+1})$ where $x' \in \{-1, 1\}^k$. Notice that

$$egin{aligned} &f_{k+1}(x',x_{k+1}) = f_k(x') + x_{k+1} \cdot g(x'); \ &|
abla f_{k+1}(x',x_{k+1})|^2 = |
abla_{x'}(f_k(x') + x_{k+1} \cdot g(x'))|^2 + |g(x')|^2. \end{aligned}$$

where $g = g^k$ is a function on $\{-1, 1\}^k$, and $\nabla_{x'}$ denotes gradient taken in x'.

We claim that the following process

$$z_k = M(f_k, |\nabla f_k|), \quad 0 \le k \le n$$

is a supermartingale.

30b. Our inequality on Hamming cube

After which our inequality follows immediately:

$$M(\mathbb{E}f,0) = z_0 \ge \mathbb{E}z_n = \mathbb{E}M(f,|\nabla f|).$$
(33)

To verify the claim we notice that

$$\begin{split} \mathbb{E}(z_{k+1}|\mathcal{F}_k)(x') &= \frac{1}{2} \left(z_{k+1}(x',1) + z_{k+1}(x',-1) \right) = \\ \frac{1}{2} \left(M(f_k(x') + g(x'), \sqrt{|\nabla_{x'}(f_k(x') + g(x'))|^2 + |g(x')|^2}) + M(f_k(x') - g(x'), \sqrt{|\nabla_{x'}(f_k(x') - g(x'))|^2 + |g(x')|^2}) \right) \leq \\ M(f_k(x'), |\nabla f_k(x')|) &= z_k. \end{split}$$

The last inequality follows from (34) (next slide) where we set $x = f_k(x'), a = g(x'), y = \nabla_{x'}f_k(x')$ and $b = \nabla_{x'}g(x')$.

31. The base of induction. Elementary?

Whenever $x + a, x - a, y + b, y - b \ge 0$ we have

$$M(x,y) \ge \frac{1}{2} \left(M(x+a,\sqrt{a^2+(y+b)^2}) + M(x-a,\sqrt{a^2+(y-b)^2}) \right)$$
(34)

where

$$M(x,y) = \left(2x - \sqrt{x^2 + y^2}\right)\sqrt{x + \sqrt{x^2 + y^2}}$$
 where $x, y \ge 0$.

Looks like too many square roots.... .Can it be made a rational expression?

4 B N 4 B N

32. Start.

Consider the function

$$f(t) := M(x + at, \sqrt{(at)^2 + (y + bt)^2}) + M(x - at, \sqrt{(at)^2 + (y - bt)^2})$$

It is enough to show that f(t) is decreasing for $t \in [0, 1]$. Change variable $at \to t$ and consider f(t) on the interval [0, a] (but now $b \to b/a$) Notice that

$$f'(t) = M_x^+ + M_y^+ \frac{t + b(y + bt)}{\sqrt{t^2 + (y + bt)^2}} - M_x^- + M_y^- \frac{t - b(y - bt)}{\sqrt{t^2 + (y - bt)^2}} = \frac{9}{4M_x^+} \left[(x + t) + \sqrt{(x + t)^2 + t^2 + (y + bt)^2} - (t + b(y + bt)) \right] - \frac{9}{4M_x^-} \left[(x - t) + \sqrt{(x - t)^2 + t^2 + (y - bt)^2} + (t - b(y - bt)) \right]$$

Where M^+ and M^- are computed at the points $(x + t, \sqrt{t^2 + (y + bt)^2})$ and $(x - t, \sqrt{t^2 + (y - bt)^2})$ correspondingly.

This is why the last equality of slide 32 holds:

$$\begin{split} M_x^+ &= \frac{3}{2} \sqrt{\sqrt{(x+t)^2 + t^2 + (y+bt)^2} + (x+t)}, \\ M_y^+ &= -\frac{3}{2} \sqrt{\sqrt{(x+t)^2 + t^2 + (y+bt)^2} - (x+t)}, \\ M_x^+ M_y^+ &= -\frac{9}{4} \sqrt{t^2 + (y+bt)^2}. \end{split}$$

母▶ ★ 臣▶ ★ 臣

э

Next we can always assume (by homogeneity of M and considering new variables $\tilde{x} = xt$, $\tilde{y} = yt$) that we need to show that

$$\frac{x - by - b^2 + \sqrt{(x+1)^2 + 1 + (y+b)^2}}{\sqrt{x+1 + \sqrt{(x+1)^2 + 1 + (y+b)^2}}} \le (35)$$
$$\frac{x - by + b^2 + \sqrt{(x-1)^2 + 1 + (y-b)^2}}{\sqrt{x-1 + \sqrt{(x-1)^2 + 1 + (y-b)^2}}} (36)$$

and $|b| \le y$. If b = 0 then inequality (35) is true.

Let
$$F(x) := LHS - RHS$$
.

A B M A B M

Lemma

We have $F(x) = -b^2 \sqrt{2} \cdot x^{-1/2} + O(x^{-3/2})$ as $x \to \infty$; F(x) = $\sqrt{-2x}\left((1+b^2+by)\sqrt{1+(y-b)^2}+(1+b^2-by)\sqrt{1+(y+b)^2}\right)$ $\sqrt{(1+(y+b)^2)(1+(y-b)^2)}$ $+ O((-x)^{-1/2})$ as $x \to -\infty$: And the signs of f(x) are negative at $\pm \infty$.

After squaring (35) of slide 33 and simplifying the expressions we end up with the following inequality

$$C_A \cdot A + C_B \cdot B + C_{AB} \cdot A \cdot B + L = 0 \tag{37}$$

where

$$\begin{split} C_A &:= 4by - 4b^2x + b^2 - b^2y^2 + 2b^3y - b^4 - 2 - y^2 \\ C_B &:= -4b^2x + b^2y^2 + 2b^3y + b^4 + 2 + y^2 + 4by - b^2 \\ L &:= -4 - 4b^2x^2 + 4b^3yx - 2b^4 + 8byx - 2b^2 - 2b^2y^2 - 2y^2 \\ A &:= \sqrt{(x+1)^2 + 1 + (y+b)^2} \\ B &:= \sqrt{(x-1)^2 + 1 + (y-b)^2}. \end{split}$$

★ ∃ →

After moving terms $L, C_{AB} \cdot A \cdot B$ to the RHS and squaring and moving some terms again we finally obtain that

$$(C_A^2 \cdot A^2 + C_B^2 \cdot B^2 - L^2 - C_{AB}^2 \cdot A^2 \cdot B^2)^2 - 4 \cdot A^2 \cdot B^2 \cdot (C_{AB} \cdot L - C_A \cdot C_B)^2 = 0$$

Lets denote the LHS of the equation by P(x). This is a 3rd degree polynomial in x

37. Here is P(x; b, y).

$$P(x) = -128b^{3}y^{3}(b^{2}y^{2} + y^{2} + 2 + 4by + 3b^{2} + 2b^{3}y + b^{4})(b^{2}y^{2} + y^{2} + 2 - 4by + 3b^{2} - 2b^{3}y + b^{4})x^{3} + (-64y^{8}b^{8} + 1088b^{6}y^{6} - 3392b^{8}y^{4} + 8128b^{10}y^{2} + 384b^{10}y^{6} - 704b^{12}y^{4} + 960b^{8}y^{6} - 3136b^{10}y^{4} + 3392b^{12}y^{2} + 512b^{14}y^{2} - 64y^{8}b^{6} + 64y^{8}b^{4} + 64y^{8}b^{2} - 960b^{4}y^{6} + 960b^{6}y^{4} + 64b^{2}y^{6} - 2816b^{4}y^{2} + 1280b^{4}y^{4} + 1088b^{6}y^{2} - 640b^{2}y^{4} + 7872b^{8}y^{2} - 1280b^{2}y^{2} - 10880b^{8} - 8960b^{10} - 3072b^{4} - 128b^{16} - 7808b^{6} - 512b^{2} - 4352b^{12} - 1152b^{14})x^{2} (-1792b^{5}y^{3} + 256b^{7}y^{7} - 5504b^{7}y^{3} - 1408b^{5}y^{7} + y^{2} + 1280b^{4}y^{4} + 108b^{6}y^{2} - 400b^{2}y^{4} + 108b^{6}y^{2} - 400b^{2}y^{4} + 105b^{2}y^{4} + 108b^{6}y^{2} - 4352b^{12} - 1152b^{14})x^{2} + 256b^{7}y^{7} - 5504b^{7}y^{3} - 1408b^{5}y^{7} + 400b^{2}y^{4} + 100b^{2}y^{4} + 10b^{2}y^{4} + 10b^{2}y^{4}$$

$$\begin{aligned} 3456b^7y^5 - 384y^7b^3 + 640b^9y^5 + \\ 2752b^5y^5 + 1536b^3y^3 - 5760b^9y^3 - 3840b^{11}y^3 - \\ 768b^3y^5 + 512by + 3072b^3y + \\ 1024by^3 + 1984b^{13}y + 384b^{15}y + 32b^{17}y + \\ 32by^9 + 10272b^9y + 768by^5 + \\ 5760b^{11}y + 256by^7 + 32b^9y^9 - 128b^{11}y^7 - \\ 1408b^{13}y^3 - 64b^5y^9 \\ - 640b^9y^7 + 1664b^{11}y^5 + 192b^{13}y^5 - 128b^{15}y^3 + \\ 7936b^5y + 11520b^7y)x + \\ - 256 - 144b^{18} - 16y^{10} + 688y^8b^8 + 1504b^6y^6 - \\ 1920b^8y^4 - 3440b^{10}y^2 \\ - 2304b^{10}y^6 + 2592b^{12}y^4 - 192b^8y^6 + 3264b^{10}y^4 - \\ \end{aligned}$$

$$\begin{array}{l} y^2-288y^8b^6-224y^8b^4+48y^8b^2-736b^4y^6-\\ 1376b^6y^4-320b^2y^6-2816b^4y^2\\ -480b^4y^4+2496b^6y^2-1792b^2y^4+3056b^8y^2-\\ 3072b^2y^2-768y^2-512y^6-896y^4\\ -144y^8-3344b^8+1584b^{10}-4992b^4-336b^{16}-\\ 6656b^6-1792b^2+2528b^{12}+\\ 608b^{14}-64b^{16}y^4+96b^14y^6+16y^{10}b^2+32y^{10}b^4+\\ 624b^{16}y^2-864b^{14}y^4\\ +416b^{12}y^6-64b^{12}y^8-16b^{10}y^8-16b^8y^{10}+\\ 16b^{10}y^{10}-32y^{10}b^6+16b^{18}y^2 \end{array}$$

If b = 0 then

$$P(x) = -16(y^2 + 1)(y^2 + 2)^4 < 0.$$

This means that F(x) does not have roots when b = 0. Therefore further we assume that $b \neq 0$.

伺 ト く ヨ ト く ヨ ト

3

Next if y = 0 then

$$P(x) = -16(b^2 + 1)^5(8b^2(b^2 + 2)^2x^2 + (3b^2 + 2)^2(b^2 - 2)^2) < 0,$$

Which again means that F(x) does not have roots and hence F(x) < 0 in this case as well. Next we assume that $b, y \neq 0$.

直 と く ヨ と く ヨ と

42. The discriminant.

The discriminant of this polynomial is

$$\begin{split} &\Delta = 16777216 \cdot (1+b^2)^2 \cdot (-8-16b^2-8b^4-8y^2+20b^2y^2+b^4y^2-3) \\ &(-b^4y^2+2b^2y^2-y^2-2-3b^2+b^6)^2(b^2y^2+y^2+2+4by+3b^2+2b) \\ &(b^2y^2+y^2+2-4by+3b^2-2b^3y+b^4)^2 \cdot \\ &(4+24b^2+3b^{12}+76b^6+54b^8+20b^{10}+4y^8+14y^6+17y^4+12y^2+19b^8y^4-12b^{10}y^2+4y^8b^4+8y^8b^2-22b^4y^6+46b^6y^4+6b^2y^6+4bb^2y^6+4bb^2y^6+4bb^2y^6+4bb^2y^2+2b^2y^2+26b^2y^4-48b^8y^2+32b^2y^2)^2 \cdot b^6 = \\ &16777216 \cdot (1+b^2)^2 \cdot T_1 \cdot T_2^2 \cdot T_3^2 \cdot T_4^2 \cdot T_5^2 \cdot b^6. \end{split}$$

Discriminant does not vanish except when

$$y = \frac{(b^2 + 1)\sqrt{b^2 - 2}}{b^2 - 1};$$

Image: Image:

F(x) is the LHS-RHS of the slide 33. In this case P(x) has a root of multiplicity 2 which is $x = b\sqrt{b^2 - 2}$. We just need to make sure that at this root F(x)is not zero. Then F(x) may have at most 1 root but since it has negative signs at $\pm \infty$ we are done. So assuming $y = \frac{(b^2+1)\sqrt{b^2-2}}{b^2-1}$ and $x = b\sqrt{b^2 - 2}$ we obtain that in the LHS of F(x) we have

$$\begin{aligned} x - by - b^2 + \sqrt{(x+1)^2 + 1 + (y+b)^2} &= \\ &- \frac{b(2\sqrt{b^2 - 2} + b^3 - b)}{b^2 - 1} + \sqrt{\frac{b^2(2\sqrt{b^2 - 2} + b^3 - b)^2}{(b^2 - 1)^2}} = 0. \end{aligned}$$

On the other hand lets see what is the RHS of F(x):

$$\begin{aligned} x - by + b^{2} + \sqrt{(x - 1)^{2} + 1 + (y - b)^{2}} &= \\ &- \frac{b(2\sqrt{b^{2} - 2} - b^{3} + b)}{b^{2} - 1} + \sqrt{\frac{b^{2}(2\sqrt{b^{2} - 2} - b^{3} + b)^{2}}{(b^{2} - 1)^{2}}} = \\ &- 2 \cdot \frac{b(2\sqrt{b^{2} - 2} - b^{3} + b)}{b^{2} - 1} > 0 \quad \text{for} \quad |b| \ge \sqrt{2} \quad |b| \ge \sqrt{2} \quad \text{for} \quad |b| \ge \sqrt{2} \quad |b|$$

A new edge-isoperimetric inequality on Hamming cube

Again:

$$\mathbb{E}f^{3/2} - (\mathbb{E}f)^{3/2} \le \frac{1}{\sqrt{2}}\mathbb{E}|\nabla f|^{3/2}, \quad f: \{-1,1\}^N \to \mathbb{R}_+.$$
 (38)

Next, let $A \subset \{-1,1\}^n$, and let $w_A(x)$ denotes the number of neighbor vertices from the complement of the set where x belongs, i.e., it counts opposite neighbors. Clearly $w_A(x)$ lives on the *boundary* of the set A: $w_A(x) = 4|\nabla \mathbf{1}_A|^2$. If A has cardinality 2^{n-1} then the classical edge isoperimetric inequality of Harper (J. Combin. Theory, 1996) states that $\sum_{x \in \{-1,1\}^n} w_A(x) \ge 2^n$. On the other hand, taking $f = \mathbf{1}_A$ in (38) gives

$$\sum_{x \in \{-1,1\}^n} w_A(x)^{3/4} \ge (2 - \sqrt{2})2^n$$

which is a new edge-isoperimetric inequality and does not follow from the classical one.