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1. Isoperimetric inequalities and Monge—Ampere with drift

What follows is a joint work with Paata lvanisvili.

Theorem

If a real valued function M(x,y) is such that
M(x,/y) € C3(Q x Ry) and it satisfies the differential inequalities

Mo+ 52 My
M,

] <0 and M, <0, (1)
Yy

then for any f € C§°(R"; Q) we have

/Rn M(F, |V F])dy < M (/R fdv, o> . 2)

Alexander Volberg
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2. Log-Sobolev inequality

2
M(X,y):xlnx—)z/—, x>0 and y>0. (3)
X

Notice that M(x, y) satisfies (1). Indeed, M, = —%£ < 0 and

(4)

| XN‘\<

X =

| I
IN
©

Mo+ My | -4
MXY Myy %

Log-Sobolev inequality of Gross states that
[rpwirgay = ([ e ( [ ke ) <2 [ ey
]Rn Rn Rn Rn
(5)

whenever the right hand side of (5) is well-defined and finite for
complex-valued f.
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3. Beckner-Sobolev and spectral gap inequality

Beckner:
For f € [?(dv) and 1 < p < 2 we have

[iteas—([irlar)" < 22D [ porweiar )

For p =2 thisis [ |f|2dy — ([ |fldy)? < [u [VF]2dy. This
shows that the spectral gap i.e. the first nontrivial eigenvalue of
the self-adjoint positive operator L = —A + x - V in L?(R", dv) is
bounded from below by 1.

M(x,y) = xP — WX”_%/Z where x,y >0 1<p<2If

q9=2/p
M+ Mo gy |- 22000G=30 T se-aaxs Ty
XX v xy | _ B : oy
My My 42—y ETCE P
q3 e
(7)
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4. Improving Beckner's inequality for p = 3/2.

Consider
1
M(x,y) = \ﬁ <2X — /X2 +y2> X+ \/)ﬁy2 where x,y > 0.
We have
R oy
(/\/IXX + % I\/IXy> _ 3v2 (x+1/x2+y?2)3/2 /Py
MXy Myy 8\/ x? +y2 \/#\/Tiyz —\/ﬁ
)

(8
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5. Sharper than Beckner-Sobolev inequality.

1
/ 7 (2f —\/f2+ HVf||2) \/f+ \/ 2+ ||VF|2dy <
Rn
3/2
()"
Notice that

32— %X_1/2y2 < M(x,y) = \% <2X — VX2 +y2) X+ /x2+ y?

So this inequality is better than the Beckner's one:

3 3/2
/ f3/2du—8/ FY2|VFPdp < </ fd7> :
n Rn Rn
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6. Bobkov's inequality: Gaussian isoperimetry

Bobkov:
For a Lipschitz function f : R” — [0, 1], we have

(L)< [ o iveear, ©)

where &(x) = 2 [* e */2dx, and I(x) := &' (d71(x)).
Testing (9) for f(x) = 14 where A is a Borel subset of R" one
obtains Gaussian isoperimetry: for any Borel measurable set

ACR"
7H(A) 2 ¥'(07H(1(A)) (10)

where 41 (A) := liminf._ M denotes Gaussian perimeter
of A, here A, = {x € R" : distgn(A, x) < £}.
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7. Bobkov's inequality: Gaussian isoperimetry

M(x.y) = =\/P(x) +y> where x€[0.1], y=0. (11)
Then M, = ﬁ <0 and
I"(x))?y? IXI"X+1 1)1 (x
Mo + 2 Mxy] _ | awnt t Vien Y wns
- x)! 12(x
M,y Myy y% _W’
(12)

Notice that /”(x)/(x) = —1, therefore (12) is negative semidefinite.
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8. Monge—Ampere eq. with drift: how to find M

In general finding M(x, y) will be based purely on solving PDEs.
First notice that in log-Sobolev (5) and in Bobkov's inequality (9)
determinant of the matrices (4) and (12) are zero. In
Beckner—Sobolev inequality (6) determinant of (7) is zero if and
only if p=1,2. We will seek M(x,y) among those functions
which in addition with (1) also satisfy Monge-Ampére equation
with a drift:

det

My
Mxx + v Mxy _ MxxMyy o M2 + y — 0 (13)
MXY Myy

for (x,y) € QA x R4.
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9. Reduction to the exterior differential systems and

backwards heat equation

Let us make the following observation: consider

(X,y,p, q) - (X7y7 MX(XJ)?M)/(XJ))

in xypg-space. This is a surface ¥ in 4-space on which
T = dx A dy is nonvanishing but to which the two 2-forms

Ti=dpAdx+dgAdy and 7Ty =(ydp+ gdx)Adg

pull back to be zero. Consider a simply connected surface ¥ in
xypg-space (with y > 0) on which T is nonvanishing but to which
T1 and T, pullback to be zero. The 1-form pdx -+ gdy pull back
to X to be closed (since T; vanishes on ¥) and hence exact, and
so there exists a function m : ¥ — R such that dm = pdx + qdy
on X. We then have, m = M(x,y) on X and, by its definition, we
have p = M,(x,y) and g = M,(x, y) on the surface. T, vanishes
when pulled back to X implies that M(x, y) satisfies the desired
equation (13) of slide 41.
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10. Exterior differential systems of Bryant—Griffiths

Thus, we have encoded the given PDE as an exterior differential
system on R*. Note, that we can make a change of variables on
the open set where g < 0: Set y = gr and let t = %qz. then, using
these new coordinates on this domain, we have

Ti=dpAdx+dtAdr and 7Ty = (rdp+ dx)Adt.

Now, when we take an integral surface ¥ on these 2-forms on
which dp A dt is not vanishing, it can be written locally as a graph
of the form

(P, t, x, r) = (P, t, Up(p, t)? Ut(P, t))

(since X is an integral of T1), where u(p, t) satisfies u; + upp =0
(sinceon X 0 =Ty = updp Adt + dup Adt = (ur + upp)dp A dt).
Thus, “generically” our PDE is equivalent to the backwards heat
equation, up to a change of variables.
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11. Parametrization of Bellman function M

Thus the function M(x, y) can be parametrized as follows:

1 1
X = up (p, 2q2> Yy =qu <p, 2q2> ; (14)
1 2 2 1 2 1 2
M(x,y) = pup (P, 54" | +q"ut (P 5" | —u (P59 ), (19)
where

Ur + upp = 0.

M(x,/y) € C3(Q x R,) therefore M,(x,0) = 0. By choosing
g = 0in (14), we have y = 0, and we obtain the boundary
condition:

x = 1p(p,0) = up(Mx(x,0),0)

Or, if to denote boundary function M(x,0) by f(x), then u has
initial conditions
J'(F(x),0) = x.
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11a. Definiteness of matrix

Non-negativity of matrix also implies one more condition

u? — 2t(Hess u) > 0 (16)
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12. Applications: how to find Bellman log-Sobolev function

Inequality (5) shows us sharp lower bounds of the expression

(f gd’y) In (f gd'y). Therefore, we should take M(x,0) = xInx.
Boundary condition then can be rewritten as /(Inx +1,0) = x or
u(p,0) = eP~! for all p € R. If we set D = 88—:2 then

o ()
u(p,t) = e PeP~1 = Z x Pl =eP 71 forall t>0.
k=0

Clearly u(p, t) satisfies (16) because det(Hess u) = 0. Notice that
we have u; < 0,

Therefore we obtain ) ) 2
M(x,y)=xp+aqy —u(p,39°) =xInx+ L +x— % —x=xInx— L.

Alexander Volberg Old and new geometric isoperimetric inequalities, Monge—Ampeér:



13. Applications: how to find Bobkov's Bellman function

In this case we are interested for the sharp lower bounds of the
expression —/( [ fdv) in terms of [ M(f,||Vf|)dy. We have
M(x,0) = —I(x). Boundary condition takes the form

u(p,0) = pd(p) + ®'(p) forall peR. (17)
In fact, My(x,0) = —1'(x) and —/'(x) = ®~(x):

1127 12

I'(x) = [e * ] and (CD_l)’ — "= First: usual heat

extension of u(p,0), dpp = ¢, and then we try to consider the
formal candidate u(p,t) := L7(P, —t). The heat extension of
2

d'(p) = re —P*/2 s ﬁme 220, Heat extension of ®(p)

is ® (m> Indeed, the heat extension of the function

L(—oo,01(p) at time t = 1/2is ®(p). By the semigroup property the
heat extension of ®(p) at time t will be the heat extension of

L(—oo,01(p) at time 1/2 + t which equals to ¢ (

)
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14. Applications: how to find Bobkov's Bellman function

Therefore, the heat extension of p®(p) can be found as follows:

2
o2t e A pd < P > .
V2my/1+ 2t V142t

Thus we obtain that

a(p,t):mcb’( P >+p¢( P )

V1+2t v1+2t
This expression is well defined even for t € (0, —1/2). Therefore if
we set

u(p, t) = i(p, —t) = V1 -2t ' <\/1p_72t> +p® (V%)
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15. Applications: how to find Bobkov's Bellman function

Direct computations show that u(p, t) satisfies u; + upp =0, the
boundary condition (17) and (16) because

()| ()
det(Hessu) = — | —5%7— ] < 0. We have u; = A <0
and u, = ¢ ( lp—2t)' Therefore,
XZ(D( i > (x) = L=
1-q2 1-q?
o q_ 9 @/(_P then y=—"L /(¢ (x
y=aqr=qu= == ( 1_q2), T
From the last equalities we obtain M, = q = —W and
x)+y
My = p = 1022 \here we remind that I(x) = &' (¢~ 1(x)).

12(x)+y?
Then it is clear that
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16. Isoperimetric inequalities for all!

Let u(p,0) = g(p) then condition u(f’(x),0) = xf'(x) — f(x )
where f(x) = M(x,0) implies that g(f'(x)) = xf’(x) — f(x). B
taking derivative we obtain

g'(f'(x)) = x
Thus up(p, 0) is the inverse of My(x,0) i.e.,

M(x,0) = / (up(p.0))

Example of u(p,0) = —sinp:
Then u(p,t) = —e'sin(p). Notice that us < 0 for p € [0, 7], and

u? — 2t det(Hess u) = %*(2t + sin?(x)) > 0.
We also notice that

M(x,0) = xarccos(—x) + V1 —x? for xe[-1,1]
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17. Isoperimetric inequalities for all!

The following conditions

x=up(p,q°/2); y = qui(p, 4°/2);

M(x,y) = px + qy — u(p, 4°/2).
can be rewritten as follows
x = —eT/2 cos(p, y = —qeq’z/2 sin(p)
M(x,y) = px + qy + e?’/2 sin(p) = px+ qy — g, x €[-1,1], y > 0.
It follows that the negative number g satisfies the equation

—qVe? —x2=y (18)

And then p = arccos(—xe~9°/2). Thus we obtain

2

M(x,y) = x arccos(—xe”97/2) + (1 — ¢*)V e® — x2

where a negative number g is the unique solution of (18).
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18. Isoperimetric inequalities for all!

Thus we obtain that

/ f arccos(—f e FIEIVEN/2) (1 — F(F, V)V eF(FIVAD — f2dy, <

(f ) (- [ )= (/)

for any f : R” — (—1,1) where F(u,v) > 0 solves the equation

IVF? = F(ef — £?)
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19. Isoperimetric inequalities for all!

/ f arccos(—f e FIEIVID/2Y L (1 — F(F, |VF|))V eF(FIVAD — f2d~, <

(fr)aes (- [) o= (/)

for any f : R"” — (—1,1) where F(u,v) > 0 solves the equation
IVF? = F(ef — £?)

This can be rewritten (since arccos(—x) = 7 — arccos(x)) as
follows:where r solves the equation |Vf|?> = r(e" — f2)

/[(1 — r)y/1 — (fe=1/2)2 — fe="/2 arccos(f e~"/?)]e"2dy <

(f) - ([ (1)
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20. Jensen's correction. Poincaré inequality follows.

It is very interesting because W(x) = v/1 — x? — x arccos(x) is
decreasing convex function on [—1,1] therefore when r — 0 one
should expect opposite integral inequality (By Jensen's inequality)
however the condition r — 0 enforces f =~ const. For example, the
inequality can be rewritten as follows

/W(fe’/z)e’/2d7 < (/ fdfy) + / V.

For example if f is positive then W(fe="/2)e’/? > W(f)e"/?2 > W(f)
so one obtains the reverse to Jensen's inequality

JW(F)dy < (f fdy) + [ [VFIy/rdy. Since 7 = 55 < 71,
one can go further and write

" </ fdy) < /w(f)m <v (/ fd7> + 1’v_fjc22d7.

One can obtain Poincare inequality, indeed notice that
W(x) =1—3mx+1x2+ O(x®) for [x| < 1. Take f. = &f and send
e — 0.
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21. A shortcut to become an applied mathematician:

Two-point inequality for M.

Our primary goal will be to understand for which M(x, y), for any
n>1andany f:{-1,1}" — Q C R the following function

B(t) := EM(PYf,|VP:f]), te]0,00) (19)
is monotonically increasing where

PIf =3 e ISItF(S)Ws(x)

scan

is a semigroup, Ws(x) is the standard Walsh system on
({=1,1}",du), and du is the uniform counting measure on the
cube {—1,1}".
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Let P; be Ornestein—Uhlenbeck semigroup:
pef = e tf L =—A+x-V. Function

t— [ M(Pf,|VPF|)dvn (20)
Rn

is increasing provided that M is such that
M(x,/y) € C*(Q x R} ) and it satisfies PDI

My
(MXX + y MX_)/> S O (21)
MX)/ Myy

In fact, we will prove that PDI is equivalent to a stronger
statement:

PeM(f, [V F]) < M(Pef, [V Pf|) (22)
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23. Prove of monotonicity

P:M(f,|VF]) < M(P:f,|VP:f]) (23)

In fact, “concavity” (23) is stronger than monotonicity of (24):

t— M(P:f, |V P:f|)dvn (24)
Rn

Indeed, Integrating PhnM(P:f, |V Pif|) < M(Peynf, |V Pepnf|) we
get [ M(Pf,|VP:f|) < [ M(Peinf,|VPeinf]) and (24) follows.
To prove that negativity of the matrix implies (23) we put
V(x,t) := PeM(f,|Vf]) — M(P:f,|VP:f|). Then V(x,0) =0. If
we prove that (% — L) V(x,t) < 0 then by maximum principle
V(x,t) <0

ot
where Dg :=(g,018,...,0n8), [(X) = (VX;,VXj), g = P:f, and

<aat B L> Vixt) = (L - 8) M(P:f, |V P:f]) = Tr(WT(DP:f)) <07
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23a. The end of calculation of (L — £) M(P.f,|VP:f])

W:5<W1+

where S is a diagonal matrix with diagonal (1, %), and Wi,

W, are corresponding matrices

M
Mo+ 1o My - My
My — My, ... M,
MXY Myy Myy

It is clear that W; < 0 because M satisfies (21) of slide 22.
W> > 0 by Holder inequality. And M, < 0.

Alexander Volberg

M,
YW,
IVE]]

[0
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25. Discrete PDE are tough

We saw that

M
MXy Myy

ensures that

EM(f,|Vf|) < M(Ef,0), where E:/...d'yn.

IfE, =2 ... on discrete cube {—1,1}", we need the discrete
inequality, which become (25) in its infinitesimal version. Then we
hope to get

1
E,M(f,|Vf]) < M(E,f,0), where ?Z )

But there are many ways to discretize (25). We need a correct one.
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26. Bobkov's inequality on Hamming cube.

We will see now discrete version of monotonicity on 1D discrete
cube: E;M(PZ'f |V PJf| increases when t — +o00. Here

M(x,y) = —v/1%(x) + y2. Let us consider the equation
1"l = 1, 1(0) = I(1) = 0. (26)

and its solution lo(x) = ¢ o ®~1(x), where

(x) = ¢127r/ e 2dx,  g(x) = B'(x).

Bobkov proved (by direct tedious calculations) that function Iy
satisfies not only (26), but also a more general discrete inequality

B(x+2) +52+%.//g(x — o)+ 22, Io(0) = (1) = 0.
(27)
Moreover, the RHS decreases in €. When ¢ — 0 one restores
(26)—it is an infinitesimal version of more general (27).
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27. Full Bobkov's inequality on Hamming cube.

Consider M(x,y) := —y/1%(x) + y2. Then 1D Bobkov's inequality
(27) from slide 27 is precisely

where E; is the expectation with (1/2,1/2) measure on function
on one dimensional Hamming cube (= two points).
Bobkov managed to prove by induction that then

E,M(f,|Vf]) < M(E,f,0) (29)

independently of dimension n. The precise form of M played
very important part in his proof.

How to have a general class of M(x, y) for which induction works?
Full Bobkov's inequality on discrete cube leads to Gaussian (slide 6)

/</]R fdv) < [ e sivere, (30)

by the CLT. But Gaussian version can be proved independently by
change of variable in PDE and by monotonicity of flow.
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28. Function 3/2.

Consider the function

1
M(x,y) = 7 <2x — /X2 +y2> x+vx2+y? where x,y >0.
We know that in Gaussian world it gives an estimate better than
Beckner—Sobolev one.

Question. Does it have a discrete analog on Hamming cube?

Do we have

EM(f, |Vf]) < M(EF, 0) (31)
for function our M above? If E is Gaussian then YES.
What if E = E;7

What if E =E,?
(Induction works?)
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29. Sly induction works.

We need to invent an inductable claim. It turns out that
E,M(f,\/|VFf]2+|v|?) < M(E,f,|E,v|) (32)
if true for n can be easily inducted to n+ 1.

The next question would be

What about the base of induction, n =17

First, let us prove that this induction will finish the proof of our
inequality on Hamming cube:

M(E,f,0) > E,M(F, [V £]).
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30. f as martingale

Define the martingale {f}]_, as follows: let fi = E(f|Fj) to be
the average of the function f with respect to the variables
(Xk+1,---,Xn). For example

fo=f;

[y

foc1= = (F(xa, oy Xn—1, 1) + F(Xx1, .oy Xn—1, —1))

2

fo=— >  f(x)=Ef

xe{-1,1}"

Thus f lives on {—1,1}* for 1 < k < n.
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30a. Supermartingale appears

Next we would like to know how the next generation k + 1 is
related to the previous generation k. For x € {—1,1}%*+1 Jet
x = (X', xk11) where x’ € {—1,1}*. Notice that

i1 (X', 1) = fi(X') + xer1 - g(X);

Vi1 (<, xc41)|? = [V (fe(x) + xes1 - £(x))1? + g (x) .
where g = gk is a function on {—1,1}*, and V,/ denotes gradient

taken in x’.
We claim that the following process

Zj = M(fk, |ka|), 0 S k S n

is a supermartingale.
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30b. Our inequality on Hamming cube

After which our inequality follows immediately:
M(Ef,0) = zp > Ez, = EM(f, |Vf]). (33)
To verify the claim we notice that
1
E(zk11]Fi) (X)) = 5 (Zk11 (X, 1) + 2k (X', 1)) =

3 (MO + 26,/ (80) + £GNE + gl

M () — &)\ IV (') — g () + g(x')|2>) <
M((X). |V ilx')]) = 2.

The last inequality follows from (34) (next slide) where we set
x=f(x),a=g(x"),y = Vufi(x') and b=V, g(x').
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31. The base of induction. Elementary?

Whenever x + a,x —a,y + b,y — b > 0 we have

M(x,y) > % <I\/l(x+ a\/a+ (y+ b))+ M(x—a,\/a%+ (y — b)2)>
(34)

where

M(x,y) = (2x = Vo2 y2) \/x + Vo2 )2 where x,y > 0.

Looks like too many square roots.... .Can it be made a rational
expression?
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Consider the function

F(£) == M(x + at, \/(at)? + (v + bt)?) + M(x — at, \/(at)? + (y — bt)?

It is enough to show that f(t) is decreasing for t € [0, 1]. Change
variable at — t and consider f(t) on the interval [0, a] (but now
b — b/a) Notice that

+ (y + bt)? x T My V12 + (y — bt)? -

{(x—kt)—k\/(X+t)2—i—t2+(y+bt)2—(t+b(y+bt))} -

F(t) = MF + MF t+b(y+bt) M- _ t—b(y — bt)

aME

_ _ 22 — bt)2 _ by —
e [(X £) 4+ /(= D2+ 2 4 (y — bt)2 + (£ — b(y bt))]
Where M and M~ are computed at the points

(x + t,\/t2+ (y + bt)?) and (x — t,\/t2 + (y — bt)?)
correspondingly.
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32a. Explanation.

This is why the last equality of slide 32 holds:

/\/Ij:g\/\/(ert)2+t2+(y+bt)2+(x+t),

My = —2\/\/(X+t)2+t2+(y+bt)2—(X+t),

MM = —%/ﬂ + (v + bt)2.
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Next we can always assume (by homogeneity of M and considering
new variables X = xt, y = yt) that we need to show that

x—by —b? 4+ \/(x +1)2+ 1+ (y + b)?
\/X+1+\/(x+1)2+1+(y+b)2
x—by + b +/(x —1)2+1+(y — b)2
\/x—1+\/(x—1)2+1+(y—b)2

=< (35)

(36)

and |b| <y.
If b= 0 then inequality (35) is true.

Let F(x) := LHS — RHS.
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34. At both infinities

Lemma
We have

F(x)=—b2V2-x"Y2 4+ 0(x732) as x— oo
F(x) =

\/—Tx((1+b2+by) 1+ (y — b)2 + (1 + b2 — by) 1+(y+T)2>
B VA+ i+ B+ (v - b))

+0((=x)71?)

as X — —0oQ,;

And the signs of f(x) are negative at +o0.
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35. Squaring and squaring.

After squaring (35) of slide 33 and simplifying the expressions we
end up with the following inequality

Ca-A+Cg-B+Cap-A-B+L=0 (37)
where

Ca :=4by — 4b%x + b2 — b2y +2b%y — b* —2 — )2
Cp := —4b°x + b2y + 2b%y + b* + 2 + y? + 4by — b
L= —4 — 4b°x% + 4b3yx — 2b* + 8byx — 2b> — 2b%y? — 2)?

A= \/(x+1)2+1+(y+b)2

Bi=/(x— 12 +1+(y— b
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36. Squaring again.

After moving terms L, Cap - A- B to the RHS and squaring and
moving some terms again we finally obtain that

(CA- A+ Cq-B*— 1>~ Cap- A B?)*—
4-A%.B%.(Cap-L—Ca-Cg)*=0

Lets denote the LHS of the equation by P(x). This is a 3rd degree
polynomial in x
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37. Here is P(x; b, y).

P(x) =

— 128633 (b%y? + y? + 2 + 4by + 3b% 4+ 2b3y+
b*)(b%y? + y? 4+ 2 — 4by + 3b% — 2By + b*)x3+
(—64y® b8 + 10885°y° — 339268+ + 8128b0y 2+
384b10y5 — 70452 y* + 96068y° — 3136H10y*

+ 3392b%2y2 4 512b14y% — 64y8H0 + 64y8p*+
64y8b? — 960b%y° + 9606°y* + 64b2y°

— 2816b%y2 4 1280b%y* + 1088502 —

6406%y* + 7872682 — 1280b%y? — 108805°

— 896050 — 3072b* — 1280 — 78085° — 512H°—
4352h'% — 1152b™)x>

(—1792b%y3 + 256b"y" — 5504b" y3 — 1408b°y 7 +
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3456b7y° — 384y b® + 64007y +

2752b%y° + 1536b3y> — 57606°y° — 3840b )3 —
768b%y° + 512by + 307263y +

1024by> + 1984b13y + 3846y + 32b7y+

32by° + 10272b%y + 768by°>+

5760by + 256by" + 32b%y° — 128b11y"—
1408613y — 64b°y°

— 6406°y" + 1664561 y° +192b13y° — 128p°) 3+
7936b%y + 11520b" y)x+

— 256 — 1445 — 1610 + 688y8b% + 15045°y°—
192068y* — 3440502

—23045'0y0 + 2502p12* — 192680 + 3264p104—
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y? —288y8b° — 224y8p* 4 48y8h? — 736b%y°—
13766°y* — 3206%y° — 2816b%y2

— 480b%y* + 249656°%y% — 1792b%y* + 3056682 —
3072b%y? — 768y% — 512y° — 896y*

— 144y8 — 3344p% 4 158450 — 4992p* — 336H10—
6656b6° — 1792b2 + 2528b2+

60856 — 64b0y* + 06b14y° + 16y10b% + 32y10p* +
6245y 2 — 864"

+ 416520 — 64b12y8 — 16b10y8 — 166810+
16b10y10 _ 32y10b6 + 16b18y2
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40. b= 0.

If b =0 then
P(x) = —16(y* + 1)(y* + 2)* < 0.

This means that F(x) does not have roots when b = 0. Therefore
further we assume that b # 0.
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41. y = 0.

Next if y = 0 then
P(x) = —16(b* 4 1)°(8b%(b? + 2)°x2 + (3b% 4 2)?(b*> — 2)?) < 0,

Which again means that F(x) does not have roots and hence
F(x) < 0 in this case as well. Next we assume that b,y # 0.
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42. The discriminant.

The discriminant of this polynomial is

A = 16777216 - (1 + b%)? - (—8 — 16b> — 8b* — 8y? 4 20b%y? 4 b*y? —:
(—b*y? 4+ 2b%y% — y? — 2 —3b? + b9)2(bPy? + y? + 2 + 4by + 3b% + 2b
(b?y? + y% 4+ 2 — 4by + 3b% — 2b%y + b*)?.

(4 + 24b% + 3612 4+ 76b° + 5458 + 2060 + 4y® 1+ 140 + 17y* + 122 +
+1968y* — 12b0y2 + 4y8p* + 8y8h? — 22b%y0 + 466°y* + 6b2y° + 4b
— 52b%y2 4 26b%y* — 48b8y? + 32b%y?)? . B° =

16777216 - (14 b?)? - Ty - T3 - T2 - T2 - T2 - b°.

Discriminant does not vanish except when

(B> +1)Vb2 -2
b2 —1 '

y:
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F(x) is the LHS-RHS of the slide 33.
In this case P(x) has a root of multiplicity 2 which is
x = bv/b? — 2. We just need to make sure that at this root F(x)

is not zero. Then F(x) may have at most 1 root but since it has

L . 2 1)E2—2
negative signs at +0o0 we are done. So assuming y = U’erlg#

and x = byv/'b? — 2 we obtain that in the LHS of F(x) we have

x—by—b2—|—\/(X—|—1)2—|—1—|—(y—|—b)2:

_bQMM—2+b@—m+_ MQVM—2+b3—m2_O
b2 —1 (b% —1)2 e

On the other hand lets see what is the RHS of F(x):
x—by+b2+\/(X—1)2+1+(y—b)2:
_bmwt-—w+m+¢&mwh-—m+m{_

b2 —1 (b2 —1)2
2bmwt-—w+m
: -

>0 for |b]>+/2
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A new edge-isoperimetric inequality on Hamming cube

Again:
EF32 — (Bf)*2 < éE!VfIW, Fo{-L1}" =Ry (38)

Next, let A C {—1,1}", and let wa(x) denotes the number of
neighbor vertices from the complement of the set where x belongs,
i.e., it counts opposite neighbors. Clearly wa(x) lives on the
boundary of the set A: wa(x) = 4|V14|?. If A has cardinality 2"~}
then the classical edge isoperimetric inequality of Harper (J.
Combin. Theory, 1996) states that >, c¢_; 130 wa(x) = 2". On
the other hand, taking f = 1,4 in (38) gives

> wax)¥t = (2-v2)2"

xe{-1,1}"

which is a new edge-isoperimetric inequality and does not follow
from the classical one.
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