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The Euler equation in the plane

O (z,t) + (v-V)v(z,t) = —Vp(z,t)
(E) dive =0

v(z,0) = vo(2)

v-V =001 + 190

div(v) = 01v1(z,t) + Oava(z,t)
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Well posedness of Euler’s equation, Wolibner 1933

Euler's equation in the plane is globally well-posed in
cCt, 0<vy<l.

Bourgain, D.Li; Elguindi, Masmoudi

There exists a function ug in C'(R?) such the solution u(z,t) of
Euler's equation with initial condition ug blows up instantaneously
in C1, that is, for each tg > 0

sup [[u(-, )ller = oo
0<t<to
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w = curl(v) = d1vg — davy

circulation around blob D = v(z,t) - Tds
oD

_ / D1va(2,t) — Davr (2, 1) dA(2)
D

0 o .0

20v = 2£v:divv+icurlv = jw

0z
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Biot-Savart law : Velocity from Vorticity

i_ is the fundamental solution of 2
Tz 02
_ i i fw(Gt)
Vet = rge =g | So¢ 4AQ)
- o [0 e aa

2r ) |z —¢2
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How do you compute Vv ?

= 1
(%:%w and (%:—ip.v.?*w
If w=xp D a bounded domain with smooth boundary,

then v is a Lipschitz field
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The vorticity equation

Ow~+ (v-V)w=0
;1

vzij*wva‘N*w, N = 5t log|z|
2m z 4

w(z,0) = wo(z)

The Flow : particle trajectories

dX(z,t)
dt

=v(X(z,1),t), X(z,0) =z

dw(X (z,t),t)
dt
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Yudovich’'s Theorem

The vorticity equation is well posed in L> : For each wy € L°(C)
there is a unique "weak” solution to the vorticity equation with
initial condition wy.

“Proof”’ : Solve

dX(z,t)

dt =v(X(2,1),t), X(z,0)=2

and set

w(z,t) =wo(X Mz, 1)) or w(X(z1),t) =wo(2)
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Vortex patches

wo = Xxp, D adomain w(z,t) = Xpw (2)
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The two known explicit examples

If D = D(0,1) is the unit disc, then

D, =D(0,1), 0<t,
XD(0,1)(#) is a steady solution to the vorticity equation

If Do = {(z,v) : :52/a2 + y2/b2 =1} is an ellipse then

ab

Kirchhoff: D, =¢" Dy, 0<t, Q= (a+b)2

(vortex)
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Rotating vortex patches or V-states

A V-state is a vortex patch that rotates with constant angular
velocity. If the center of mass of the initial domain Dy is the
origin, then D; = €Dy for a certain angular velocity

A disc rotates with any angular velocity

Kirchhoff : ellipses are V-states
ab
(a+0b)?
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Deem—Zabuski (1978) : numerical discovery of existence of
V-states with m-fold symmetry

The pictures in the next frame are from a paper by
Wu,Overman and Zabusky (1984)
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Burbea (1982) : analytical proof, by bifurcation




Conformal mapping




Bifurcation a la Crandall-Rabinovitz

FO\f)=0 feC(T)

f“ (I)(Z):Z+%+"':Z+f(z)

L 1| _
: 5 A=1-20
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Hmidi, Mateu, V (2011)

If the V—state is close enough to the circle of bifurcation
then the boundary of the V—state is of class C'*°

Recent improvement by Castro, Cérdoba and Gémez (2013)

If the V—state is close enough to the circle of bifurcation
then the boundary of the V—state is real analytic

They work in the context of the surface quasi-geostrophic equation
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Kellog-Warchawsky regularity theory
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[(®(w)) = 1_/|_1q’(7)_‘p(w)¢>'(7) dr, Juw| =

270 Jip1=1 @(7) — ®(w)

dl(®(w))  _ P(w) P (w) O(7) - (w)

dw T 5w o p“"/M:l (@(7) = B(w))?




[(®(w)) = 1_/|_1q’(7)_‘p(w)¢>'(7) dr, Juw| =

270 Jip1=1 @(7) — ®(w)

dl(®(w)) '(w) | ' (w)
dw W= G Ty PV /|T|=1 (@(1) — ®(w))?
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Persistence of boundary smoothness

If 0Dg is smooth, is it true that 0D; remains smooth for all ¢ > 0 7

Majda’'s Conjecture (1986)

There exists an initial “smooth” vortex patch which becomes of
infinite length in finite time.
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Persistence of boundary smoothness

If 0Dg is smooth, is it true that 0D; remains smooth for all ¢ > 0 7

Majda’'s Conjecture (1986)

There exists an initial “smooth” vortex patch which becomes of
infinite length in finite time.

Chemin's Theorem (1993)

If 9Dy € C'*¢ then 9D, € C'*¢ for all t > 0.

There is a short “geometric” proof by Bertozzi and Constantin
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Patches for the aggregation equation

Op +div(pv) =0, wv(z,t) = (=VN *p(-,t))(z)

Op+v-Vp=0, v==VNxp, po=Xxp,

Bertozzi, Garnett, Laurent, JV

If 9Dy € C'*¢ then 9D, € C'*¢ for all t > 0.
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Boundary smoothness for short times

View the flow equation as an equation on a Banach space on 9Dy

%zv(X(z,t),t) v=VLNxxp, = N *Fdogp,
Pl [ wslxGao-dac =X
dt 2w dD;
= — log]X(z,t)—X(w,tﬂde
27 Jap, w
D _ DX (wl). 1) (9)
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B = C'7(0Dg, R?)

1
U:{XEB:|X(z)—X(w)]2M|z—w| for some M > 1}

dX
C=F(X), FO)=1
FEOG) =5 [ oglX(2) - X(w) )

F(X)(2) 1 . dX(z) 1 dX (w) w
/BDOR< dz X(z)—X(w)> dw d
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The boundary of dD; is smooth for all times

Assume that 9D, is of class C117 for 0 < t < T and T is maximal
with this property. If T' < oo then some of the quantities that
control the smoothness of 9D; become unbounded on [0, 7).
Hence one has to prove a priori estimates on [0,7") and conclude
that these quantities are indeed bounded on [0, 7).

A defining function for a domain D is a function ¢ € C**7(R?)
such that D = {z: ¢(2) < 0}, 9D = {z : ¢(z) = 0} and
Vo(z) #0, z € 0D.

The relevant quantities are

inf
IV, —and inf [Vo(2)
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A priori estimates

¢o defining function for Dy and  ¢(z,t) = ¢o(X 1(z,1))

T
inf |Vo(z,t)] > mf |V<Z>0( )| exp (/0 —HV’Z)(~,S)||OOd8)

zE Dt

T
1960 6)lly < IV dolly exp (c / uwc-,s>noods)
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End of proof

”V¢(,t)H'y
|Vo(,t)]|eo < C (1 +log™ inf,con, ’V¢(z,t)\)

<o (1+ [ 1vut sl s)

[Vo(-,t)|leo < Ce®t, 0<t<T.
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Proof of the a priori estimates

Od(z,t) +v-Vo(z,t) =0

AVEP(z,t) + v - VVL(z,t) — Vo(VEie(z, 1) =0

D

= (VH6(z0) = Vo(Tte(z 1)

Vortex patches. . .



The commutator

Vo(V4ie(z, 1) = i VVLN(z—w) (vlgb(z,t) —vw(w,t)) dA(w)
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