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Length and
curvature

Let f: [0,1] — R be Lipschitz function. Let G C R? be the
graph of f. Then the length of G is

2
ax

2
dx~1+c¢

o |ax

Key player:



Curvature

» Let J be a dyadic interval, and J = J; U Jg be its
decomposition into its left and right parts.
> Let

Hy(x) = U] (XJL(x) - XJH(x))

Then {H,}jea is an orthonormal basis for L?(R).
(A = all dyadic intervals)
» Extend f as a constant right of 1 and left of 0. Write

ﬂ = ayHy(x)
H il = lai

» What does |a, | mean? If J_[0,1]

ap 1) = <Zl;a Hpo.1) = (f(;) - f(0)> - <f(1)—f(;))

= “change in slope between the two halves”
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Length and Curvature

> |42 = 3 |ay|? = L2 quantity which measures
curvature.
» Length ‘=’
diam + L2 quantity which measures curvature.
» The above is a quantitative connection between
length and curvature. It comes into play when
working on qualitative questions.

(if you fall asleep now, then at least remember that)
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Curvature -
» Let

b(xy,2) = |f(x) = (y)|+|f(y) = {(2)| = |f(x) = £(2))]

f(y)
N -
f(z)

f(x)
» If no edge is much larger than the other two, then
b(x.y,z) W 1
3 diam* R?
where R = R(x, y, z) is radius of circle through
f(x), f(y), f(z) (Menger curvature:= %).

» Note: we don’t need f anymore to make these
definitions.

diam
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Curvature - I

» Non-paramtric version of b:
bmin(P17 P27 PS) =

mm (|P Pa(z)|+|Po(2)—Pa(3)|—!Pa(1)—Pa(3)|>

+

P_2

4

P_1.
» If no edge is much larger than the other two, then

bmin(A, B, C) h2. 1

min

di:&lI‘Il(A7 B, C)S diam* R2
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Length and Curvature - Il
Suppose G is a graph of an L-Lipschitz function f. Then

H'(G) ~ diam(G) + ¢, 2 R2(J)/|J)|

~ diam(G +Cfff d?ﬂ]”
+

P_3

s
P_1

» > : over dyadic intervals J. For J = [a, b],

h(J) := sup dist(f(z), P)

z€[a,b)

where for each J we choose P as the line minimizing

h(J).
» [[[: over all triples in G, (dlength)3.

True in much more generality... (many contributors)
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1-Rectfiability

Slightly non-standard way of saying it

» Let u be a measure on R”. We say that u is
1-rectifiable if there is a countable collection of
Lipschitz curves

fi:[0,1] — R”
such that

u(&m\ 0. 1) = o.
=1

» If ECR"and = H'|g then E is called a
“1-rectifiable set”.

» m-rectifiability uses [0, 1] as domain...
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Rectifiability of

Questions e

R. Schul

P Let 1 be a measure on R". We say that p is 1-rectifiable if there is a countable collection of 1-Rectfiability

Lipschitz curves
fi:[0,1] = R"

such that -
p(R™\ U flo,11) =o.
i=1

» When is u 1-rectifiable?
» When is one curve enough to capture all of ;?
» When does one curve capture a significant part of u?

The case 1= H'|g (or u < H'|g) is very well studied,
and the case and . L ' is not.
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R. Schul

1-Rectfiability

» Let 1 = Lebesgue measure on [0, 1]? c R2.
» Forany f:[0,1] — R? Lipschitz,

M(f[o, 1]) = 0.

» 1 is NOT 1-rectifiable.

10/4R
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Some results
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Other notions
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Example 2 - continued == .
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(If e = § we recover 2-dim. Leb. meas.)

If ¢ > 0 is small enough, then : &
L Mg forany E € R2 with H'(E) < oo, -+ hr 0
w is doubling on R2. (L) = 0 for any line L.

1-Rectfiability

v

v

v

u(G) = 0 for any G, an isometric copy of a Lipschitz
graph .
w is 1-rectifiable (Theorem [Garnett-Killip-S. 2009])

v

A measure p is “doubling on R"”if there is a C > 0 such
that for any x € R” and r > 0 we have

u(B(x,2r)) < Cu(B(x,r)).

19 /4R



Rectifiable Measures ey
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{ m-rectifiable measures ;. on R” } 1-Rectfiability

@)}

{ m-rectifiable measures ;. on R" such that p < H™ }

Ut

{ m-rectifiable measures p on R” of the form u = H"|g }

» How do you tell if a ‘generic’ measure is 1-rectifiable?
» What about 2-rectifiable? m-rectifiable?

20/ AR



Rectifiability of

,U/ < H1 ‘E measures

Lower and upper (Hausdorff) m-density: A. Schul

D"(p. x) = “r%”fM(B(X;nr)) D"(u,x) = lim supM

Cml Cmt™m
m ri0 m Background

Write D™(u, x), the m-density of 1 at x, if
D1, x) = D" (1, )

Theorem 1 (Mattila 1975)

Suppose that E C R" is Borel and u = H™|g is locally
finite. Then p is m-rectifiable if and only if D™(u, x) = 1
p-a.e.

Theorem 2 (Preiss 1987)

Suppose that 1. is a locally finite Borel measure on R".
Then . is m-rectifiable and . < H™ if and only if
0 < D"(u, x) < 0o p-a.e.

21 /AR



p< H e
» For s > 0, a<€ R"and P an m-plane in R" (through
0) define the two sided cone
X(a,P,s)={xeR":d(x—a,P)<s|x—al}
» We say that P above is an approximate tangent of E
ataiffor u = H™|g, D" (u,a) >0, and for all s > 0
rlo rm
Theorem 3 (Marstrand-Mattila)

Suppose that E C R" is Borel and . = H™|g is locally
finite. TFAE

=0

» u is m-rectifiable

» Foru a.e. a € E there is a unique approx. tangent
plane for E at a.

» Foru a.e. a € E there is a some approx. tangent
plane for E at a.
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p< H e
General fact:

If u < H™, then you can change the def. we gave:
» We say that . is rectifiable if there is a countable

collection of Lipschitz maps

such that

» TO

» We say that 1 is rectifiable if there is a countable
collection {G;} of isometric copies of graphs of

fi:[0,1]" = R"

u(B\ 0. 117) =0,
i=1

Lipschitz functions

such that

g;: [0, 1]m — RTM

M(R” \ G G,-) —0.
i=1
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Properties of 1 from Example 4

fans e b bt canad
i HH L

w is 1-rectifiable, however:
» For p almost every x,

v

v

v

> D'(u,x) =
» NO 1-dimensional TANGENT (in any sense)

oo

For any graph G, ;(G) = 0.

How does one tell if a measure . on R? is

1-rectifiable?

We will give some answers in the following slides...

“deviation from tangent”

“density”
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1-rectifiable

-0
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Preliminaries - L? Beta Numbers s
Let 11 be a locally finite Borel measure on R” and Q C R” A So

a cube. Define the L2 beta number £»(1, Q) € [0, 1] by

mf/ dist(x, £)\ % du(x)
dlamQ /J,(Q) Some results

where the infimum runs over all lines ¢ in R".

y
Ux/j B s

8,=0 ~B, small B,~1

pic by M. Badger
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Preliminaries - L? Jones Functions s

Ordinary L2 Jones function R. Schu
(i, X) = Y Ba(1,3Q)xq(x).
diamQ<1
Q dyadic
Some results

Density-normalized L2 Jones function

diamQ
J2 H’ Z 52 /”'730)2 lgzlg) Q(X)'
Qdyadic

Note:
> |f51(,u, a) < oo, then

J(p,a)) < oo = J(i,a) < .
» If D'(1, @) > 0, then

J(p,a) < 00 = J(u,a) < oc.

29 /AR



Some results

Can have m-dimensional version of S-numbers, Jo, etc.

Theorem 4 (Azzam-Tolsa (IF) + Tolsa (ONLY IF))
Suppose . is locally finite Borel, and

0<D"(u,x) < o p-a.e..

Then . is m-rectifiable if and only if J>(u, X) < 0o p-a.e.
(other "if” work by Pajot and Badger-S)

Theorem 5 (Edelen-Naber-Valtorta)
Suppose . is locally finite Borel, and

0 < D" (1, x), D™(11, ) < 00 p-a.e..

Then . is m-rectifiable if J>(p, X) < oo p-a.e.

Rectifiability of
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m=1

Theorem 6 (Badger-S)

Suppose . be a locally finite doubling Borel measure on
R". Then u is 1-rectifiable if and only if

odiamQ

J2 Ma Z 62 MaSQ) (Q)

diamQ<1
Q dyadic

xXo(X) < oo p-a.e.

(discuss example 4!1!)

Note: more work by Azzam-Mourgoglou,
Martikainen-Orponen and others.
Theorem 7 (Badger-S)

Can remove doubling assumption with more technical
definition of

(details next slide)
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BZ(M? O) = I?f RGnAa*%(O) ﬂZ(M73R7 f) min <dlam3Fz” 1 )

A*(Q) are cubes of similar size and location, and ¢ is a
line.

diamQ nl
Ji(p, X) = 51, Q)2 X
2(/" ) diamzo<1 BZ(M ) M(Q) XQ( )
Q dyadic

Theorem 8 (Badger-S.)
Letn > 2, and . a Radon measure on R". Then

1 —rect = {XER":Q1(M,X) >0 and J5 (i, x) < oo},

1 — pur.unrect. = {X cR": Q1 (1, x) =0o0rds(p, x) = OO}'

21 /4R
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» Basic tool in Theorem 8 is a variant of Jones’ TST.
» But whatif... m> 1 ?I
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m> 1

» Basic tool in Theorem 8 is a variant of Jones’ TST.
» But whatif... m>1?!
» For an m-plane ¢ and Ball B or radius rg:

BE(B, ) / HI{x € BN E : dist(x,¢) > trg}dt
and g (B) = inf, (B, ).

Note: uses Hausdorff content.
IF assume Ahlfors-regularity get David-Semmes (34

Rectifiability of
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» Basic tool in Theorem 8 is a variant of Jones’ TST.
» But whatif... m>1?!
» For an m-plane ¢ and Ball B or radius rg:

BE(B, ) / HI{x € BN E : dist(x, () > trg}dt

and g (B) = inf, (B, ).
Note: uses Hausdorff content.
IF assume Ahlfors-regularity get David-Semmes (34
» Lower content regular: for all x € En B(0,1) and
r<i
HT(ENB(x,r)) >cr™

241 4R



dg(E,0) = :Bmax {

VE(B)

sup dist(y,?), sup dist(y, E)

yeENB

inf
£ an m-plane

yelnB

ds(E,?)

} |
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dg(E,?) = 1 max{ sup dist(y, ), sup dist(y, E)}.
I's yeENB yelnB

9P(B)= inf  dg(E,0)

£ an m-plane

©e(B(0,1)) := ) {diam(Q)":Q € A,
QNENB(0,1) # 0 and
Ve(3Q) > €}

Rectifiability of
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Theorem 9 (Azzam-S.)

Let1<m<n, Cy>1.Leth) #E C B(0,1) is
Lower-content-regular. There is g = €p(n, c) > 0 such
that for 0 < e < eg we have:

1+

D

Qen
QNENB(0,1)#0

,81,:11(60 Q)Zdiam( Q)m SCo,n,e,c

H"™(E N B(0,1)) + ©(B(0,1))

Rectifiability of
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Rectifiability of
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Theorem 10 (Azzam-S.)
Same assumptions.
H™(E N B(0,1)) + ©£(B(0,1)) Scpnec o

1+ ) BE(CoQ)*diam(Q)™.

QeA
QNENB(0,1)#0

Furthermore, if the right hand side is finite, then E is
m-rectifiable

29 AR
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Fang-Jones (90’s?): 5., not good enough.
Graph of Lipschitz function

f:[0,1 =R
Draw picture.
I n
Ze < =
then
ZB (Q)diam(Q)® Ze,-z:oo
Wanted:

H™(E N B(0, 1)) + ©£(B(0, 1)) ~ 143 B(GQ)Pdiam(Q)™.

20 /4R



Examples

Need ©: Take the Boundary of the N stage in the 4
corner cantor set.

H BN . s
H N e oma
> 30 B(CoQ)2diam(Q) ~ N

» Onthe other side H' ~1and @ ~ N
» Note: if we had Condition B, it would guarantee

© controlled by H™

Wanted:
H™(E N B(0, 1)) + ©£(B(0, 1)) ~ 14 Z B(CUQ)Zdiam(Q)m.

Rectifiability of
measures
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Exam P les Rectifiability of
Accumulating lines: Average betas don’'t work . Sehul
Draw picture.

Two options:

R dist(y, L) 2

(yields 5(3Q) < ﬁ(o) and 3" A(3Q)%diam(Q) < log(N)) OR

N dist(y, L)\ 2 12
5“72(0’”‘(#(0)/@( ) d’“”)

(yields 8(3Q) = 2N¢(Q) and 3 3(3Q)?diam(Q) > N2N)
Either way, %' ~ 2N ~ ©, so no chance!

Wanted:
H™(E N B(0, 1)) + ©£(B(0, 1)) ~ 143 B(GoQ)Pdiam(Q)"™.

1/2
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A sketch of a proof

Simple direction:

HT(ENB(0,1))+0£(B(0,1)) < 14> B(CoQ)*diam(Q)™.

» A stopping time which reduces to using David-Toro
(RF with holes) used to build biLipschitz surfaces
whose union D E

Complicated direction:

HT(ENB(0,1))+0£(B(0,1)) 2 1+>_B(CoQ)*diam(Q)™.

» A stopping time which produces graphs getting
closer to E (coronization). (use DT here too!)

» Use Dorronsoro for graphs.
» Show that the upper bound did not grow too much...
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QUESTION: what about analogue of Theorems 7 or 8?7
(with no abs. cont. assumption!)
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Ck-rectifiability

Theorem 11 (Silvia Ghinassi, on arxiv. See poster)

Let E C B(0,1) C R" be a d-dimensional Reifenberg flat
set With Holes. Let o € (0,1]. Assume: there is M < oo
such that for all x € E

> Bea(x,271)7 /27 < M.

k>0

Then there is a map f : R™ — R" such that E c f(RY), f
is invertible, and both f and its inverse have directional
derivatives which are o.-Holder.

» o = 0: David-Toro (get f is bi-Lipschitz).

» « > 0: David-Kenig-Toro (no holes), Blatt-Kolasinski
(small holes),

» Characterization of CK“ rectifiable measures??

(some work by Kolasinski and collaborators on
k=1)
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Other notions of rectifiability

For a measure u:

v

v

v

v

Is it Lipschitz-Graph-rectifiable?
BiLipschitz-rectifiable?
[your-favorite-class-of-functions]-rectifiable?...
How do these relate to each other?
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Happy Birthday, Guy.

Thank you, Organizers.
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