Rectifiability of measures

Raanan Schul (Stony Brook)

October, 2017

Rectifiability of measures R. Schul ength and irvature Rectfiability

Some results n = 1 $n \ge 1$ Other notions

Length

Let $f : [0, 1] \to \mathbb{R}$ be Lipschitz function. Let $G \subset \mathbb{R}^2$ be the graph of f. Then the length of G is

$$\mathcal{H}^{1}(G) = \int_{0}^{1} \sqrt{1 + \left|\frac{df}{dx}\right|^{2}} dx \approx 1 + c \int_{0}^{1} \left|\frac{df}{dx}\right|^{2} dx$$

Key player:

 $\left\|\frac{df}{dx}\right\|_2^2$

R. Schul

Length and curvature

I-Rectfiability Background Some results n = 1 $n \ge 1$ Other notions and

Curvature

Let J be a dyadic interval, and J = J_L ∪ J_R be its decomposition into its left and right parts.

Let

$$H_J(x) = |J|^{-\frac{1}{2}} \left(\chi_{J_L}(x) - \chi_{J_R}(x) \right)$$

Then $\{H_J\}_{J \in \Delta}$ is an orthonormal basis for $L^2(\mathbb{R})$. (Δ = all dyadic intervals)

Extend f as a constant right of 1 and left of 0. Write

$$\frac{df}{dx} = \sum a_J H_J(x).$$
$$\left\|\frac{df}{dx}\right\|_2^2 = \sum_{J \in \Delta} |a_J|^2.$$

▶ What does |*a*_J| mean? If J=[0,1]

$$a_{[0,1]} = \langle \frac{df}{dx}, H_{[0,1]} \rangle = \left(f(\frac{1}{2}) - f(0) \right) - \left(f(1) - f(\frac{1}{2}) \right)$$

= "change in slope between the two halves"

R. Schul

Length and curvature

I-Rectfiability Background Some results n = 1 $n \ge 1$ Other notions and

Length and Curvature

► $\|\frac{df}{dx}\|_2^2 = \sum |a_J|^2 = L^2$ quantity which measures curvature.

- Length '=' diam + L² quantity which measures curvature.
- The above is a *quantitative* connection between length and curvature. It comes into play when working on *qualitative* questions.

(if you fall asleep now, then at least remember that)

Rectifiability of measures

R. Schul

Length and curvature

Background Some results m = 1 $m \ge 1$ Other notions

Curvature - II

Let

$$b(x, y, z) := |f(x) - f(y)| + |f(y) - f(z)| - |f(x) - f(z)|$$

If no edge is much larger than the other two, then

$$\frac{b(x,y,z)}{\mathrm{diam}^3} \sim \frac{h^2}{\mathrm{diam}^4} \sim \frac{1}{R^2}$$

where R = R(x, y, z) is radius of circle through f(x), f(y), f(z) (Menger curvature:= $\frac{1}{R}$).

Note: we don't need f anymore to make these definitions.

Rectifiability of measures

R. Schul

Length and curvature

I-Rectfiability Background Some results n = 1 $n \ge 1$ Other notions and

Curvature - III

If no edge is much larger than the other two, then

$$\frac{b_{\min}(A, B, C)}{\operatorname{diam}(A, B, C)^3} \sim \frac{h_{\min}^2}{\operatorname{diam}^4} \sim \frac{1}{R^2}$$

Rectifiability of measures

R. Schul

Length and Curvature - II

Suppose G is a graph of an L-Lipschitz function f. Then

• \sum : over dyadic intervals *J*. For J = [a, b],

 $h(J) := \sup_{z \in [a,b]} \operatorname{dist}(f(z), P)$

where for each J we choose P as the line minimizing h(J).

• \iiint : over all triples in *G*, (*d*length)³.

True in much more generality... (many contributors)

Rectifiability of measures

R. Schul

1-Rectfiability

Slightly non-standard way of saying it

Let µ be a measure on ℝⁿ. We say that µ is 1-rectifiable if there is a countable collection of Lipschitz curves

$$f_i: [0,1] \to \mathbb{R}^n$$

such that

$$\mu\Big(\mathbb{R}^n\setminus\bigcup_{i=1}^\infty f_i[0,1]\Big)=0.$$

- If E ⊂ ℝⁿ and µ = H¹|_E then E is called a "1-rectifiable set".
- ▶ *m*-rectifiability uses [0, 1]^{*m*} as domain...

Rectifiability of measures

R. Schul

Length and curvature

1-Rectfiability Background Some results m = 1 $m \ge 1$ Other notions

Questions

Let μ be a measure on \mathbb{R}^n . We say that μ is 1-rectifiable if there is a countable collection of Lipschitz curves

$$f_i:[0,1] \rightarrow \mathbb{R}^d$$

such that

$$\mu\left(\mathbb{R}^n\setminus\bigcup_{i=1}^{\infty}f_i[0,1]\right)=0$$

- When is μ 1-rectifiable?
- When is one curve enough to capture all of μ ?
- When does one curve capture a significant part of µ?

The case $\mu = \mathcal{H}^1|_E$ (or $\mu \ll \mathcal{H}^1|_E$) is very well studied, and the case and $\mu \perp \mathcal{H}^1$ is not.

Rectifiability of measures

R. Schul

Length and curvature

1-Rectfiability Background

Some results

m = 1

 $n \ge 1$ Other notions

- Let $\mu = \text{Lebesgue}$ measure on $[0, 1]^2 \subset \mathbb{R}^2$.
- For any $f : [0, 1] \rightarrow \mathbb{R}^2$ Lipschitz,

$$\mu\Big(f[\mathsf{0},\mathsf{1}]\Big)=\mathsf{0}.$$

• μ is NOT 1-rectifiable.

R. Schul

Length and curvature

1-Rectfiability

Background

m — 1

 $n \ge 1$

Other notions

• Let μ be a more eccentric version of Example 1:

Rectifiability of measures

R. Schul

Length and curvature

1-Rectfiability

Background

Some results

m = 1

 $m \ge 1$

Other notions

• Let μ be a more eccentric version of Example 1:

Rectifiability of measures

R. Schul

Length and curvature

1-Rectfiability

Background

Some results

m = 1

 $m \ge 1$

Other notions

• Let μ be a more eccentric version of Example 1:

Rectifiability of measures

R. Schul

Length and curvature

1-Rectfiability

Background

Some results

m = 1

 $m \ge 1$

Other notions

• Let μ be a more eccentric version of Example 1:

Rectifiability of measures

R. Schul

_ength and curvature

1-Rectfiability

Background

Some results

m = 1

 $m \ge 1$

Other notions

• Let μ be a more eccentric version of Example 1:

R. Schul

Length and curvature

1-Rectfiability

Background

Some results

m = 1

 $m \ge 1$

Other notions

• Let μ be a more eccentric version of Example 1:

Rectifiability of measures

R. Schul

Length and curvature

1-Rectfiability

Background

Some results

m = 1

 $m \ge 1$

Other notions

• Let μ be a more eccentric version of Example 1:

Rectifiability of measures

R. Schul

Length and curvature

1-Rectfiability

Background

Some results

m = 1

 $m \ge 1$

Other notions

• Let μ be a more eccentric version of Example 1:

Rectifiability of measures

R. Schul

Length and curvature

1-Rectfiability

Background

Some results

m = 1

 $m \ge 1$

Other notions

Example 2 - continued

(If $\epsilon = \frac{1}{3}$ we recover 2-dim. Leb. meas.) If $\epsilon > 0$ is small enough, then

- $\mu \perp \mathcal{H}^1|_E$ for any $E \subset \mathbb{R}^2$ with $H^1(E) < \infty$.
- μ is doubling on \mathbb{R}^2 . $\mu(L) = 0$ for any line *L*.
- → µ(G) = 0 for any G, an isometric copy of a Lipschitz graph.
- µ is 1-rectifiable (Theorem [Garnett-Killip-S. 2009])

A measure μ is *"doubling on* \mathbb{R}^{n} " if there is a C > 0 such that for any $x \in \mathbb{R}^{n}$ and r > 0 we have

 $\mu(B(x,2r)) < C\mu(B(x,r)).$

R. Schul

Rectifiable Measures

 $\{ \begin{array}{ll} m \text{-rectifiable measures } \mu \text{ on } \mathbb{R}^n \ \} & \begin{array}{l} 1 \text{-Rectifiability} \\ \\ \mathbb{Q}^k & \\ m = 1 \\ \\ m = 1 \\ \\ m \geq 1 \\ \\ \text{Other notions end} \end{array}$

 $\{ m \text{-rectifiable measures } \mu \text{ on } \mathbb{R}^n \text{ of the form } \mu = \mathcal{H}^m|_E \}$

- How do you tell if a 'generic' measure is 1-rectifiable?
- What about 2-rectifiable? m-rectifiable?

Rectifiability of

measures R. Schul

$\mu \ll \mathcal{H}^1|_E$

Lower and upper (Hausdorff) *m*-density:

$$\underline{D}^{m}(\mu, x) = \liminf_{r \downarrow 0} \frac{\mu(B(x, r))}{c_{m} r^{m}} \quad \overline{D}^{m}(\mu, x) = \limsup_{r \downarrow 0} \frac{\mu(B(x, r))}{c_{m} r^{m}}$$

Write $D^m(\mu, x)$, the *m*-density of μ at *x*, if $\underline{D}^m(\mu, x) = \overline{D}^m(\mu, x)$.

Theorem 1 (Mattila 1975)

Suppose that $E \subset \mathbb{R}^n$ is Borel and $\mu = \mathcal{H}^m|_E$ is locally finite. Then μ is m-rectifiable if and only if $D^m(\mu, x) = 1$ μ -a.e.

Theorem 2 (Preiss 1987)

Suppose that μ is a locally finite Borel measure on \mathbb{R}^n . Then μ is m-rectifiable and $\mu \ll \mathcal{H}^m$ if and only if $0 < D^m(\mu, x) < \infty \mu$ -a.e. Rectifiability of measures

R. Schul

 $\mu \ll \mathcal{H}^1|_E$

For s > 0, a ∈ ℝⁿ and P an m-plane in ℝⁿ (through 0) define the two sided cone

$$X(a, P, s) = \{x \in \mathbb{R}^n : d(x - a, P) < s|x - a|\}.$$

We say that P above is an approximate tangent of E at a if for µ = ℋ^m|_E, D^m(µ, a) > 0, and for all s ≥ 0 $\lim_{r \downarrow 0} \frac{\mu(B(a, r) \setminus X(a, P, s))}{r^m} = 0$

Theorem 3 (Marstrand-Mattila)

Suppose that $E \subset \mathbb{R}^n$ is Borel and $\mu = \mathcal{H}^m|_E$ is locally finite. TFAE

- μ is *m*-rectifiable
- For µ a.e. a ∈ E there is a unique approx. tangent plane for E at a.
- For µ a.e. a ∈ E there is a some approx. tangent plane for E at a.

R. Schul

Rectifiability of measures

R. Schul

urvature Rectfiability

Background

Some results

m = 1

 $n \ge 1$

Other notions

end

 $\mu \ll \mathcal{H}^1|_E$ General fact:

If $\mu \ll \mathcal{H}^m$, then you can change the def. we gave:

 We say that μ is rectifiable if there is a countable collection of Lipschitz maps

 $f_i:[0,1]^m \to \mathbb{R}^n$

such that

$$\mu\Big(\mathbb{R}^n\setminus\bigcup_{i=1}^{\infty}f_i[0,1]^m\Big)=0.$$

► TO

 We say that μ is rectifiable if there is a countable collection {G_i} of isometric copies of graphs of Lipschitz functions

such that

$$g_i: [0,1]^m o \mathbb{R}^{n-m}$$

 $\mu\Big(\mathbb{R}^n \setminus \bigcup_{i=1}^{\infty} G_i\Big) = 0.$

Properties of μ from Example 4

μ is 1-rectifiable, however:

- ▶ For µ almost every x,
 - $D^1(\mu, x) = \infty$
 - NO 1-dimensional TANGENT (in any sense)
- For any graph G, $\mu(G) = 0$.
- ► How does one tell if a measure µ on ℝ² is 1-rectifiable?
- We will give some answers in the following slides...

"deviation from tangent" "density" Rectifiability of measures

R. Schul

Length and curvature

I-Rectfiability

Background

Some results

m = 1

 $n \ge 1$

Other notions

1-rectifiable

.

.

.

Ī

÷

.

Rectifiability of measures

R. Schul

Length and curvature

1-Rectfiability

Background

Some results

m = 1

.....

.

....

.

imi

.

18

· · · · ·

Q

 $n \ge 1$

Other notions

•	•=•	•	•	
_		Q		
-		-	-	
į	i∎i	i	i	
•	•=•	•	•	

Rectifiability of measures

R. Schul

Length and Survature

Background

Some results

m = 1

 $m \ge 1$

Other notions

end

Some Results

Preliminaries - L² Beta Numbers

Let μ be a locally finite Borel measure on \mathbb{R}^n and $Q \subset \mathbb{R}^n$ a cube. Define the L^2 beta number $\beta_2(\mu, Q) \in [0, 1]$ by

$$\beta_2(\mu, Q)^2 = \inf_{\ell} \int_{Q} \left(\frac{\operatorname{dist}(x, \ell)}{\operatorname{diam} Q} \right)^2 \frac{d\mu(x)}{\mu(Q)}$$

where the infimum runs over all lines ℓ in \mathbb{R}^n .

Rectifiability of measures

R. Schul

Length and curvature 1-Rectfiability Background Some results m = 1 $m \ge 1$ Other notions end

pic by M. Badger

Preliminaries - L² Jones Functions Ordinary L² Jones function

$$J_2(\mu,x) = \sum_{\substack{ ext{diam} Q \leq 1 \ Q ext{ dyadic}}} eta_2(\mu,3Q)^2 \chi_Q(x).$$

Density-normalized L² Jones function

$$\widetilde{J}_{2}(\mu, x) = \sum_{\substack{\operatorname{diam} Q \leq 1 \\ Q ext{ dyadic}}} \beta_{2}(\mu, 3Q)^{2} \frac{\operatorname{diam} Q}{\mu(Q)} \chi_{Q}(x).$$

Note:

• If $\overline{D}^1(\mu, a) < \infty$, then

$$\widetilde{J}(\mu, \pmb{a})) < \infty \implies J(\mu, \pmb{a}) < \infty$$

• If $\underline{D}^{1}(\mu, a) > 0$, then

 $J(\mu, a) < \infty \implies \widetilde{J}(\mu, a) < \infty.$

Rectifiability of measures

R. Schul

Some results

Can have *m*-dimensional version of β -numbers, J_2 , etc.

Theorem 4 (Azzam-Tolsa (IF) + Tolsa (ONLY IF)) Suppose μ is locally finite Borel, and $0 < \overline{D}^m(\mu, x) < \infty \mu$ -a.e.. Then μ is *m*-rectifiable if and only if $J_2(\mu, x) < \infty \mu$ -a.e. (other "if" work by Pajot and Badger-S)

Theorem 5 (Edelen-Naber-Valtorta)

Suppose μ is locally finite Borel, and $0 < \overline{D}^m(\mu, x), \underline{D}^m(\mu, x) < \infty \mu$ -a.e.. Then μ is m-rectifiable if $J_2(\mu, x) < \infty \mu$ -a.e. Rectifiability of measures

R. Schul

m = 1

Theorem 6 (Badger-S)

Suppose μ be a locally finite doubling Borel measure on \mathbb{R}^n . Then μ is 1-rectifiable if and only if

$$\widetilde{J}_2(\mu,x) = \sum_{\substack{ ext{diam} Q \leq 1 \ Q ext{ dyadic}}} eta_2(\mu, 3Q)^2 rac{ ext{diam} Q}{\mu(Q)} \chi_Q(x) < \infty \quad \mu ext{-a.e.}$$

(discuss example 4!!!) Note: more work by Azzam-Mourgoglou, Martikainen-Orponen and others.

Theorem 7 (Badger-S)

Can remove doubling assumption with more technical definition of β

(details next slide)

Rectifiability of measures

R. Schul

$$\beta_2^*(\mu, \mathbf{Q})^2 := \inf_{\ell} \max_{R \in \Delta^*(\mathbf{Q})} \beta_2(\mu, 3R, \ell)^2 \min\left(\frac{\mu(3R)}{\operatorname{diam} 3R}, 1\right),$$

 $\Delta^*(Q)$ are cubes of similar size and location, and ℓ is a line.

$$J_2^*(\mu, x) := \sum_{\substack{ ext{diam} Q \leq 1 \ Q ext{ dyadic}}} eta_2^*(\mu, Q)^2 rac{ ext{diam} Q}{\mu(Q)} \chi_Q(x)$$

Theorem 8 (Badger-S.)

Let $n \ge 2$, and μ a Radon measure on \mathbb{R}^n . Then

$$1 - \operatorname{rect} = \left\{ x \in \mathbb{R}^n : \underline{D}^1(\mu, x) > 0 \text{ and } J_2^*(\mu, x) < \infty \right\},$$

1 - pur.unrect. = $\left\{ x \in \mathbb{R}^n : \underline{D}^1(\mu, x) = 0 \text{ or } J_2^*(\mu, x) = \infty \right\}.$

Rectifiability of measures R. Schul

m = 1

$m \ge 1$

- Basic tool in Theorem 8 is a variant of Jones' TST.
- But what if... m > 1 ?!

Rectifiability of measures

R. Schul

curvature 1-Rectfiability Background Some results m = 1 $m \ge 1$ Other notions

- Basic tool in Theorem 8 is a variant of Jones' TST.
- But what if... m > 1 ?!
- For an *m*-plane ℓ and Ball *B* or radius r_B :

$$\beta_E^m(B,\ell) = \frac{1}{r_B} \int_0^1 \mathcal{H}_\infty^m \{ x \in B \cap E : \operatorname{dist}(x,\ell) > tr_B \} dt$$

and $\beta_E^m(B) = \inf_{\ell} \beta_E^m(B, \ell)$. Note: uses Hausdorff content. IF assume Ahlfors-regularity get David-Semmes β_1 Rectifiability of measures

R. Schul

- Basic tool in Theorem 8 is a variant of Jones' TST.
- But what if... m > 1 ?!
- For an *m*-plane ℓ and Ball *B* or radius r_B :

$$\beta_E^m(B,\ell) = \frac{1}{r_B} \int_0^1 \mathcal{H}_\infty^m \{ x \in B \cap E : \operatorname{dist}(x,\ell) > tr_B \} dt$$

and $\beta_E^m(B) = \inf_{\ell} \beta_E^m(B, \ell)$. Note: uses Hausdorff content. IF assume Ahlfors-regularity get David-Semmes β_1

• Lower content regular: for all $x \in E \cap B(0, 1)$ and r < 1

$$\mathcal{H}^m_\infty(E\cap B(x,r))\geq cr^m$$

R. Schul

$$d_B(E,\ell) = \frac{1}{r_B} \max\left\{\sup_{y \in E \cap B} \operatorname{dist}(y,\ell), \sup_{y \in \ell \cap B} \operatorname{dist}(y,E)\right\}.$$

$$\vartheta_E^m(B) = \inf_{\ell \text{ an } m \text{-plane}} d_B(E,\ell)$$

Rectifiability of measures

R. Schul

1-Rectfiability Background Some results m = 1 $m \ge 1$ Other notions

$$d_B(E,\ell) = \frac{1}{r_B} \max\left\{\sup_{y \in E \cap B} \operatorname{dist}(y,\ell), \sup_{y \in \ell \cap B} \operatorname{dist}(y,E)\right\}.$$

$$\vartheta_E^m(B) = \inf_{\ell \text{ an } m\text{-plane}} d_B(E,\ell)$$

$$\ell$$
, ℓ) Other notions end

$$egin{aligned} \Theta_E(B(0,1)) &:= \sum \{ \operatorname{diam}(Q)^m : Q \in \Delta, \ & Q \cap E \cap B(0,1)
eq \emptyset \ ext{and} \ & artheta_E(3Q) \geq \epsilon \} \end{aligned}$$

Rectifiability of

measures R. Schul

m > 1

Theorem 9 (Azzam-S.)

Let $1 \le m < n$, $C_0 > 1$. Let $\emptyset \ne E \subseteq B(0, 1)$ is Lower-content-regular. There is $\epsilon_0 = \epsilon_0(n, c) > 0$ such that for $0 < \epsilon < \epsilon_0$ we have:

$$1 + \sum_{\substack{Q \in \Delta \\ Q \cap E \cap B(0,1) \neq \emptyset}} \beta_E^m (C_0 Q)^2 \operatorname{diam}(Q)^m \lesssim_{C_0, n, \epsilon, c}$$

 $\mathcal{H}^m(E \cap B(0,1)) + \Theta_E(B(0,1))$

Rectifiability of measures

R. Schul

Theorem 10 (Azzam-S.)

Same assumptions.

$$\mathcal{H}^m(E\cap B(0,1))+ \Theta_E(B(0,1)) \lesssim_{C_0,n,\epsilon,c} 1+ \sum_{Q\in \Delta \ Q\cap E\cap B(0,1)
eq \emptyset} eta_E^m(C_0Q)^2 \mathrm{diam}(Q)^m.$$

Furthermore, if the right hand side is finite, then E is *m*-rectifiable

Rectifiability of measures

R. Schul

Fang-Jones (90's?): β_{∞} not good enough. Graph of Lipschitz function

$$f:[0,1]^3: o\mathbb{R}$$

Draw picture.

$$\sum \epsilon_i^3 < \frac{1}{2}$$

then

$$\sum eta_{\infty}^2(Q) \operatorname{diam}(Q)^3 \sim \sum \epsilon_i^2 = \infty$$

Wanted:

$$\mathcal{H}^{m}(\mathcal{E} \cap \mathcal{B}(0,1)) + \Theta_{\mathcal{E}}(\mathcal{B}(0,1)) \qquad \sim \qquad 1 + \sum \beta(\mathcal{C}_{0}\mathcal{Q})^{2} \mathrm{diam}(\mathcal{Q})^{m}.$$

Rectifiability of measures

R. Schul

Need Θ : Take the *Boundary* of the *N*th stage in the 4 corner cantor set.

- $\sum \beta(C_0 Q)^2 \operatorname{diam}(Q) \sim N$
- On the other side $\mathcal{H}^1 \sim 1$ and $\Theta \sim N$
- Note: if we had Condition B, it would guarantee

 Θ controlled by \mathcal{H}^m

Wanted:

$$\mathcal{H}^m(E \cap B(0,1)) + \Theta_E(B(0,1)) \qquad \sim \qquad 1 + \sum \beta(C_0 Q)^2 \mathrm{diam}(Q)^m.$$

Rectifiability of measures

R. Schul

Accumulating lines: Average betas don't work Draw picture. Two options:

$$\beta_{\mu,2}(Q,L) = \left(\frac{1}{\ell(Q)^m} \int_Q \left(\frac{\operatorname{dist}(y,L)}{\ell(Q)}\right)^2 d\mu(y)\right)^{1/2}$$

(yields $\beta(3Q) \lesssim \frac{1}{N-j(Q)}$ and $\sum \beta(3Q)^2 \operatorname{diam}(Q) \lesssim \log(N))$ OR

$$\beta_{\mu,2}(Q,L) = \left(\frac{1}{\mu(Q)}\int_Q \left(\frac{\operatorname{dist}(y,L)}{\ell(Q)}\right)^2 d\mu(y)\right)^{1/2}$$

(yields $\beta(3Q) \gtrsim 2^{N}\ell(Q)$ and $\sum \beta(3Q)^{2} \operatorname{diam}(Q) \gtrsim N2^{N}$) Either way, $\mathcal{H}^{1} \sim 2^{N} \sim \Theta$, so no chance!

Wanted:

 $\mathcal{H}^m(E \cap B(0,1)) + \Theta_E(B(0,1)) \qquad \sim \qquad 1 + \sum \beta(C_0 Q)^2 \mathrm{diam}(Q)^m.$

Rectifiability of measures

R. Schul

A sketch of a proof

Simple direction:

 $\mathcal{H}^m(E\cap B(0,1))+\Theta_E(B(0,1)) \qquad \lesssim \qquad 1+\sum \beta(C_0Q)^2 \mathrm{diam}(Q)^m.$

A stopping time which reduces to using David-Toro (RF with holes) used to build biLipschitz surfaces whose union ⊃ E

Complicated direction:

 $\mathcal{H}^m(E \cap B(0,1)) + \Theta_E(B(0,1)) \qquad \gtrsim \qquad 1 + \sum \beta(C_0 Q)^2 \operatorname{diam}(Q)^m.$

- A stopping time which produces graphs getting closer to E (coronization). (use DT here too!)
- Use Dorronsoro for graphs.
- Show that the upper bound did not grow too much...

R. Schul

Rectifiability of measures

R. Schul

Length and curvature 1-Rectfiability Background Some results m = 1 $m \ge 1$ Other notions end

QUESTION: what about analogue of Theorems 7 or 8?? (with no abs. cont. assumption!)

$C^{k,\alpha}$ -rectifiability

Theorem 11 (Silvia Ghinassi, on arxiv. See poster) Let $E \subset B(0, 1) \subset \mathbb{R}^n$ be a d-dimensional Reifenberg flat set With Holes. Let $\alpha \in (0, 1]$. Assume: there is $M < \infty$ such that for all $x \in E$

$$\sum_{k \ge 0} \beta_{E,1}(x, 2^{-k})^2 / 2^{-k\alpha} < M$$

Then there is a map $f : \mathbb{R}^m \to \mathbb{R}^n$ such that $E \subset f(\mathbb{R}^d)$, f is invertible, and both f and its inverse have directional derivatives which are α -Hölder.

- $\alpha = 0$: David-Toro (get *f* is bi-Lipschitz).
- α > 0: David-Kenig-Toro (no holes), Blatt-Kolasiński (small holes),
- Characterization of C^{k,α} rectifiable measures?? (some work by Kolasiński and collaborators on k = 1)

Rectifiability of measures

R. Schul

Other notions of rectifiability

For a measure μ :

- Is it Lipschitz-Graph-rectifiable?
- BiLipschitz-rectifiable?
- [your-favorite-class-of-functions]-rectifiable?...
- How do these relate to each other?

Rectifiability of measures

R. Schul

Length and curvature

m = 1

 $m \ge 1$

Other notions

Rectifiability of measures

R. Schul

Length and curvature 1-Rectfiability Background Some results m = 1 $m \ge 1$ Other notions

end

Happy Birthday, Guy. Thank you, Organizers.