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Anderson Localization

Example:

L =−∆ +V on 80×80 square

Choose V constant on unit squares

i. i. d. uniformly in 0≤ V ≤ 4.
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First periodic eigenfunction on 80×80 square
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Where is the eigenfunction?

Lψ1 = (−∆ +V )ψ1 = λ1ψ1

Filoche and Mayboroda: Solve

Lu = 1

Then ψ1 is located at maxu.

u = ∑
j

〈1,ψj〉
λj

ψj
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Top view of first four eigenfunctions versus prediction using u
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Divide by u: ψ̃ = ψ/u.

Lψ = λψ ⇐⇒ L̃ψ̃ = λψ̃

Lf =−div (∇f ) +Vf implies

L̃g :=
1

u
L(ug) =− 1

u2
div (u2

∇g) +
1

u
g

Effective potential 1/u(x)
Prinicipal symbol of L̃:

ξ
2 +

1

u(x)
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“Weyl law” with 0≤ V ≤ 1 uniform iid on 512 unit intervals.
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“Weyl law” with V = 0 or 1 Bernoulli iid 512 unit intervals.
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“Weyl law” with V = 0 and V = 1 alternating, on 512 unit
intervals.
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Filoche, Mayboroda and other
collaborators used this eigenvalue
counting to speed up algorithms to
simulate performance of LEDs by a
factor of 100 to 1000:

2 days → 2 minutes
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Prediction of eigenvalues by counting minima of 1/u
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Exponential decay in R

If −ψ
′′+ (V (x)−λ)ψ≥ α

2
ψ,

and ψ(x)→ 0 as x → ∞, then

|ψ(x)| ∼< e−αx , x → ∞
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Classical Confinement in Rn

Claim: Eigenfunctions with eigenvalue λ decay
exponentially in {V (x)−λ > 0}.∫

[|∇f |2 + (V −λ)f 2]dx ≥
∫

(V −λ)f 2dx .

w(x) = (V (x)−λ)+,

〈(L−λ)f , f 〉 ≥ 〈wf , f 〉, all f ∈ C∞
0 ({w > 0}).
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Confinement in Rn

〈(L−λ)f , f 〉 ≥ 〈wf , f 〉, all f ∈ C∞
0 ({w > 0}).

Agmon distance to {w = 0} :

h(x) = min
γ

∫ 1

0

√
w(γ(t))|γ̇(t)|dt

γ(0) ∈ {w = 0}, γ(1) = x .

Thm (Agmon) If Lψ = λψ, ψ ∈ L2(Rn), then

|ψ| ∼< e−(1−ε)h(x)
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1
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The Effective Potential 1/u

wλ(x) :=

(
1

u
−λ

)
+

Then

〈(L−λ)f , f 〉 ≥ 〈wλf , f 〉 for all f ∈ C∞
0 (wλ > 0).

Thus 1/u replaces V and acts as an effective
potential. We will prove exponential decay of
eigenfunctions outside the potential well {wλ = 0}.

David Jerison Localization via an Effective Potential



Lemma. If 0≤ V (x)≤ V , M = (R/TZ)n,
L =−∆ +V , Lu = 1, then∫

M
(|∇f |2 +Vf 2)dx =

∫
M

(u2|∇(f /u)|2 +
1

u
f 2)dx

Proof: Use Lu = 1 in weak form with test
function f 2/u, to obtain∫

M
(∇u ·∇(f 2/u) +Vu(f 2/u))dx =

∫
M

1(f 2/u)dx .

Applying the product rule yields the result. (No
integration by parts!)
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wλ(x) =

(
1

u(x)
−λ

)
+

, E (λ+δ) = {1/u(x)≤ λ+δ}

ρλ(x ,y) = inf
γ

∫ 1

0

√
wλ(γ(t))|γ̇(t)|dt

γ(0) = x , γ(1) = y

h(x) = ρλ(x ,E (λ + δ))

Theorem 1. If Lψ = λψ, then∫
h≥1

eh(|∇ψ|2 +Vψ
2)dx ≤ 100

V

δ

∫
M
Vψ

2dx
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Proof
Substitute f = χeh/2ψ, χ = min(h,1) in the Lemma.

|∇h(x)|2 ≤ wλ(x) (≤ 1/u(x)≤ V )

Generalizes to closed C 1 manifolds with C 0 metrics
and L∞ densities and also to the Neumann problem
in biLipschitz subdomains. Same proof, same
constants.
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Does the Theorem have content?

R/TZ, T = 219, 0≤ V (x)≤ 4 (uniform iid)

has 17±2 intervals in (1/u−λ0)≤ 0.

Agmon distance between wells: S ∼ T 1/5.

There is content because eT
1/5

>> T . But to
prove that the deepest of the 17 wins, we will need
absence of resonance between wells.
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Approximate Diagonalization

Choose a threshold µ̄ and divide

E (µ̄ + δ) = {1/u ≤ µ̄ + δ}=
R⊔
`=1

E` .

S := min
6̀=`′

ρ̄(E`,E`′), (ρ̄ = ρµ̄)

Choose Ω` disjoint such that

{x ∈M : ρ̄(x ,E`) < (S− ε)/2} ⊂ Ω` .
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Let Ψ(a,b) be the orthogonal projection onto the
span of eigenfunctions of L with e-vals in (a,b).

Let ϕ`,j , j = 1, 2, . . . be the Dirchlet eigenfunctions
of L on Ω`. Let Φ(a,b) be the orthogonal projection
onto these eigenfunctions with e-vals in (a,b).
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Theorem 2. Set ϕ = ϕ`,j , µ = µ`,j . If µ≤ µ̄, then

‖ϕ−Ψ(µ−δ,µ+δ)ϕ‖2 ≤ 300

(
V

δ

)3

e−S/2

Similarly, if ψ = ψj , λ = λj and λ≤ µ̄, then

‖ψ−Φ(µ−δ,µ+δ)ψ‖2 ≤ 300

(
V

δ

)3

e−S/2
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Proof: Choose a cutoff η ∈ C 1
0 (Ω`) so that

L(ηψ) = ληψ + r

satisfies

‖r‖2
H−1 ≤ 18e2V

δ
e−S/2‖ψ‖2

And similarly for the Dirichlet eigenfunctions ϕ.
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Corollary. If

300N

(
V

δ

)3

< eS/2,

then λ1, . . . , λN are within ±δ of the first N
eigenvalues among µ`,j on Ω`, ` = 1, . . . , R .
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CONCLUSION

The effective potential

1

u
(Lu = 1)

yields

I Eigenvalue distribution (bottom half)

I Location and exponential decay of
eigenfunctions

I Approximate diagonalization of L

David Jerison Localization via an Effective Potential



Merci à Guy!
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