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Anderson Localization
Example:

L=—A+YV on 80 x 80 square

Choose V' constant on unit squares
i.i. d. uniformly in 0 < V <4,
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First periodic eigenfunction on 80 x 80 square
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Where is the eigenfunction?

L\|11 = (—A -+ V)\|Il = 7\,1\|11
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Where is the eigenfunction?
L\|11 — (—A + V)\|11 = 7L1W1
Filoche and Mayboroda: Solve
Lu=1

Then 7 is located at maxu.




Where is the eigenfunction?

L\|11 — (—A + V)\|Il = 7L1W1
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Then 7 is located at maxu.
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Top view of first four eigenfunctions versus prediction using u
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Divide by u: =/ u.
Ly=Ay <= L[J=Ay
Lf = —div (Vf)+ Vf implies

~ 1 1, 5 1
Lg = EL(ug) = —?dlv (u“Vg)+ Eg
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Divide by u: =/ u.
Ly=Ay <= L[J=Ay
Lf = —div (Vf)+ Vf implies

~ 1 1, 5 1
Lg = EL(ug) = —?dlv (u“Vg)+ Eg

Effective potential 1/u(x)
Prinicipal symbol of L:
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“Weyl law” with 0 < V <1 uniform iid on 512 unit intervals.
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“Weyl law” with V =0 and V =1 alternating, on 512 unit
intervals.
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Filoche, Mayboroda and other
collaborators used this eigenvalue
counting to speed up algorithms to
simulate performance of LEDs by a
factor of 100 to 1000:

2 days — 2 minutes
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64 realizations with nc =256, Vipax = 16
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Prediction of eigenvalues by counting minima of 1/u
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Exponential decay in R

="+ (V(x) =My = oy,
and Y(x) — 0 as x — oo, then

W(x)| < e™™, x—oo




Classical Confinement in R”

Claim: Eigenfunctions with eigenvalue A decay
exponentially in {V(x) —A > 0}.

/[|Vf|2+(v—x)f2]dxz/(v—x)f2dx.
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Classical Confinement in R”

Claim: Eigenfunctions with eigenvalue A decay
exponentially in {V(x) —A > 0}.

/[|Vf|2+(v—x)f2]dxz/(v—x)f2dx.

(L—N)F,£) > (wf,f), all feCo({w>0)).
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Confinement in R”

(L—M)F,£) > (wf,f), all feCo({w>0)).
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Confinement in R”

(L=MN)f,fy>(wf,f), all fe({w>0}).
Agmon distance to {w =0} :

) = min [ w0 o

Y(0) € {w =0}, ¥(1) = x.
Thm (Agmon) If Ly = Ay, y € L2(R"), then

’\m < e—(l—s)h(x)
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Divide by u: =/ u.
Ly =Ay < L[J=Ay
Lf = —div (Vf)+ Vf implies

~ 1 1. 5 1
Lg := EL(ug) = —?dlv (u"Vg)+ Zg
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Divide by u: =/ u.
Ly =Ay < L[J=Ay
Lf = —div (Vf)+ Vf implies

~ 1 1. 5 1
Lg := EL(ug) = —?dlv (u"Vg)+ Zg

(LF, ) = (¥ (F /), u¥ (F[u) 4 F ) > ()

(L—N)F,F) > <<1—x) £F)

u
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The Effective Potential 1/u
1
wy(x) == <— —7»)
Y ~

(L=A)f,fy > (wyf,f) for all f € C5'(wy, > 0).

Then

Thus 1/u replaces V and acts as an effective
potential. We will prove exponential decay of
eigenfunctions outside the potential well {w, = 0}.
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Lemma. f0<V(x)<V, M=(R/TZ)",
L=—A+V, Lu=1, then

2 2\ qu 2 2, 1o "
| (VAR VRax= [ (@29(F/0)P+ )
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Lemma. f0<V(x)<V, M=(R/TZ)",
L=—A+V, Lu=1, then

2 2\ qu 2 2, 1o "
| (VAR VRax= [ (@29(F/0)P+ )

Proof: Use Lu=1 in weak form with test
function f2/u, to obtain

/(vu-V(f2/u)+vu(f2/u))dx:/ 1(£2/u) dx.
M M

Applying the product rule yields the result. (No
integration by parts!)
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1
wy(x) = <@ —7»>+, E(A+8)={1/u(x) <A+3}

o) = inf [ /oG 1)

v(0) = x, ¥(1) =y

h(x) = pa(x, E(A +9))




1
wy(x) = <m —7»>+, E(A+8)={1/u(x) <A+3}

o) = inf [/ (EIi(0)
H0) = (1) =¥
00 = oax, EC+ 3)
Theorem 1. If Ly = Ay, then

/ eh(\V\|I|2—|—V\|I2)dx§100Z/ V2 dx
h>1 o Jm
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Proof
Substitute f = ye//?y, x = min(h,1) in the Lemma.

VA(X)? <wi(x) (£1/u(x) < V)
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Proof
Substitute f = ye//?y, x = min(h,1) in the Lemma.

VA(X)? <wi(x) (£1/u(x) < V)

Generalizes to closed C! manifolds with C% metrics
and L* densities and also to the Neumann problem
in biLipschitz subdomains. Same proof, same
constants.
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Does the Theorem have content?
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Does the Theorem have content?

R/TZ, T=2Y 0<V(x)<4 (uniform iid)

has 17+ 2 intervals in (1/u—2p) <O0.

Agmon distance between wells: S ~ TS,
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Does the Theorem have content?

R/TZ, T=2Y 0<V(x)<4 (uniform iid)

has 17+ 2 intervals in (1/u—2p) <O0.

Agmon distance between wells: S ~ TS,

. 1/5
There is content because eT/ >> T. But to
prove that the deepest of the 17 wins, we will need
absence of resonance between wells.
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Approximate Diagonalization
Choose a threshold g and divide

R
E(a+8)={1/u<p+8}=| |E.
(=1

S :=min p(Ey, Ep P = Pz
min p(Ee,Er), (P=pp)
Choose €y disjoint such that

{xe M:p(x,E;) < (S—¢)/2} C Q.
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Let W, ;) be the orthogonal projection onto the
span of eigenfunctions of L with e-vals in (a, b).

Let @, j=1,2,... be the Dirchlet eigenfunctions
of L on (2. Let ®(, ;) be the orthogonal projection
onto these eigenfunctions with e-vals in (a, b).
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Theorem 2. Set @ = @y, u=uyj. If u<p, then

N\ 3
V _
0= Vi-sa15y0l2 <300 ) 5"

Similarly, if y=vy;, A=A, and A <p, then

—\ 3
V _
IV Ogusur oI <300 (5 ) e 52
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Proof: Choose a cutoff m € C}() so that

L(ny) =y +r

satisfies

vV _
Irl3s < 186 e™/2

And similarly for the Dirichlet eigenfunctions ©.
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Corollary. If
— 3
vV
300N (§> <e/?

then A1, ..., Ay are within £0 of the first N
eigenvalues among uyjon €y, £=1,..., R.

David Jerison Localization via an Effective Potential



CONCLUSION

The effective potential
— (Lu=1)

yields
» Eigenvalue distribution (bottom half)

» Location and exponential decay of
eigenfunctions

» Approximate diagonalization of L
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Merci a Guy!
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