Localization of Eigenfunctions via an Effective Potential

David Jerison (MIT)

CIRM, October 5, 2017

Joint work with Douglas Arnold, Guy David, Marcel Filoche, and Svitlana Mayboroda — en l'honneur de Guy!

Anderson Localization

Example:

 $L = -\Delta + V$ on 80×80 square

Choose V constant on unit squares i. i. d. uniformly in $0 \le V \le 4$.

First periodic eigenfunction on 80×80 square

- 170

< 注→ 注

Where is the eigenfunction? $L\psi_1 = (-\Delta + V)\psi_1 = \lambda_1\psi_1$

(本部) (本語) (本語) (語)

Where is the eigenfunction? $L\psi_1 = (-\Delta + V)\psi_1 = \lambda_1\psi_1$ Filoche and Mayboroda: Solve Lu = 1

Then Ψ_1 is located at max *u*.

Where is the eigenfunction? $L\psi_1 = (-\Delta + V)\psi_1 = \lambda_1\psi_1$ Filoche and Mayboroda: Solve Lu = 1

Then ψ_1 is located at max u.

$$u = \sum_{j} rac{\langle 1, \psi_j
angle}{\lambda_j} \psi_j$$

Top view of first four eigenfunctions versus prediction using u

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

Divide by *u*: $\tilde{\Psi} = \Psi/u$.

$$L\psi = \lambda\psi \iff \tilde{L}\tilde{\psi} = \lambda\tilde{\psi}$$

 $Lf = -\operatorname{div}(\nabla f) + Vf$ implies

$$\widetilde{L}g := \frac{1}{u}L(ug) = -\frac{1}{u^2}\operatorname{div}(u^2\nabla g) + \frac{1}{u}g$$

(本間) (本語) (本語) (語)

Divide by *u*: $\tilde{\Psi} = \Psi/u$.

$$L\psi = \lambda\psi \iff \tilde{L}\tilde{\psi} = \lambda\tilde{\psi}$$

 $Lf = -\operatorname{div}(\nabla f) + Vf$ implies

$$\widetilde{L}g := \frac{1}{u}L(ug) = -\frac{1}{u^2}\operatorname{div}(u^2\nabla g) + \frac{1}{u}g$$

Effective potential 1/u(x)Prinicipal symbol of \tilde{L} :

$$\xi^2 + \frac{1}{u(x)}$$

→ 注→ 注

"Weyl law" with $0 \le V \le 1$ uniform iid on 512 unit intervals.

"Weyl law" with V = 0 or 1 Bernoulli iid 512 unit intervals.

"Weyl law" with V = 0 and V = 1 alternating, on 512 unit intervals.

Filoche, Mayboroda and other collaborators used this eigenvalue counting to speed up algorithms to simulate performance of LEDs by a factor of 100 to 1000:

2 days \rightarrow 2 minutes

Prediction of eigenvalues by counting minima of 1/u

- < ≣ →

æ

Exponential decay in \mathbb{R} If $-\psi'' + (V(x) - \lambda)\psi \ge \alpha^2 \psi$, and $\psi(x) \to 0$ as $x \to \infty$, then $|\psi(x)| \leqslant e^{-\alpha x}, \quad x \to \infty$

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● の Q @

Classical Confinement in \mathbb{R}^n

Claim: Eigenfunctions with eigenvalue λ decay exponentially in $\{V(x) - \lambda > 0\}$.

$$\int [|\nabla f|^2 + (V - \lambda)f^2] \, dx \geq \int (V - \lambda)f^2 \, dx.$$

医下 不至下。

Classical Confinement in \mathbb{R}^n

Claim: Eigenfunctions with eigenvalue λ decay exponentially in $\{V(x) - \lambda > 0\}$.

$$\int [|\nabla f|^2 + (V - \lambda)f^2] \, dx \geq \int (V - \lambda)f^2 \, dx.$$

$$w(x) = (V(x) - \lambda)_+,$$

 $\langle (L - \lambda)f, f \rangle \ge \langle wf, f \rangle, \quad \text{all } f \in C_0^{\infty}(\{w > 0\}).$

医下 不至下。

Confinement in \mathbb{R}^n

 $\langle (L-\lambda)f,f\rangle \geq \langle wf,f\rangle, \text{ all } f\in C_0^\infty(\{w>0\}).$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ ○ ○ ○

Confinement in \mathbb{R}^n

 $\langle (L-\lambda)f, f \rangle \ge \langle wf, f \rangle$, all $f \in C_0^{\infty}(\{w > 0\})$. Agmon distance to $\{w = 0\}$:

$$\begin{split} h(x) &= \min_{\gamma} \int_{0}^{1} \sqrt{w(\gamma(t))} |\dot{\gamma}(t)| \, dt \\ \gamma(0) &\in \{w = 0\}, \, \gamma(1) = x. \end{split}$$
Thm (Agmon) If $L\psi = \lambda\psi, \, \psi \in L^{2}(\mathbb{R}^{n})$, then $|\psi| \lesssim e^{-(1-\varepsilon)h(x)}$

御 と く き と く き と … き

Divide by $u: \tilde{\Psi} = \Psi/u$.

$$L\psi = \lambda\psi \iff \tilde{L}\tilde{\psi} = \lambda\tilde{\psi}$$

 $Lf = -\operatorname{div}(\nabla f) + Vf$ implies $\tilde{L}g := \frac{1}{u}L(ug) = -\frac{1}{u^2}\operatorname{div}(u^2\nabla g) + \frac{1}{u}g$

▲■ ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Divide by $u: \tilde{\Psi} = \Psi/u$. $L\psi = \lambda\psi \iff \tilde{L}\tilde{\Psi} = \lambda\tilde{\Psi}$ $Lf = -\operatorname{div}(\nabla f) + Vf$ implies $\tilde{L}g := \frac{1}{u}L(ug) = -\frac{1}{u^2}\operatorname{div}\left(u^2\nabla g\right) + \frac{1}{u}g$ $\langle Lf, f \rangle = \langle u \nabla (f/u), u \nabla (f/u) \rangle + \langle \frac{1}{u} f, f \rangle \ge \langle \frac{1}{u} f, f \rangle$ $\langle (L-\lambda)f,f\rangle \geq \langle \left(\frac{1}{\mu}-\lambda\right)f,f\rangle$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

The Effective Potential 1/u

$$w_{\lambda}(x) := \left(\frac{1}{u} - \lambda\right)_+$$

Then

$$\langle (L-\lambda)f,f\rangle \geq \langle w_{\lambda}f,f\rangle \text{ for all } f\in C_0^{\infty}(w_{\lambda}>0).$$

Thus 1/u replaces V and acts as an effective potential. We will prove exponential decay of eigenfunctions outside the potential well $\{w_{\lambda} = 0\}$.

Lemma. If $0 \le V(x) \le \overline{V}$, $M = (\mathbb{R}/T\mathbb{Z})^n$, $L = -\Delta + V$, Lu = 1, then

$$\int_{M} (|\nabla f|^{2} + Vf^{2}) \, dx = \int_{M} (u^{2} |\nabla (f/u)|^{2} + \frac{1}{u} f^{2}) \, dx$$

個人 くほん くほん 一足

Lemma. If $0 \le V(x) \le \overline{V}$, $M = (\mathbb{R}/T\mathbb{Z})^n$, $L = -\Delta + V$, Lu = 1, then

$$\int_{M} (|\nabla f|^{2} + Vf^{2}) \, dx = \int_{M} (u^{2} |\nabla (f/u)|^{2} + \frac{1}{u} f^{2}) \, dx$$

Proof: Use Lu = 1 in weak form with test function f^2/u , to obtain

$$\int_M (\nabla u \cdot \nabla (f^2/u) + Vu(f^2/u)) \, dx = \int_M \mathbb{1}(f^2/u) \, dx \, .$$

Applying the product rule yields the result. (No integration by parts!)

ヨト イヨト イヨト

$$w_{\lambda}(x) = \left(\frac{1}{u(x)} - \lambda\right)_{+}, \quad E(\lambda + \delta) = \{1/u(x) \le \lambda + \delta\}$$
$$\rho_{\lambda}(x, y) = \inf_{\gamma} \int_{0}^{1} \sqrt{w_{\lambda}(\gamma(t))} |\dot{\gamma}(t)| dt$$
$$\gamma(0) = x, \ \gamma(1) = y$$
$$h(x) = \rho_{\lambda}(x, E(\lambda + \delta))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$w_{\lambda}(x) = \left(\frac{1}{u(x)} - \lambda\right)_{+}, \quad E(\lambda + \delta) = \{1/u(x) \le \lambda + \delta\}$$
$$\rho_{\lambda}(x, y) = \inf_{\gamma} \int_{0}^{1} \sqrt{w_{\lambda}(\gamma(t))} |\dot{\gamma}(t)| dt$$
$$\gamma(0) = x, \ \gamma(1) = y$$
$$h(x) = \rho_{\lambda}(x, E(\lambda + \delta))$$
Theorem 1. If $L\psi = \lambda\psi$, then
$$\int_{h \ge 1} e^{h}(|\nabla\psi|^{2} + \overline{V}\psi^{2}) dx \le 100\frac{\overline{V}}{\delta} \int_{M} \overline{V}\psi^{2} dx$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

Proof Substitute $f = \chi e^{h/2} \psi$, $\chi = \min(h, 1)$ in the Lemma. $|\nabla h(x)|^2 \le w_{\lambda}(x) \quad (\le 1/u(x) \le \overline{V})$

(4) (5) (4) (5) (5)

Proof Substitute $f = \chi e^{h/2} \psi$, $\chi = \min(h, 1)$ in the Lemma. $|\nabla h(x)|^2 \le w_{\lambda}(x) \quad (\le 1/u(x) \le \overline{V})$

Generalizes to closed C^1 manifolds with C^0 metrics and L^{∞} densities and also to the Neumann problem in biLipschitz subdomains. Same proof, same constants.

Does the Theorem have content?

→ 注→ 注

Does the Theorem have content?

 $\mathbb{R}/T\mathbb{Z}, \quad T = 2^{19}, \quad 0 \le V(x) \le 4$ (uniform iid) has 17 ± 2 intervals in $(1/u - \lambda_0) \le 0$.

Agmon distance between wells: $S \sim T^{1/5}$.

Does the Theorem have content?

 $\mathbb{R}/T\mathbb{Z}, \quad T=2^{19}, \quad 0 \leq V(x) \leq 4$ (uniform iid) has 17 ± 2 intervals in $(1/u - \lambda_0) \leq 0$.

Agmon distance between wells: $S \sim T^{1/5}$.

There is content because $e^{T^{1/5}} >> T$. But to prove that the deepest of the 17 wins, we will need absence of resonance between wells.

B 1 4 B 1 B

Approximate Diagonalization

Choose a threshold $\bar{\mu}$ and divide

$$egin{aligned} & E(ar{\mu}+\delta)=\{1/u\leqar{\mu}+\delta\}=igsqcap_{\ell=1}^R E_\ell\,.\ & S:=\min_{\ell
eq\ell'}\,ar{
ho}(E_\ell,E_{\ell'}),\quad (ar{
ho}=
ho_{ar{\mu}}) \end{aligned}$$

Choose Ω_ℓ disjoint such that

$$\{x \in M : \overline{
ho}(x, E_\ell) < (S - \varepsilon)/2\} \subset \Omega_\ell$$

→ ∃ →

Let $\Psi_{(a,b)}$ be the orthogonal projection onto the span of eigenfunctions of L with e-vals in (a,b).

Let $\varphi_{\ell,j}$, j = 1, 2, ... be the Dirchlet eigenfunctions of L on Ω_{ℓ} . Let $\Phi_{(a,b)}$ be the orthogonal projection onto these eigenfunctions with e-vals in (a, b). **Theorem 2.** Set $\varphi = \varphi_{\ell,j}$, $\mu = \mu_{\ell,j}$. If $\mu \leq \overline{\mu}$, then

$$\| \boldsymbol{\varphi} - \Psi_{(\mu-\delta,\mu+\delta)} \boldsymbol{\varphi} \|^2 \leq 300 \left(\frac{\overline{V}}{\delta} \right)^3 e^{-S/2}$$

Similarly, if $\psi = \psi_j$, $\lambda = \lambda_j$ and $\lambda \leq \overline{\mu}$, then

$$\|\psi - \Phi_{(\mu-\delta,\mu+\delta)}\psi\|^2 \leq 300 \left(\frac{\overline{V}}{\delta}\right)^3 e^{-S/2}$$

□ > ★ E > ★ E > _ E

Proof: Choose a cutoff $\eta \in C_0^1(\Omega_\ell)$ so that $L(\eta \psi) = \lambda \eta \psi + r$

satisfies

$$\|r\|_{H^{-1}}^2 \le 18e^2 \frac{\overline{V}}{\delta} e^{-S/2} \|\psi\|^2$$

And similarly for the Dirichlet eigenfunctions φ .

Corollary. If

$$300N\left(\frac{\overline{V}}{\delta}\right)^3 < e^{S/2},$$

then $\lambda_1, \ldots, \lambda_N$ are within $\pm \delta$ of the first N eigenvalues among $\mu_{\ell,j}$ on Ω_{ℓ} , $\ell = 1, \ldots, R$.

(4) (2) (4) (2) (4)

CONCLUSION

The effective potential

$$\frac{1}{u} \qquad (Lu=1)$$

yields

- Eigenvalue distribution (bottom half)
- Location and exponential decay of eigenfunctions
- Approximate diagonalization of L

Merci à Guy!

□ > < ∃ >

< 注 →

æ