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Le théorème T (1)

C’était au centre de mathématique de l’Ecole Polytechnique, je crois
en septembre 1983. Guy me corrigera. Jean-Lin et Guy travaillaient
dans un bureau contigu au mien. Et, soudain, Jean-Lin arrive en
courant pour me dire que Guy et lui ont trouvé une condition
nécessaire et suffisante de continuité L2 pour tout opérateur
d’intégrale singulière dont le noyau vérifie les estimations standard.
Nous avons alors travaillé fiévreusement tous les trois pour améliorer
l’énoncé jusqu’à obtenir la forme élégante du théorème T (1). Je me
souviendrai toujours de la fougue de Jean-Lin, de la lucidité ironique
de Guy, de l’intense joie de la découverte et du bonheur communicatif
que procurait l’amitié exceptionnelle qui liait Guy et Jean-Lin.

Yves Meyer





September 14th 2015 09 :50 :45 UTC

The LIGO (Laser Interferometer Gravitational-Wave Observatory)
observatories in Hanford (state of Washington) and Livingston
(Louisiana) performed the first detection of a gravitational wave



One minute of general relativity

Einstein predicted the existence of
gravitational waves (1916)

Consequences of the detection :

- Confirmation of general
relativity in extreme conditions
of mass and energy

- A new astronomy

Credit : http ://www.actusf.com/spip/L-actu-des-sciences-Avril-2014.html
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A few orders of magnitude
Signal emitted 1,4 billion years ago
Coalescence of 2 black holes of 36 and 29 solar masses into 1 black
hole of 62 solar masses

Energy dissipated in 0.2 seconds : 3 solar masses (50 times more
than all the energy energy emitted by the rest of the universe during
the same time)

Credit : http ://www.gravity.phys.uwm.edu/research/highlights/index.html?artfile=160211-51.xml

Size of the recorded signal before denoising : ∼ 10−18 m
Size of the gravitational wave which crossed the earth : 10−21 m

Radius of the hydrogen atom : 10−11 m
Radius of the atomic nucleus : 10−15 m
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Scientific challenges

Instrumental and Physics :

Michelson Interferometer
with 2 arms of 4 km length

The laser beam is reflected
several hundreds of times

Rainer Weiss

Mathematics and signal processing : Harmonic Analysis
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The denoising algorithm : Frequency filtering

Gravitational wave GW150914 recorded by the LIGO detectors

Frequencies in the data Fourier transform of the filter
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Denoising algorithm : “Glitches” resist !
“Glitches” are bursts of noise that remain in the data after filtering
(several can be met in 1 second))

I Unknown origin
I Do not fit stochastic models

=⇒ Hand-made construction of a “glitch dictionnary” to locate and
eliminate them

Gravitational wave (model)

The final elimination is performed by comparing the shifted signals
recorded in the two detectors (temporal shift < 10 ms)
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The result of denoising

×10−21

How can one detect these features in the signal?
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What does a gravitational wave look like?

Circular binary black holes coalescence

Thibault Damour
(analytic computations)
+ numerical relativity

∼ |t−t0|−1/4 cos(ω|t−t0|5/8+ϕ) =⇒ Instantaneous frequency ∼ |t − t0|−3/8

These chirps depend on 4 main physical parameters
(2 masses and 2 spins) and 7 geometric parameters

The shapes of most expected gravitational waves are either unknown
or very partially known
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The adapted filtering method (parametric)
The signal is correlated with all possible shapes of gravitational waves

The sampling of the parameters space leads to 250 000 templates of
potential gravitational waves

The only events that are kept are those corresponding to the same
filter and a physically compatible time shift (τ < 10 ms)

Drawbacks :
I One needs to know the exact shape of the gravitational wave
I Not feasible if the gravitational wave depends on too many

parameters
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Chirps everywhere

Credit : Patrick Flandrin

Ultrasound emitted by a bat Gravitational wave
∼ |t − t0|−1/4 cos(ω|t − t0|5/8 + ϕ)

R(x) =
∞∑
1

sin(πn2x)
n2 Lévy process

The instantaneous frequency evolves with time

f (t) = Re
(
a(t)eiϕ(t)) where

∣∣∣∣a′(t)
a(t)

∣∣∣∣ << ϕ′(t)

Ê
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I . Time-Frequence analysis :

The short-time Fourier transform (STFT)

Let ϕ be a smooth well localised “window” (e.g. a Gaussian function)
the short-time Fourier transform of a function f defined on R is

Gf (x , ξ) =
∫
R

f (x)ϕ(t − x) e−2iπtξdt

f (t) =
∫ ∫

Gf (x , ξ) e2iπξt ϕ(t − x) dξ dx

D. Gabor

Wigner-Ville transform :

W (t , ξ) =
∫ ∞
−∞

f
(

t +
τ

2

)
f
(

t − τ

2

)
e−iξτdτ
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Time-Frequency analysis of gravitational waves

∼ |t − t0|−1/4 cos(ω|t − t0|5/8 + ϕ)
Wigner-Ville vs. STFT

Variants of time-frequency analysis have been tested on chirps, see e.g.

P. Flandrin : Explorations in Time-Frequency Analysis (Cambridge U. P. 2018)

B. Torresani P. Flandrin



Orthonormal bases?
Gabor “logons” : Expand any signal on the

ϕ(x − k) e2iπnx k ,n ∈ Z ϕ is a Gaussian

The Balian-Low theorem (1981) : If∫
(1 + t2)|g(t)|2dt <∞ et

∫
(1 + ξ2)|ĝ(ξ)|2dξ <∞

then any system of the form

g(x − a k) ei b n x k , n ∈ Z

is either incomplete or over-complete

T. Steger’s Theorem : A Riesz basis of L2(R) cannot satisfy

∃an, bn :

∫
(1+|t−an|2)|gn(t)|2dt <∞ et

∫
(1+|ξ−bn|2)|ĝn(ξ)|2dξ <∞

(strong uncertainty principle for bases)
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How to beat Balian-Low?
Example of orthonormal basis compatible with Balian-Low :

1[k,k+1)(x) e2iπnx k , n ∈ Z

J. Bourgain did a little better

In 1987 K. Wilson
(Nobel laureate in physics)

figured a way out :

Come back to the definition of a chirp

f (t) = Re
(
a(t)eiϕ(t)) where

∣∣∣∣a′(t)
a(t)

∣∣∣∣ << ϕ′(t)

Allow a double Fourier localization around two
frequencies of same amplitude and opposite signs
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Wilson bases
Wilson bases (I. Daubechies,
S. J., J.-L. Journé, 1991)
are orthonormal bases of the form :

ϕ(t − n), n ∈ Z
√

2ϕ
(

t − n
2

)
cos(2πlt), l + n ∈ 2Z

√
2ϕ
(

t − n
2

)
sin(2πlt), l + n ∈ 2Z+ 1

I. Daubechies J.-L. Journé ( † April 2016)



Advantages of Wilson bases

I ϕ and ϕ̂ can both have exponential decay

I ϕ ∈ S and ϕ̂ is compactly supported (it can be Meyer’s scaling
function) =⇒ sharp frequency resolution

I fast decomposition algorithms

I fast translation algorithms

I Simple characterization of modulation spaces (H. Feichtinger
and K. Gröchenig)

I gravitational waves are sparse
in Wilson bases
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I gravitational waves are sparse
in Wilson bases



Coherent Wave Burst

Algorithm due to S. Klimenko
and his collaborators in order to detect
gravitational waves generated by
the coalescence of two black holes

The window ϕ can be
Meyer scaling function
(ϕ̂ is compactly supported)

The signal processing is performed on 7 Wilson bases (and their
quadrature bases) each obtained by a dilation of factor 2 of the
window =⇒ overcomplete system of 14 orthonormal bases



Coherent Wave Burst

I Inspiral requires
good frequency
resolution

I Merger requires
good time
resolution

Optimal sparsity of the signal requires
the use of 7 dilated Wilson bases

Compromise between time frequency
and time scale analysis

E. Chassande-Mottin
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Reconstruction of the gravitational wave

Perfect adequation of the model and of the reconstruction validates
general relativity in extreme conditions of mass and velocity
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Malvar bases
Time-frequency orthonormal
bases of L2(R) :

ϕj,k (t) = ϕ(t−j) cos
[
π

(
k +

1
2

)
(t − j)

]
H. Malvar

The MDCT (Modified Discrete Cosinus Transform) is used in audio
compression formats, e.g. MP3 or MPEG2 AAC

Extensions of Wilson bases to
general time-frequency lattices
(G. Kutyniok and T. Strohmer )

Constructions that unify and generalize
Wilson and Malvar bases were proposed

by P. Auscher and his collaborators

LTFAT :The Large Time-Frequency Analysis Toolbox



Malvar bases
Time-frequency orthonormal
bases of L2(R) :

ϕj,k (t) = ϕ(t−j) cos
[
π

(
k +

1
2

)
(t − j)

]
H. Malvar

The MDCT (Modified Discrete Cosinus Transform) is used in audio
compression formats, e.g. MP3 or MPEG2 AAC

Extensions of Wilson bases to
general time-frequency lattices
(G. Kutyniok and T. Strohmer )

Constructions that unify and generalize
Wilson and Malvar bases were proposed

by P. Auscher and his collaborators

LTFAT :The Large Time-Frequency Analysis Toolbox



Malvar bases
Time-frequency orthonormal
bases of L2(R) :

ϕj,k (t) = ϕ(t−j) cos
[
π

(
k +

1
2

)
(t − j)

]
H. Malvar

The MDCT (Modified Discrete Cosinus Transform) is used in audio
compression formats, e.g. MP3 or MPEG2 AAC

Extensions of Wilson bases to
general time-frequency lattices
(G. Kutyniok and T. Strohmer )

Constructions that unify and generalize
Wilson and Malvar bases were proposed

by P. Auscher and his collaborators

LTFAT :The Large Time-Frequency Analysis Toolbox



Malvar bases
Time-frequency orthonormal
bases of L2(R) :

ϕj,k (t) = ϕ(t−j) cos
[
π

(
k +

1
2

)
(t − j)

]
H. Malvar

The MDCT (Modified Discrete Cosinus Transform) is used in audio
compression formats, e.g. MP3 or MPEG2 AAC

Extensions of Wilson bases to
general time-frequency lattices
(G. Kutyniok and T. Strohmer )

Constructions that unify and generalize
Wilson and Malvar bases were proposed

by P. Auscher and his collaborators

LTFAT :The Large Time-Frequency Analysis Toolbox



Malvar bases
Time-frequency orthonormal
bases of L2(R) :

ϕj,k (t) = ϕ(t−j) cos
[
π

(
k +

1
2

)
(t − j)

]
H. Malvar

The MDCT (Modified Discrete Cosinus Transform) is used in audio
compression formats, e.g. MP3 or MPEG2 AAC

Extensions of Wilson bases to
general time-frequency lattices
(G. Kutyniok and T. Strohmer )

Constructions that unify and generalize
Wilson and Malvar bases were proposed

by P. Auscher and his collaborators

LTFAT :The Large Time-Frequency Analysis Toolbox



Adaptive Malvar bases
Malvar bases

with arbitrary

windows lengths

R. Coifman and Y. Meyer

ϕj,k (t) =

√
2
lj
ϕj(t) cos

[
π

lj

(
k +

1
2

)
(t − aj)

]

Used in speech segmentation :
V. Wickerhauser and E. Wesfreid

Credit : V. Wickerhauser and E. Wesfreid

These constructions led to the study of redundant dictionary bases
which played a key role in signal processing
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Time-scale analysis : Wavelets

If the wavelet ψ is well localized, of vanishing integral, even or odd,
the continuous wavelet transform of a function f defined on R is

Cf (a,b) =
1
a

∫
R

f (t) ψ
(

t − b
a

)
dt

Calderón’s reconstruction formula :

f (x) = C
∫

a>0

∫
b∈R

Cf (a,b) ψ
(

x − b
a

)
da db

a2

A. Calderón A. Grossmann J. Morlet



Orthonormal wavelet bases
A wavelet basis on R is generated by
one smooth well localized, oscillating
wavelet ψ such that the
2j/2ψ(2jx − k), j , k ∈ Z
form an orthonormal basis of L2(R)

Advantages :
• Fast decomposition algorithms
• Simple characterization of Besov spaces
• Sparse representations for large classes of signals and images

May 24th 2017 : Scientific day following the Abel prize ceremony
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Chirps as pointwise singularities

CH,β = |x − x0|H sin
(

1
|x−x0|β

)
Wavelet characterization of chirps

(B. Torresani, Y. Meyer)

Trigonometric chirp in the Riemann series
(Y. Meyer) R(x) =

∞∑
1

sin(πn2x)
n2

R(π + x) = −x
2
+
∑
k≥1

|x |k+1/2gk

(
1
x

)
where gk ∼ R(−k)
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Chirps in signals : Pointwise exponents

f ∈ Cα(x0) it there exist C > 0 and a polynomial P of degree < α :

|f (x)− P(x − x0)| ≤ C|x − x0|α

The Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}

CH = |x − x0|H CH,β = |x − x0|H sin
(

1
|x−x0|β

)
Hölder exponents coincide

Hölder exponents of the primitive f (−1) :

hf (−1)(x0) = H + 1 hf (−1)(x0) = H + β + 1
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Exponents associated with pointwise regularity

How to associate an oscillation exponent that would not
change with the addition of a smoother noise?

The fractional integral of order s of f is

f̂ (−s)(ξ) = (1 + |ξ|2)−s/2 f̂ (ξ)

The fractional Hölder exponent of f at x0 is hs
f (x0) = hf (−s)(x0)

f has an oscillating singularity at x0 if hs
f (x0) 6= hf (x0) + s

Oscillation exponent : Osf (x0) =

(
∂ hs

f (x0)

∂s

)
s=0+

− 1

I Takes the value β for the chirp
CH,β = |x − x0|H sin

(
1

|x−x0|β

)
I Takes the value 1 for the Riemann chirp
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Cusps vs. Oscillating singularities
Cusps CH(x) = |x − x0|H

A cusp satisfies : Osf (x0) = 0
An exotic example of cusps expected in Gravitational waves analysis :
According to T. Damour and A. Vilenkin, cosmic strings (if they exist !)
should emit gravitational waves which are cusps

Chirps CH,β = |x − x0|H sin
(

1
|x−x0|β

)
A chirp satisfies : hf (−1)(x0) = H + β + 1

f has an oscillating singularity at x0

if Osf (x0) 6= 0

Sample paths of some Lévy processes
(P. Balança)

Where are the oscillating singularities???
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A new astronomy

What we learned from the first detection :
I Binary black holes exist and merge
I General relativity remains valid in extreme velocity and energy

conditions
I The knowledge of the theoretical shape of a gravitational wave

yields the corresponding physics parameters (masses, spins,
etc.,) which give information on the scenario that led to its
emission

Challenges in applied harmonic analysis :
I Improve Wilson graphs methods
I New statistical tools for estimating the probability of false alarms
I Reconstruction algorithms for coherent bases
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A new astronomy

The future :

I Validate models that predict the repartition of black holes in the
universe

I Accelerate algorithms in order to perform real-time detection
I Improve glitch detection

Why use non-parametric methods (Wilson bases)?
Detect other types of gravitational waves such as :

I binaries with a large excentricity
I γ-ray bursts
I binaries containing neutrons stars
I explosions of super novas
I residual cosmologic noise

I Detect something unexpected
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Thank you for your attention


