An inverse spectral theorem on compact Hankel operators linked to the dynamic of some half wave equation

Sandrine Grellier

Université d'Orléans- Fédération Denis Poisson CIRM october 2017

joint works with Patrick Gérard (Université Paris sud-Orsay)

Aim and motivation

- Aim 1: Establish an inverse spectral result on compact Hankel operator:
 Given a sequence of non negative real numbers, decreasing to 0, describe the set of compact Hankel operators having this sequence as singular values.
- Motivation: Allow to construct a non linear Fourier transform for some model of a degenerate non-dispersive Schrödinger equation: The cubic Szegő equation.
- Aim 2: Understand the Sobolev regularity through this transform.

Hankel operators

$$\mathcal{H}^{2}(\mathbb{D}) = \{ u \in L^{2}(\mathbb{S}) : u(z) = \sum_{n=0}^{\infty} c_{n} z^{n}, \sum_{n=0}^{\infty} |c_{n}|^{2} < \infty \},$$

 $\Pi: L^2(\mathbb{S}) \longrightarrow \mathcal{H}^2(\mathbb{D})$ the Szegö projector,

Given $u \in \mathcal{H}^2(\mathbb{D})$ "smooth", define H_u on $\mathcal{H}^2(\mathbb{D})$ by

$$H_u(h) = \Pi\left(u\overline{h}\right)$$
.

 H_u is an antilinear operator.

Hankel operators

$$\mathcal{H}^{2}(\mathbb{D}) = \{ u \in L^{2}(\mathbb{S}) : u(z) = \sum_{n=0}^{\infty} c_{n} z^{n}, \sum_{n=0}^{\infty} |c_{n}|^{2} < \infty \} ,$$

 $\Pi: L^2(\mathbb{S}) \longrightarrow \mathcal{H}^2(\mathbb{D})$ the Szegő projector,

Given $u \in \mathcal{H}^2(\mathbb{D})$ "smooth", define H_u on $\mathcal{H}^2(\mathbb{D})$ by

$$H_u(h) = \Pi\left(u\overline{h}\right)$$
.

A Hankel matrix on the Fourier side (non self-adjoint in general):

$$\begin{pmatrix} \hat{u}(0) & \hat{u}(1) & \hat{u}(2) & \dots \\ \hat{u}(1) & \hat{u}(2) & \dots & \dots \\ \hat{u}(2) & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots \end{pmatrix}$$

Smoothness properties

Well known:

- H_u is of finite rank iff u is a rational (holomorphic) function in \mathbb{D} (Kronecker 1881).
- H_u is Hilbert-Schmidt iff $u \in W^{1/2,2}(\mathbb{S})$

$$\sum_{j,k\geq 0} |\hat{u}(j+k)|^2 = \sum_{\ell\geq 0} (1+\ell) |\hat{u}(\ell)|^2 \simeq \|u\|_{W^{1/2,2}}^2.$$

- H_u belongs to the Schatten class of order p > 0 iff u belongs to the Besov space B_p (Peller/Semmes 1984).
- H_u is compact iff $u = \Pi(f)$, f continuous on \mathbb{S} equivalent to $u \in VMOA(\mathbb{S})$ (Hartman 1958).

Smoothness properties

In all cases (finite rank, Hilbert-Schmidt, Schatten, compact), H_u has a discrete spectrum which consists of the square-roots of the eigenvalues of H_u^2 .

Inverse spectral problem:

given a sequence of non-negative real numbers, does there exist a Hankel operator having this sequence as singular values?

The Megretski–Peller–Treil theorem

Theorem (Megretski-Peller-Treil, 1995)

If $(\lambda_j)_{j\geq 1}$ is the sequence of eigenvalues of some selfadjoint compact Hankel operator, then, for every $\lambda \in \mathbb{R} \setminus \{0\}$,

$$|\#\{j: \lambda_j = \lambda\} - \#\{j: \lambda_j = -\lambda\}| \le 1$$
.

Conversely, any sequence $(\lambda_j)_{j\geq 1}$ of real numbers satisfying the above condition and tending to 0 is the sequence of eigenvalues of some selfadjoint compact Hankel operator.

An example

Let
$$|p| < 1$$
, $v_p(z) = \frac{1}{1-pz} = \sum_{n \geq 0} p^n z^n$, $\alpha \in \mathbb{C}$ and $u = \alpha v_p$.

$$\operatorname{Mat} H_{u} " = " \alpha \begin{pmatrix} 1 & p & p^{2} & \dots \\ p & p^{2} & \dots & \dots \\ p^{2} & \dots & \dots \\ \vdots & \dots & \dots \end{pmatrix}$$

and the range of H_u is spanned by v_p .

An example

Let
$$|p| < 1$$
, $v_p(z) = \frac{1}{1-pz} = \sum_{n \geq 0} p^n z^n$, $\alpha \in \mathbb{C}$ and $u = \alpha v_p$.

$$H_u(v_p) = \frac{\alpha}{1-|p|^2}v_p; \ \ H_u^2(v_p) = \frac{|\alpha|^2}{(1-|p|^2)^2}v_p.$$

- If $\alpha, p \in \mathbb{R}$, H_u is self-adjoint and $\frac{\alpha}{1-p^2}$ is its eigenvalue. The knowledge of it does not allow to recover *u*.
- If $\alpha, p \in \mathbb{C}$, H_u has one singular value $\frac{|\alpha|}{(1-|p|^2)}$.

An example – continued

Add $K_u = H_u S = S^* H_u$ the shifted Hankel operator.

$$K_u(v_p) = S^* H_u(v_p) = \frac{\alpha p}{1 - |p|^2} v_p, \ K_u^2(v_p) = \frac{|\alpha p|^2}{(1 - |p|^2)^2} v_p.$$

- if $\alpha, p \in \mathbb{R}$, the knowledge of the eigenvalues of H_u and K_u allows to recover u.
- If $\alpha, p \in \mathbb{C}$, the arguments of α and p are lacking.

The inverse spectral result

- $\Omega_{\infty} = \{(s_n)_{n \geq 1}, s_1 > s_2 > \cdots > s_n \to 0\}$.
- $\mathcal{B} := \bigcup_{k=0}^{\infty} \mathcal{B}_k$, $\mathcal{B}_k :=$ Blaschke products of degree k.

Theorem (P. Gérard-S.G., 2013)

There exists a map

$$\Phi: VMOA(\mathbb{S}) \setminus \{0\} \rightarrow \bigcup_{n=1}^{\infty} \Omega_n \times \mathcal{B}^n \cup \Omega_{\infty} \times \mathcal{B}^{\infty}, u \mapsto ((s_i), (\Psi_i)),$$

 (s_j) being the sequence of singular values of H_u and K_u , in decreasing order, which is bijective. Moreover, explicit formula.

Generic subset

Symbols u corresponding to simple singular values are generic. In that case, the Blaschke products are just angles $\Psi = e^{i\psi}$:

- The singular values <u>intertwin</u>: (s_{2j-1}) are the simple singular values of H_u , (s_{2j}) are the ones of K_u .
- Let u_j be the orthogonal projection of u on $\ker(H_u^2 s_{2j-1}^2 I)$. Then $H_u(u_j) = s_{2j-1} e^{-i\psi_{2j-1}} u_j$.
- Let \tilde{u}_k be the orthogonal projection of u on $\ker(K_u^2 s_{2k}^2 I)$. Then $K_u(\tilde{u}_k) = s_{2k} e^{i\psi_{2k}} \tilde{u}_k$.

Example $u = \alpha v_p$, $v_p(z) = \frac{1}{1-pz}$, $s_1 = \frac{|\alpha|}{1-|p|^2}$, $s_2 = |p|s_1$

- Orthogonal projection of u on $\ker(H_{ii}^2 s_1^2 I) = \operatorname{span}\{v_p\}$: $U_{S_1}=U$. $H_{U}(u_{s_1}) = \frac{|\alpha|}{2} s_1 u_{s_1}; \frac{|\alpha|}{2} = e^{-i\psi_1}.$
- Orthogonal projection of u on $\ker(K_{ii}^2 s_2^2 I) = \operatorname{span}\{v_p\}$ $\tilde{u}_{s_0}=u$. $K_{U}(\tilde{u}_{s_2}) = s_2 \frac{\overline{\alpha}p}{|\alpha p|} \tilde{u}_{s_2}; \frac{\overline{\alpha}p}{|\alpha p|} = e^{i\psi_2}.$

Explicit formula

Let $s_1 > s_2 > \cdots > s_{2g-1} > s_{2g} \ge 0$. Introduce the $q \times q$ matrix

$$C(z) := \left(\frac{s_{2j-1}e^{i\psi_{2j-1}} - s_{2k}ze^{i\psi_{2k}}}{s_{2j-1}^2 - s_{2k}^2}\right)_{1 \le j,k \le q}.$$

Then, the matrix $\mathcal{C}(z)$ is invertible for any $z \in \mathbb{D}$ and

$$u(z) = \langle \mathcal{C}(z)^{-1}(\mathbf{1}), \mathbf{1} \rangle.$$

For infinite sequence, limiting procedure.

In our example,
$$C(z) = \frac{1-pz}{2}$$

Explicit formula

Let $s_1 > s_2 > \cdots > s_{2g-1} > s_{2g} \ge 0$. Introduce the $q \times q$ matrix

$$C(z) := \left(\frac{s_{2j-1}e^{i\psi_{2j-1}} - s_{2k}ze^{i\psi_{2k}}}{s_{2j-1}^2 - s_{2k}^2}\right)_{1 \le j,k \le q}.$$

Then, the matrix $\mathcal{C}(z)$ is invertible for any $z \in \mathbb{D}$ and

$$u(z) = \langle \mathcal{C}(z)^{-1}(\mathbf{1}), \mathbf{1} \rangle.$$

For infinite sequence, limiting procedure. In our example, $C(z) = \frac{1-pz}{2}$.

Link with cubic Szegö equation

The simultaneous consideration of operators H_{μ} and K_{μ} was suggested by the study of the equation

$$i\frac{\partial}{\partial t}u = \Pi(|u|^2u), \ u = u(t,z); \ t \in \mathbb{R}, \ z \in \mathbb{S}.$$

A Hamiltonian system on $\mathcal{H}^2(\mathbb{D})$ endowed with the symplectic structure $\omega(u, v) := \operatorname{Im} \int_{\mathbb{S}} u \overline{v} \frac{dx}{2\pi}$ for

$$E(u) = \frac{1}{4} \int_{\mathbb{S}} |u|^4 \frac{dx}{2\pi},$$

wellposed on $W^{s,2}(\mathbb{S})$, $s \geq \frac{1}{2}$. Conservation law: $\|H_u\|_{HS}^2 = \sum_{\ell} (1+\ell) |\hat{u}(\ell)|^2 \simeq \|u\|_{W^{1/2,2}(\mathbb{S})}^2$.

Link with cubic Szegö equation

The simultaneous consideration of operators H_u and K_u was suggested by the study of the equation

$$i\frac{\partial}{\partial t}u = \Pi(|u|^2u), \ u = u(t,z); \ t \in \mathbb{R}, \ z \in \mathbb{S}.$$

This system enjoys a double Lax pair structure,

$$\frac{dH_u}{dt} = [B_u, H_u] , \frac{dK_u}{dt} = [C_u, K_u] .$$

Consequence:

$$H_{u(t)} = U(t)H_{u(0)}U^*(t), \ \frac{dU}{dt} = B_uU,$$

analogous with $K_{u(t)}$.

Explicit solution

Theorem (P. Gérard-S.G., 2013)

Let $u_0 = \Phi((s_j), (\Psi_j))$ then the solution to the Szegő equation with initial datum u_0 denoted by $Z(t)u_0$ is given by

$$Z(t)u_0 = \Phi((s_i), (e^{i(-1)^j s_i^2 t} \Psi_i)).$$

The map Φ is a "non linear Fourier transform" for the cubic Szegő equation.

Regularity in the Sobolev scale

Let $\sigma=(s_r)$, (s_r) strictly decreasing to 0, with $\sum_{r=1}^{\infty} s_r^p < \infty$, for any p>0. Consider

$$\mathcal{T}(\sigma) = \{u, \ u = \Phi\left(\sigma, (e^{i\psi_j})\right), \ (e^{i\psi_j})_{j \ge 1} \in \mathbb{T}^\infty\}$$

From Peller/Semmes

$$\mathcal{T}(\sigma) \subset (\cap_{p>0} B_p).$$

What about Sobolev regularity? $B_2 \cap L^2(\mathbb{S}) = W^{1/2,2}$ but higher smoothness?

Regularity in the Sobolev scale

Let $\sigma=(s_r)$, (s_r) strictly decreasing to 0, with $\sum_{r=1}^{\infty}s_r^p<\infty$, for any p>0. Consider

$$\mathcal{T}(\sigma) = \{u, \ u = \Phi\left(\sigma, (e^{i\psi_j})\right), \ (e^{i\psi_j})_{j \ge 1} \in \mathbb{T}^{\infty}\}$$

Theorem (P. Gérard-S.G., 2017)

- $\exists \sigma$; $\mathcal{T}(\sigma)$ is unbounded in $W^{s,2}$ for any $s > \frac{1}{2}$ (may be it is neither included in it).
- If $s_{r+1} = \varepsilon_r s_r$, $\varepsilon_r \in [0, \delta]$, $\delta < 1$ small enough, $\mathcal{T}(\sigma)$ is bounded in the set of holomorphic functions on the disc of radius $1 + \rho$ for some $\rho > 0$.

Unboundedness in the Sobolev spaces: consequence on the Szegő dynamics

Theorem (P. Gérard-S.G., 2015)

The set of $u_0 \in C^\infty(\mathbb{S}) \cap \mathcal{H}^2(\mathbb{D})$ such that $\forall s > \frac{1}{2}$,

$$\limsup_{|t|\to+\infty}\|Z(t)u_0\|_{W^{s,2}}=+\infty$$

is a dense G_{δ} subset of $\mathcal{C}^{\infty}(\mathbb{S}) \cap \mathcal{H}^{2}(\mathbb{D})$.

Weak turbulence phenomenon!

Unboundedness in the Sobolev spaces: consequence on the Szegő dynamics

Theorem (P. Gérard-S.G., 2015)

The set of $u_0 \in C^{\infty}(\mathbb{S}) \cap \mathcal{H}^2(\mathbb{D})$ such that $\forall s > \frac{1}{2}$,

$$\limsup_{|t|\to+\infty} \|Z(t)u_0\|_{W^{s,2}} = +\infty$$

is a dense G_δ subset of $\mathcal{C}^\infty(\mathbb{S}) \cap \mathcal{H}^2(\mathbb{D})$.

In particular, there exists $u_0 \in \mathcal{C}^{\infty}(\mathbb{S}) \cap \mathcal{H}^2(\mathbb{D})$ with,

$$\forall s > \frac{1}{2} , \lim \sup_{|t| \to +\infty} \|Z(t)u_0\|_{W^{s,2}} = +\infty.$$

All these functions are in the same $\mathcal{T}(\sigma)$ for some σ .

Proof of the weak turbulence phenomenon

Consider

$$\mathcal{O}_{p} := \{u_{0} \in \mathcal{C}^{\infty}(\mathbb{S}) \cap \mathcal{H}^{2}(\mathbb{D}); \exists t_{p} > p, \quad \|Z(t_{p})u_{0}\|_{W^{1/2+1/p,2}} > p\}$$

- Wellposedness of Szegő: for any $p \ge 1$, \mathcal{O}_p is open.
- Density argument via explicit formula:

for any
$$p \ge 1$$
, \mathcal{O}_p is dense.

Baire category argument.

The density argument

Let $\nu_0\in\mathcal{C}^\infty(\mathbb{S})\cap\mathcal{H}^2(\mathbb{D}).$ By genericity, one may assume that

$$\Phi(v_0) = ((s_j)_{1 \le j \le 2q}, (e^{i\psi_j})_{1 \le j \le 2q})$$

for some q. One has to approximate v_0 by a function in \mathcal{O}_p . We construct $v_0^{\varepsilon,\delta}=$

$$\Phi\left((s_1,\ldots,s_{2q},\delta(1+\varepsilon),\delta,\delta(1-\varepsilon)),(e^{i\psi_1},\ldots,e^{i\psi_{2q}},1,1,-1)\right).$$
 CLAIM: $v_0^{\varepsilon,\delta}\to v_0$ and $v_0^{\varepsilon,\delta}\in\mathcal{O}_p$ for good choice of parameters.

4□ > 4□ > 4□ > 4□ > 4□ > 1□

A baby example with large Sobolev norm

$$s_1 = (1 + \varepsilon)$$
, $s_2 = 1$, $s_3 = (1 - \varepsilon)$
 $e^{i\psi_1} = 1$, $e^{i\psi_2} = 1$, $e^{i\psi_3} = -1$ (state 1) or 1 (state 2).

State 1

$$\left\langle \left(\begin{array}{cc} \frac{1+\varepsilon-z}{(1+\varepsilon)^2-1} & \frac{1}{1+\varepsilon} \\ \frac{-(1-\varepsilon)-z}{(1-\varepsilon)^2-1} & \frac{-1}{1-\varepsilon} \end{array}\right)^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{C}^2 \times \mathbb{C}^2} = \frac{2z(1-\varepsilon^2)+3\varepsilon}{2-\varepsilon z}$$

State 2

$$\left\langle \left(\begin{array}{cc} \frac{1+\varepsilon-z}{(1+\varepsilon)^2-1} & \frac{1}{1+\varepsilon} \\ \frac{(1-\varepsilon)-z}{(1-\varepsilon)^2-1} & \frac{1}{1-\varepsilon} \end{array}\right)^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{C}^2 \times \mathbb{C}^2} = \frac{2+\varepsilon^2-2z(1-\varepsilon^2)}{2-(2-\varepsilon^2)z}$$

CLAIM: "State 2" may be reached from "state 1" with Szegő.

A similar example

Start with the datum
$$u_0^{\varepsilon}(z) = z + \varepsilon$$
 then $Z(t)u_0^{\varepsilon}(z) = \frac{a^{\varepsilon}(t)z + b^{\varepsilon}(t)}{1 - p^{\varepsilon}(t)z}$ and $1 - |p^{\varepsilon}(t_n^{\varepsilon})| \sim \varepsilon^2$, $t_n^{\varepsilon} \sim \frac{(2n+1)\pi}{2\varepsilon}$.

$$\|Z(t_n^\varepsilon)u_0^\varepsilon(z)\|_{W^{s,2}}^2\sim \frac{1}{\varepsilon^{2(2s-1)}}\sim |t_n^\varepsilon|^{2(2s-1)},\ s>\frac{1}{2}.$$

Bounded analytic symbols: "geometrically spaced singular values"

Theorem (P. Gérard-S.G., 2017)

- 1 Let (ε_r) real numbers in $]0, \delta], \delta \in]0, 1[$. Assume $s_{r+1} = \varepsilon_r s_r$. Then, for δ sufficiently small, $\exists \rho > 0$, $u := \Phi\left((s_r), (e^{i\psi_r})\right)$ is analytic in the disc of radius $1 + \rho$, and is uniformly bounded in this disc for any choice of (ψ_r) .
- 2 Let h > 0 and $\theta \in \mathbb{R}$. There exists $\rho > 0$, so that the function $u := \Phi\left((\mathrm{e}^{-rh}), (\mathrm{e}^{\mathrm{i}r\theta h})\right)$ is analytic in the disc of radius $1 + \rho$, and is uniformly bounded in this disc.

Note: The second setting was suggested by J.P. Kahane.

Idea of proof : $s_{r+1} = \varepsilon_r s_r$, $0 \le \varepsilon_r \le \delta < 1$

Recall

$$\Phi((s_r), (e^{i\psi_r})) = \lim_{N \to \infty} u_N
u_N(z) := \langle \mathcal{C}_N(z)^{-1}(\mathbf{1}), \mathbf{1} \rangle
\mathcal{C}_N(z) = \left(\frac{s_{2j-1}e^{i\psi_{2j-1}} - zs_{2k}e^{i\psi_{2k}}}{s_{2j-1}^2 - s_{2k}^2} \right)_{1 \le j,k \le N}.$$

Estimate $C_N(z)^{-1}$ independently of N.

Idea of proof : $s_{r+1} = \varepsilon_r s_r$, $0 \le \varepsilon_r \le \delta < 1$

$$C_N(z) = \left(\frac{s_{2j-1}e^{i\psi_{2j-1}} - zs_{2k}e^{i\psi_{2k}}}{s_{2j-1}^2 - s_{2k}^2}\right)_{1 < j,k < N}.$$

For |z| = 1, it is a "Complex" Cauchy matrix

$$\left(\frac{a_j-b_k}{|a_j|^2-|b_k|^2}\right)_{1\leq j,k\leq N}$$

which coincides with the Cauchy matrix $\left(\frac{1}{a_j+b_k}\right)_{1\leq j,k\leq N}$ when a_j,b_k are real. Explicit formula for inverse of Cauchy matrices.

Idea of proof : $s_{r+1} = \varepsilon_r s_r$, $0 \le \varepsilon_r \le \delta < 1$

Write $C_N(z) = C_N(0) - z\dot{C_N}$ with $C_N(0)$ a Cauchy matrix. Hence,

$$\langle \mathcal{C}_N(z)^{-1}(\mathbf{1}),\mathbf{1}\rangle = \langle (I-z\mathcal{C}_N(0)^{-1}\dot{\mathcal{C}_N})^{-1}\mathcal{C}_N(0)^{-1},\mathbf{1}\rangle.$$

Establish $\|(\mathcal{C}_N(0)^{-1})(\mathbf{1})\|_{\ell^1} \leq C$. and prove $\|\mathcal{C}_N(0)^{-1}\dot{\mathcal{C}}_N\|_{\ell^1\to\ell^1} < \frac{1}{(1+\rho)}$ for δ small enough. $(u_N(z))_N$ defines a uniformly convergent sequence of bounded analytic functions on $|z| < 1 + \rho$.

Totally geometric case: $(s_r, \Psi_r) = (e^{-rh}, e^{ir\theta h})$.

Recall

$$C_N(z) = \left(\frac{s_{2j-1}e^{i\psi_{2j-1}} - zs_{2k}e^{i\psi_{2k}}}{s_{2j-1}^2 - s_{2k}^2}\right)_{1 \le j,k \le N}.$$

For $\omega = e^{-h(1-i\theta)}$

$$\mathcal{C}_{N}(z) = \left(\frac{\omega^{2j-1} - z\omega^{2k}}{|\omega|^{4j-2} - |\omega|^{4k}}\right)_{j,k=1}^{N} = \left(\frac{1}{\overline{\omega}^{2j-1}} \frac{1 - z\omega^{2(k-j)+1}}{1 - |\omega|^{4(k-j)+2}}\right)_{j,k=1}^{N}$$

$$= \left(\frac{1}{\overline{\omega}^{2j-1}} \varphi_{Z}(k-j)\right)_{j,k=1}^{N} \text{ a truncated Toeplitz matrix.}$$

Totally geometric case: $(s_r, \Psi_r) = (e^{-rh}, e^{ir\theta h})$.

$$C_N(z) = \left(\frac{1}{\overline{\omega}^{2j-1}}\varphi_z(k-j)\right)_{j,k=1}^N.$$

Hence

$$u_N(z) = <^t T_N(\varphi_z)^{-1}(\overline{\omega}^{2j-1}), (\mathbf{1}) >$$

where $T_N(\varphi_z)$ is the truncated Toeplitz matrix

$$\left(\frac{1-z\omega^{2(j-k)+1}}{1-|\omega|^{4(j-k)+2}}\right)_{i,k=1}^{N}=(\varphi_{z}(j-k))_{1\leq j,k\leq N}.$$

Totally geometric case: $(s_r, \Psi_r) = (e^{-rh}, e^{ir\theta h})$.

Use a theorem from Baxter (63):
The sequence of truncated Toeplitz matrices

$$T_N(\varphi) := (\varphi(j-k))_{1 \le j,k \le N}$$

is stable: $\sup_{N \geq N_0} \|T_N(\varphi)^{-1}\|_{\ell^2 \to \ell^2} < \infty$ iff $T(\varphi) : f \mapsto \Pi(\varphi f)$ is invertible on $\mathcal{H}^2(\mathbb{D})$ or iff

$$\varphi(\zeta) := \sum_{i=0}^{\infty} \varphi(i) \zeta^{i}$$

has index 0 and does not vanish on the unit sphere.

Invertibility of $T(\varphi_z)$

Recall
$$u_N(z)=<^t T_N(\varphi_z)^{-1}(\overline{\omega}^{2j-1}), (\mathbf{1})_{1\leq k\leq N}>$$
 where

$$\varphi_{\mathsf{Z}}(\zeta) = \sum_{\ell \in \mathbb{Z}} \frac{1 - \mathsf{Z}\omega^{2\ell+1}}{1 - |\omega|^{4\ell+2}} \zeta^{\ell}.$$

Lemma

- **1** There exists r < 1 close to 1, such that, the function $\zeta \mapsto \varphi_0(r\zeta)$ has index zero.
- 2 There exists $\rho > 0$ such that $\varphi_z(\zeta)$ does not vanish in a neighborhood of the circle $|\zeta| = 1$ for any $|z| < 1 + \rho$.

$arphi_0$ has index $I(R):=rac{1}{2i\pi}\int_{\mathcal{C}_R}rac{arphi_0'(\zeta)}{arphi_0(\zeta)}d\zeta=0$ for $R o 1^-$

$$\varphi_{0}(\zeta) = \sum_{j \in \mathbb{Z}} \frac{\zeta^{J}}{1 - \gamma^{2j+1}} = \sum_{\ell \in \mathbb{Z}} \frac{\gamma^{\ell}}{1 - \zeta \gamma^{2\ell}}, \ \gamma = |\omega|^{2}.$$

$$\varphi_{0}\left(\frac{1}{\zeta}\right) = -\zeta \varphi_{0}(\zeta), \ I(R) + I\left(\frac{1}{R}\right) = -1,$$

$$\varphi_{0}\left(\frac{\zeta}{\gamma^{2}}\right) = \gamma \varphi_{0}(\zeta), \ I(R\gamma^{2}) = I(R).$$

$$\varphi_{0}(\gamma^{2\ell+1}) = 0, \ \ell \in \mathbb{Z}.$$

The poles of φ_0 are $\gamma^{2\ell}$, $\ell \in \mathbb{Z}$.

I is valued in \mathbb{Z} , continuous on the intervals corresponding to circles avoiding the zeroes and the poles of φ_0 .

Technical point

$$C_{N}(z) = \left(\frac{r^{j}}{\overline{\omega}^{2j-1}} \frac{1 - z\omega^{2(k-j)+1}}{1 - |\omega|^{4(k-j)+2}} \frac{r^{k-j}}{r^{k}}\right)_{j,k=1}^{N}$$
$$= \left(\frac{r^{j}}{\overline{\omega}^{2j-1}} \varphi_{z}(k-j) \frac{1}{r^{k}}\right)_{j,k=1}^{N}.$$

Hence

$$u_N(z) = <^t T_N(\varphi_z^{(r)})^{-1} (r^{-j} \overline{\omega}^{2j-1}), (r^k)_{k=1}^N > 0$$

where $T_N(\varphi_z^{(r)})$ is the truncated Toeplitz matrix

$$\left(\frac{1-z\omega^{2(j-k)+1}}{1-|\omega|^{4(j-k)+2}}r^{j-k}\right)_{i,k-1}^{N}=\left(\varphi_{z}^{(r)}(j-k)\right)_{1\leq j,k\leq N}.$$

THANKS FOR YOUR ATTENTION!

BONNE FÊTE D'ANNIVERSAIRE GUY!