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Aim and motivation

@ Aim 1: Establish an inverse spectral result on compact
Hankel operator:
Given a sequence of non negative real numbers,
decreasing to 0, describe the set of compact Hankel
operators having this sequence as singular values.

@ Motivation: Allow to construct a non linear Fourier
transform for some model of a degenerate non-dispersive
Schrédinger equation: The cubic Szegd equation.

@ Aim 2: Understand the Sobolev regularity through this
transform.



Hankel operators

H2(D) = {u e L3(S chz Z cnl? < o0},

M: L3(S) — H2(D) the Szegd projector ,
Given u € H?(D) "smooth”, define H, on H?(D) by

Hy(h) = (uﬁ) .

Hy is an antilinear operator.



Hankel operators

H2(D) = {u € L3(S chz Z cnl? < o0},
M: L3(S) — H2(D) the Szegd projector ,
Given u € H?(D) "smooth”, define H, on H?(D) by
Hy(h) = (uﬁ) .
A Hankel matrix on the Fourier side (non self-adjoint in general):

(1) ()
2) ...



Smoothness properties

Well known:

@ H, is of finite rank iff u is a rational (holomorphic) function
in D (Kronecker 1881).

@ H, is Hilbert-Schmidt iff u ¢ W1/22(S)

Do lUG+K)E =D (1 +0IUOF = [l 2.

j,k>0 >0

@ H, belongs to the Schatten class of order p > 0 iff u
belongs to the Besov space B, (Peller/'Semmes 1984).

@ Hy is compact iff u = l1(f), f continuous on S— equivalent
to u € VMOA(S)- (Hartman 1958).



Smoothness properties

In all cases (finite rank, Hilbert-Schmidt, Schatten, com-
pact), H, has a discrete spectrum which consists of the
square-roots of the eigenvalues of H2.

Inverse spectral problem:
given a sequence of non-negative real numbers, does there ex-
ist a Hankel operator having this sequence as singular values?



The Megretski—Peller—Treil theorem

Theorem (Megretski—Peller—Treil, 1995)

If (\j)j>1 is the sequence of eigenvalues of some selfadjoint
compact Hankel operator, then, for every A € R\ {0},

[#U N =2 =#{: A==} <1

Conversely, any sequence ()\;);~1 of real numbers satisfying the
above condition and tending to 0 is the sequence of
eigenvalues of some selfadjoint compact Hankel operator.




An example

Let |p| <1, vp(2) = >0 P"2", € Cand u = avp.

_ 1
— 1-pz
p P
02

Mat H,” =" « 2

e e A

and the range of H, is spanned by vp.



An example

Let |p| <1, vp(2) Ym0 P"Z", a € Cand u = avp.

1
“A—pz —
’:’2

Fulve) = (ErEaa

1= R Hi(vp) =

@ If a,p € R, H, is self-adjoint and - 2 is its eigenvalue.
The knowledge of it does not aIIow to recover u.

|o

@ If o, p € C, H, has one singular value A



An example — continued

Add K, = H,S = S*H, the shifted Hankel operator.

. ap apl?
Ku(vp) = S*Hu(vp) = vav Ki(vp) = (1|_|;|2)2Vp-

@ if a, p € R, the knowledge of the eigenvalues of H, and K,
allows to recover u.

@ If o, p € C, the arguments of « and p are lacking.



Main result

The inverse spectral result

@ Qpi={sy>s2>--->8,>0} CR".
@ Q. ={(Sn)n>1,51 >8> >8,—0}.
® B := U Bk, Bi := Blaschke products of degree k.

Theorem (P. Gérard-S.G., 2013)

There exists a map

& VMOA(S) \ {0} — UX,Qpn x B"UQu x B>,
u = ((s): (¥y),

(sj) being the sequence of singular values of Hy, and Ky, in
decreasing order, which is bijective. Moreover, explicit formula.




Main result

Generic subset

Symbols u corresponding to simple singular values are generic.
In that case, the Blaschke products are just angles W = e/¥:

@ The singular values intertwin: (sp;_4) are the simple
singular values of Hy, (s;) are the ones of K,,.

@ Let u; be the orthogonal projection of u on
ker(HZ — s3;_/). Then Hy(yj) = sy 1e "2~ 1.

@ Let il be the orthogonal projection of u on ker(KZ — s3, /).
Then Ku(ak) = Sgke’75)2Kl':lk.



Main result

|

Example u = aVvp, vp(2) =

1 _ _
Tpz> S1 = Tpp> 52 = |p|s

@ Orthogonal projection of u on ker(H2 — s2/) = span{vp}:
Us1 = u.
Hy(us,) = %l31 Us,; % =e W1,

@ Orthogonal projection of u on ker(K2 — s5/) = span{Vvp}
Dsz = Uu. . B )
KU(”Sg) == SQ%USz; % == elwz.



Explicit formula

Explicit formula

Let sy > sp > -+ > Spq_1 > Spq > 0. Introduce the g x g matrix

So ._1ei¢2j71 _ Sngeiwk
C(z) = ( / .
1<),k<q

2 2
S5j 1 — Sok

Then, the matrix C(z) is invertible for any z € D and

For infinite sequence, limiting procedure.



Explicit formula

Explicit formula

Let sy > sp > -+ > Spq_1 > Spq > 0. Introduce the g x g matrix

So ._1ei¢2j71 _ Sngeiwk
C(z) = ( / .
1<),k<q

2 2
S5j 1 — Sok

Then, the matrix C(z) is invertible for any z € D and

For infinite sequence, limiting procedure.
In our example, C(z) = ==,

«




The cubic Szeg6 equation

Link with cubic Szeg6 equation

The simultaneous consideration of operators H, and K, was
suggested by the study of the equation

/%u— N(julu), u=u(t,z); teR, z€S.

A Hamiltonian system on 7—[2( ) endowed with the symplectic
structure w(u, v) == Im [, uvZ for

1 4 dx
AL

wellposed on WS2(S), s > 1.
Conservation law: [|Hy|[%,s = 3=,(1+ 00O = [[ulf1 22,



The cubic Szeg6 equation

Link with cubic Szeg6 equation

The simultaneous consideration of operators H, and K, was
suggested by the study of the equation

i%u: N(julu), u=u(t,z); teR, z€S.

This system enjoys a double Lax pair structure,

dH, K

d
dt - [BU7 HU] 9 Ttu — [CU7 KU] .
Consequence :
y du
Huy = U()Huo) U"(1), 5 = BuU,

analogous with Ky(s).



The cubic Szeg6 equation

Explicit solution

Theorem (P. Gérard-S.G., 2013)

Let up = ®((s;), (V})) then the solution to the Szegb equation
with initial datum uy denoted by Z(t)uy is given by

Z(tuo = o((s), ('Twy)).

The map @ is a "non linear Fourier transform” for the cubic
Szegb equation.



Sobolev regularity

Regularity in the Sobolev scale

Let o = (s/), (s;) strictly decreasing to 0, with >°°°, sf < oo, for
any p > 0. Consider

T(0) = {u, u=0(0,(")), ()21 € T}
From Peller/Semmes

What about Sobolev regularity? B, N L2(S) = W1'/22 but higher
smoothness?



Sobolev regularity

Regularity in the Sobolev scale

Let o = (s/), (s;) strictly decreasing to 0, with >°°°, sf < oo, for
any p > 0. Consider

T(0) = {u, u=0(0,(")), ()21 € T}

Theorem (P. Gérard-S.G., 2017)

@ 3o; T (o) is unbounded in W2 for any s > % (may be it is
neither included in it).

@ Ifs, 1 =¢erSr, e €]0,6], 5 <1 small enough,
T (o) is bounded in the set of holomorphic functions on the
disc of radius 1 + p for some p > 0.

v




Sobolev regularity

Unboundedness in the Sobolev spaces:

consequence on the Szegod dynamics

Theorem (P. Gérard-S.G., 2015)
The set of uy € C*°(S) N'H3(D) such thatVs > 1

limsup || Z(t)uo|| sz = +00
|t|—+o00

is a dense Gs subset of C*°(S) N H2(D).

Weak turbulence phenomenon!



Sobolev regularity

Unboundedness in the Sobolev spaces:

consequence on the Szegod dynamics

Theorem (P. Gérard-S.G., 2015)
The set of uy € C*°(S) N'H3(D) such thatVs > 1

limsup || Z(t)uo|| sz = +00
|t|—+o00

is a dense Gs subset of C*°(S) N H2(D).

In particular, there exists uy € C>(S) N H?(D) with,

1
Vs > — | limsup | Z(t)ugl| sz = +oo.
2 |t—oo

All these functions are in the same 7 (o) for some o.



Sobolev regularity

Proof of the weak turbulence phenomenon

Consider

Op = {Up € CX(S)NHAD); Wy >p. [ Z(to)Uollwrszs e > P}

@ Wellposedness of Szegd: forany p > 1, Op is open.
@ Density argument via explicit formula:

forany p> 1, Opis dense.

@ Baire category argument.



Sobolev regularity

The density argument

Let vp € C*(S) N H?(D). By genericity, one may assume that

d(vo) = ((8)1<j<2q> (¢")1<j<2q)

for some q. One has to approximate v, by a function in O,. We
construct v§’5 =

O ((S1,...,52q,0(1 +2).0,6(1—¢)), (e"1,...,eM2a,1,1,-1)).
CLAIM: v§’5 — Vo and vg’(S € Op for good choice of parameters.



Sobolev regularity

A baby example with large Sobolev nhorm

S1=(1+8),Sg = 1,33:(1—8)

eV =1 V2 = 1 Vs =_1 (state 1) or 1 (state 2) .

State 1
_ —1

<( A T ) (1) <1>> C27(1 - €?) + 3¢

—(1—¢)—2z -1 ’ - _

[(== = N AV o a-ez
State 2

e —1
<( Gt T ) (1) (1)> 242 22(1 -2
(1—8)—2 1 ) -
(1—e)2-1 1—¢ 1 1 C2x(C2 2- (2 o 82)2

CLAIM: "State 2” may be reached from "state 1” with Szego.



Sobolev regularity

A similar example

Start with the datum u5(2) = z + = then Z(t)ug(z) = 0200

—p=(t)z
2n+1)m
and 1 — |7 (t;)] ~ €2, £ ~ E0".

1
1Z(t5)u5(2) s ~ 2Es1) 5P, s >



Sobolev regularity

Bounded analytic symbols: "geometrically spaced
singular values”

Theorem (P. Gérard-S.G., 2017)

Q Let (er) real numbers in|0, 4], 6 €]0,1[. Assume
Sri1 = erSr. Then, for § sufficiently small, 3p > 0,
u:= & ((sr),(e"¥r)) is analytic in the disc of radius 1 + p,
and is uniformly bounded in this disc for any choice of ().
©Q Leth >0 andf cR. There exists p > 0, so that the
function u := & ((e=™), (e™")) is analytic in the disc of
radius 1 + p, and is uniformly bounded in this disc.

Note: The second setting was suggested by J.P. Kahane.



Sobolev regularity

Idea of proof: s, 1 =¢5, 0<¢, <6< 1

Recall
o((sr), () = Jim_uy
un(z) = (Cn(2)7'(1),1)
2j—1 "~ 2k 1< k<N

Estimate Cy(z)~' independently of N.



Sobolev regularity

Idea of proof: s, 1 =¢5, 0<¢, <6< 1

C (z) - 32]‘,161.11)2/'_1 — ZSgkeink
N <) = 2 . 5,2 '
2j—1 "~ 92k 1<j k<N

For |z| =1, itis a "Complex” Cauchy matrix

(t=57)
|2 2
|aj[* — | bkl 1<j,k<N

which coincides with the Cauchy matrix <ﬁ>1<'k<N when
_j‘, —

a;, by are real. Explicit formula for inverse of Cauchy matrices.



Sobolev regularity

Idea of proof: s, 1 =¢5, 0<¢, <6< 1

Write Cy(z) = Cn(0) — zCy with Cy(0) a Cauchy matrix.
Hence,

(Cn(2)71(1),1) = (1 — 2Cn(0)"Cn) TN (0) 1),

Establish |[(Cn(0)~")(1)],+ < C.
and prove [Cn(0) 'Cnllsit < (31, for & small enough.
(un(2))n defines a uniformly convergent sequence of bounded
analytic functions on |z| < 1 + p.



Sobolev regularity

Totally geometric case: (s, V,) = (e ", e"").

Recall
32j—1eiw2/_1 — z8pielY2k
Cn(z) = R :
2j=1 7 2k 1<j.k<N
For w — e~(1=10)
. N . N
Cn(2) < AT = 2w 11—zt
n2) =\ am ek =\ == Hhj)+2
w|M= — |w P =11 — |w|4(k=)+
| ’ ‘ | ],k—1 w ’ ‘ j,k:1

N
= <21-_1<pz(k —j)> a truncated Toeplitz matrix.
ws jok=1



Sobolev regularity

Totally geometric case: (s, V,) = (e ", e"").

N
e = (grreth-n)
/’:

Hence
un(2) =<' Tn(e2) '@ 1), (1) >

where Ty(¢7) is the truncated Toeplitz matrix

: N
1 — zw2U—k)+1 .
(1_|w\4(/k)+2 = (z(/ = K))1<jk<n -

k=1



Sobolev regularity

Totally geometric case: (s, V,) = (e ", e"").

Use a theorem from Baxter (63):
The sequence ot truncated Toeplitz matrices

Tn(p) = (p(j — k))1§j,k§N
is stable: supysn, [ Tn(e) ' le_ye < o0

iff T(p) : f s MN(pf) is invertible on H?(D)
or iff

0(¢) => ()¢
j=0

has index 0 and does not vanish on the unit sphere.



Sobolev regularity

Invertibility of T(y,)

Recall un(2) =<! Tn(pz) ' (@% 1), (1)1<k<n >
where o011
1 — Zw v
vz(¢) = 1Pz
tez

@ There exists r < 1 close to 1, such that, the function
¢ — @o(r¢) has index zero.

© There exists p > 0 such that ¢,(¢) does not vanish in a
neighborhood of the circle |(| = 1 forany |z| < 1+ p.




Sobolev regularity

©o has index I(R) = 217 fCR iggg

(PO(C) = Z.I 2j+1 Z.I C o0 1= ‘w’.?.

Jjez

w(2) = o0 1R +1(5) = 1.
o0 (j;) — e0(0), I(R?) = I(R).

po(v**1) = 0, teZ.
The poles of ¢g are v2¢, ¢ € Z.
l'is valued in Z, continuous on the intervals corresponding to

circles avoiding the zeroes and the poles of .



Sobolev regularity

Technical point

N R T Rl s N
nz) = @211 — |w[4k-)+2 rk
k=1

rl Y
B (wzj_ﬁpz(k _j)rk>j,k_1 '
Hence
un(2) =<' Tn(eD) 1 (r @1, (FN, >
where TN(cpgr)) is the truncated Toeplitz matrix

. N
1— sz(/_k)+1 )
j—k _ (D
<1 —|w|4(/fk)+2r e (cpz Y k))1gj,ng'



Sobolev regularity

THANKS FOR YOUR ATTENTION!



Sobolev regularity

on ViENLLT
%S Fois

BONNE FETE D’ANNIVERSAIRE GUY!
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