The Dirichlet problem for sets with higher co-dimensional boundaries

Joseph Feneuil

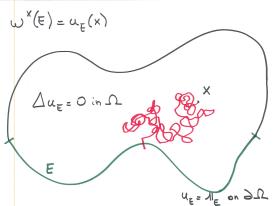
October 5, 2017

Joint work with Guy David, Svitlana Mayboroda and Zihui Zhao

Definition (Harmonic measure)

Let $\Omega \subset \mathbb{R}^n$ open connected bounded, $x \in \Omega$ and $E \subset \Gamma := \partial \Omega$.

- $\omega^{x}(E)$ = probability that a particule issued at x and subject to Brownian motion goes outside of Ω through E.



Question: When is ω^x is \mathcal{A}^{∞} -absolutely continuous with respect to the surface measure $\sigma = \mathcal{H}^{n-1}|_{\partial\Omega}$?

Answers: $\Omega \subset \mathbb{R}^n$

- ▶ Dahlberg (1977): $\partial\Omega = \Gamma$ is a Lipschitz graph $\Rightarrow \omega^x \in \mathcal{A}^{\infty}(\sigma)$.
- ▶ David, Jerison, Semmes (1990), Hofmann, Martel (2014): Ω is uniform/NTA, $\partial \Omega = \Gamma$ uniformly rectifiable $\Rightarrow \omega^x \in \mathcal{A}^\infty(\sigma)$.
 - $\stackrel{\hookrightarrow}{\hookrightarrow} \left| \begin{array}{c} \text{Corkscrew balls (quantitative openness)}. \\ \text{Harnack chains (quantitative connectedness)}. \end{array} \right|$
 - \hookrightarrow quantitative rectifiability; Γ rectifiable if $\sigma(\Gamma \setminus \bigcup f_i(\mathbb{R}^d)) = 0$, where f_i are Lipschitz.
- ▶ Bishop, Jones (1990): connectedness is necessary.
- ► Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, Volberg (2015): rectifiability is necessary.

Question: Can we ask the same question when $\Gamma \subset \mathbb{R}^n$ - and $\Omega = \mathbb{R}^n \setminus \Gamma$ - is of dimension d < n-1, and t?

Problem: If Γ is of dimension d < n-1, there is no harmonic measure (as defined in the first slide) for Γ . Indeed, Brownian travelers do not see the sets of higher codimension. In terms of weak solutions, the condition

$$\int \nabla u \cdot \nabla v = 0 \qquad \forall v \in C_0^{\infty}(\mathbb{R}^n \setminus \Gamma)$$

implies the a priori stronger condition

$$\int \nabla u \cdot \nabla v = 0 \qquad \forall v \in C_0^{\infty}(\mathbb{R}^n);$$

which means that the only (weak) solution of $\Delta u = 0$ in $\mathbb{R}^n \setminus \Gamma$ that decays at ∞ is $u \equiv 0$.

Idea: The elliptic operator $-\Delta$ is not adapted to the higher codimension. So we replace $-\Delta$ by L and we find out how L looks like.

If $\Gamma = \mathbb{R}^d \subset \mathbb{R}^n$. We expect the 'good' solution u of

$$\begin{cases} Lu = 0 & \text{in } \mathbb{R}^n \setminus \mathbb{R}^d \\ u = g & \text{on } \mathbb{R}^d. \end{cases}$$

to be given by $u(x, t) = u_0(x, |t|)$, where

$$\begin{cases} -\Delta u_0 = 0 & \text{in } \mathbb{R}^{d+1}_+ \\ u_0 = g & \text{on } \mathbb{R}^d. \end{cases}$$

We find

$$L:=-\operatorname{div}|t|^{d+1-n}\nabla.$$

Elliptic theory

Let d < n-1 and set $\delta_{\Gamma}(x) := \operatorname{dist}(x, \Gamma)$.

Let Γ be an *d*-dimensional ADR set, that is for $x \in \Gamma$ and r > 0,

$$C^{-1}r^d \leq \sigma(B_{\Gamma}(x,r)) \leq Cr^d$$
.

where $\sigma := \mathcal{H}^d|_{\Gamma}$. We take the degenerated elliptic operator

$$L = -\mathrm{div}A(x)\nabla$$

where A(x) is a $n \times n$ matrix with measurable coefficients and satisfying:

- ▶ $A(x)\xi \cdot \xi \ge C^{-1}\delta_{\Gamma}(x)^{d+1-n}$ for $x \in \Omega := \mathbb{R}^n \setminus \Gamma$ and $\xi \in \mathbb{R}^n$,
- ▶ $|A(x)\xi \cdot \zeta| \le C\delta_{\Gamma}(x)^{d+1-n}$ for $x \in \Omega$ and $\xi, \zeta \in \mathbb{R}^n$.

Theorem (2017)

We can develop an elliptic theory for L: Trace & Extension theorems; De Giorgi-Nash-Moser estimates inside the domains and at the boundary; comparison principle; definition of the harmonic measure and Green's function.

Take d be an integer such that d < n-1. Now, Γ is the graph of a Lipschitz function $\varphi : \mathbb{R}^d \to \mathbb{R}^{n-d}$, and $\Omega = \mathbb{R}^n \setminus \Gamma$. We set

$$L = -\mathrm{div}D(x)^{d+1-n}\nabla,$$

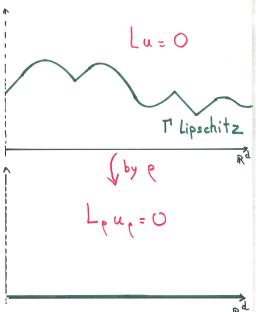
where

$$D(x) := \left(\int_{\Gamma} |x - y|^{-d - \alpha} d\sigma(y) \right)^{-\frac{1}{\alpha}},$$

for some $\alpha > 0$. Observe that $D(x) \approx \delta_{\Gamma}(x)$.

Theorem (2017)

If Γ has a small Lipschitz constant, then the harmonic measure $\omega^{\mathsf{x}} := \omega_{\Omega,L}^{\mathsf{x}}$ is \mathcal{A}^{∞} -absolutely continuous with respect to the Hausdorff measure σ .



The choice of the change of variable ρ gives $L_{\rho}=-\operatorname{div}A_{\rho}\nabla$.

We want to choose ρ such that we can handle A_{ρ} .

Caffarelli, Fabes, Kenig (1981): there exists A such that $\omega^x \notin A^{\infty}(\sigma)$.

Can we take the same change of variable as in codimension 1?

Let $\Gamma = \varphi(\mathbb{R}^d)$, where φ is Lipschitz function.

▶ Dahlberg (1977), Jerison, Kenig (1981):

$$\rho(x,t)=(x,t+\varphi(x))$$

In this case, $A_{\rho}(x,t) = A_{\rho}(x)$ is *t*-independent and symmetric. \hookrightarrow Rellich identity

$$\hookrightarrow \left(\oint_{\Delta} k^2 d\sigma \right)^{\frac{1}{2}} \leq C \oint_{\Delta} k d\sigma$$
, where $k = k^{\times} := \frac{d\omega^{\times}}{d\sigma}$.

Pb: In codimension higher than 1, $|A(x,t)| \equiv |t|^{d+1-n}$, so it cannot be *t*-independent.

Can we take the same change of variable as in codimension 1?

Let $\Gamma = \varphi(\mathbb{R}^d)$, where φ is Lipschitz function.

► Kenig, Pipher (2001) used a transformation discovered by Dahlberg, Kenig and Stein:

$$\rho(x,t) = (x,ct + \theta_t * \varphi(x))$$

 $\hookrightarrow t \nabla A_{\rho}$ satisfies the Carleson Measure condition (CM).

In higher codimension, we need an isometry in t

$$A_{\rho} = \begin{pmatrix} \dots & \dots \\ \dots & bI_{n-d} \end{pmatrix}.$$

Can we take the same change of variable as in codimension 1?

Let $\Gamma = \varphi(\mathbb{R}^d)$, where φ is Lipschitz function.

► Kenig, Pipher (2001) used a transformation discovered by Dahlberg, Kenig and Stein:

$$\rho(x,t) = (x,ct + \theta_t * \varphi(x))$$

 $\hookrightarrow t \nabla A_{\rho}$ satisfies the Carleson Measure condition (CM).

In higher codimension, we need an isometry in t

$$A_{\rho} = \begin{pmatrix} \dots & \dots \\ \dots & bI_{n-d} \end{pmatrix}.$$

• u satisfies the Carleson Measure condition if $|u(y,s)|^2 \frac{dy \, ds}{|s|^{n-d}}$ is a Carleson measure.

Can we take the same change of variable as in codimension 1?

Let $\Gamma = \varphi(\mathbb{R}^d)$, where φ is Lipschitz function.

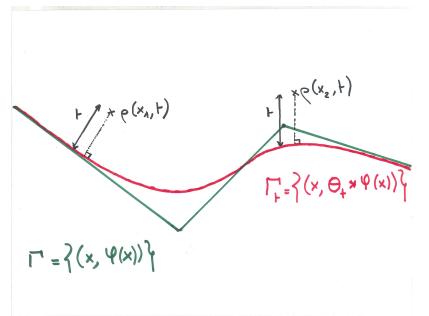
We have

$$D(X)^{d+1-n} \xrightarrow{\rho^{-1}} |t|^{d+1-n} \underbrace{\lambda(x,t)}_{\text{need to be link to CM}}$$

We want $\lambda - 1$ to satisfy the Carleson Measure condition.

The function $X \to D(X)$ needs to be smooth enough, that is why $D(X) = \delta_{\Gamma}(X)$ doesn't work (except when d = 1).

Our change of variable



- ▶ The change of variable ρ is new (even in codimension 1).
- ▶ We can treat a new class of operators (even in codimension 1).
- ightharpoonup
 ho is built only when Γ has a small Lipschitz constant.
- $ightharpoonup A_{\rho}$ has the form

$$|t|^{n-d-1}A_{\rho} = \begin{pmatrix} \mathcal{A}^1 & \mathcal{C}^2 \\ \mathcal{C}^3 & bl_{n-d} + \mathcal{C}^4 \end{pmatrix},$$

where C^2 , C^3 , C^4 and $|t|\nabla b$ satisfies CM.

We use Carleson measure estimates on solutions to get \mathcal{A}^{∞} , by using ideas from

- Kenig, Koch, Pipher, Toro (2000),
- Dindoš, Petermichl, Pipher (2015),
- Kenig, Kirchheim, Pipher, Toro (2016).

• u satisfies the Carleson Measure condition $CM(\epsilon)$ if

$$\sup_{B} \int_{y \in B} \int_{|s| \le r_B} |u(y, s)|^2 \frac{dy \, ds}{|s|^{n-d}} \le \epsilon |r_B|^d,$$

where the supremum is taken over all the boundary balls $B := B(x, r_B)$.

▶ If A has the form

$$|t|^{n-d-1}A = \begin{pmatrix} \mathcal{A}^1 & \mathcal{A}^2 \\ \mathcal{C}^3 & bI_{n-d} + \mathcal{C}^4 \end{pmatrix},$$

where \mathcal{C}^3 , \mathcal{C}^4 and $|t|\nabla b$ satisfies CM, then for any L-harmonic extension u_g of a continuous function g bounded by 1, we have

$$|t|\nabla u_g \in CM(C_L). \tag{*}$$

▶ If *L* is such that (*) is satisfied, then $\omega^{\mathsf{x}} \in \mathcal{A}^{\infty}(\sigma)$.

Result:
$$\omega_L^x \in \mathcal{A}^\infty(\sigma) \Leftrightarrow (\mathsf{D}_p)$$
 is solvable for some large p . $\Leftrightarrow k^x = \frac{d\omega^x}{d\sigma} \in \mathcal{B}^q$ for some small $q > 1$.

We say that the Dirichlet problem (D_p) is solvable if for any $g \in C_0^{\infty}(\mathbb{R}^d)$, there exists a unique solution u satisfying

$$\begin{cases} Lu = 0 & \text{in } \mathbb{R}^n \setminus \Gamma \\ u = g & \text{on } \Gamma \\ \|N(u)\|_p \le C\|g\|_p < +\infty. \end{cases}$$

Here,
$$N(u)(x) := \sup_{(y,s) \in \gamma(x)} |u(y,s)|,$$

and $\gamma(x) = \gamma(x', \varphi(x'))$
 $= \{(y,s) \in \mathbb{R}^n \setminus \Gamma : |y-x| \le a|s-\varphi(x)|\}.$

Dirichlet problem in codimension 1:

- ▶ Dahlberg (1977): (D_p) , $p \ge 2$, for the Laplacian.
- ▶ Jerison, Kenig (1981): (D_p), $p \ge 2$, for symmetric t-independent operators.
- ▶ Kenig, Koch, Pipher, Toro (2000) and Kenig, Pipher (2001): (D_p) for some $p < +\infty$ if $L = -\operatorname{div} A\nabla$ is such that $r\nabla A$ satisfies CM.
- ▶ Dindoš, Petermichl, Pipher (2007): (D_p) for any $p \in (1, +\infty)$ if Γ has small Lipschitz constant and $L = -\operatorname{div} A\nabla$ is such that $\delta_{\Gamma} \nabla A$ satisfies $CM(\epsilon)$ with $\epsilon = \epsilon(p)$ small.
- ▶ Dindoš, Pipher (2017, preprint): extension to the case where *A* has complex coefficients.

What is needed to get (D_p) for all $p \in (1, +\infty)$:

- a small Lipschitz constant for the boundary Γ.
- ▶ small oscillations, for instance $\delta_{\Gamma}\nabla A$ satisfies $CM(\epsilon)$ with small ϵ .

In codimension higher than 1, we had:

Theorem

Assume that $L=-{
m div}A\nabla$ is an operator on $\mathbb{R}^n\setminus\mathbb{R}^d$ satisfying the weighted elliptic conditions and such that

$$|t|^{n-d-1}A = \begin{pmatrix} A^1 & A^2 \\ C^3 & b.I_{n-d} + C^4 \end{pmatrix},$$

where C^3 , C^4 , $|t|\nabla b$ satisfies CM.

Then, for some $p < +\infty$, (D_p) is solvable.

We proved

Theorem

Assume that $L=-{
m div}A
abla$ is an operator on $\mathbb{R}^n\setminus\mathbb{R}^d$ satisfying the weighted elliptic conditions and such that

$$|t|^{n-d-1}A=\left(egin{array}{cc} \mathcal{A}^1 & \mathcal{A}^2 \ \mathcal{B}^3+\mathcal{C}^3 & b.I_{n-d}+\mathcal{C}^4 \end{array}
ight),$$

where C^3 , C^4 , $|t|\nabla B^3$, $|t|\nabla b$ satisfies $CM(\epsilon)$.

Then, for any $1 , if <math>\epsilon$ is small enough, (D_p) is solvable.

Ideas for the proof

Similarly to Dindoš, Petermichl, Pipher (2007), we introduce the p-adapted square functional $S_p(u)$ defined on \mathbb{R}^d by

$$S_p(u)(x) = \left(\iint_{(y,s)\in\gamma(x)} |\nabla u|^2 |u|^{p-2} \frac{dy \, ds}{|s|^{n-2}} \right)^{\frac{1}{p}},$$

and we prove

- 1. $||S_2(u)||_p \le C||N(u)||_p^{1-p/2}||S_p(u)||_p^{p/2}$ for any $p \in (1,2]$,
- 2. $||N(u)||_p \le C_{\epsilon} ||S_2(u)||_p$ for any p > 0,
- 3. $||S_p(u)||_p \le C ||\operatorname{Tr} u||_p + C\epsilon^{\frac{1}{p}} ||N(u)||_p$ for any p > 1.

Now, 1 and 2 gives that

4. $||N(u)||_p \le C_{\epsilon} ||S_p(u)||_p$ for any $p \in (1, 2]$.

Besides, 3 and 4 implies that,

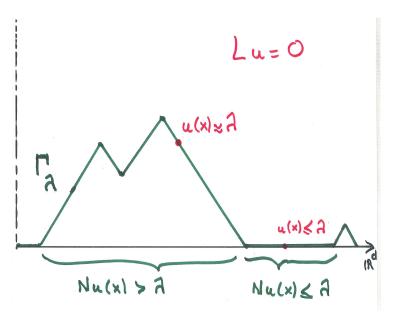
5. $||N(u)||_p \le C_{\epsilon} ||\operatorname{Tr} u||_p + \epsilon^{1/p} C_{\epsilon} ||N(u)||_p$ for any $p \in (1, 2]$.

Comments:

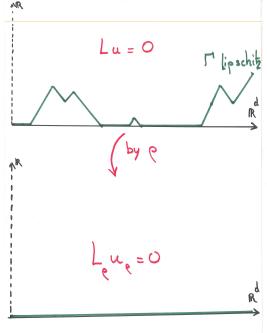
- We actually prove local estimates (new even in codimension 1).
- \triangleright S_p is a good intermediate for computation, since

$$||S_p(u)||_p^p = \iint_{(y,s)\in\mathbb{R}^n} |\nabla u|^2 |u|^{p-2} \frac{dy ds}{|s|^{n-2}}.$$

▶ We only established that (D_p) is solvable for $p \in (1,2]$. However, by the maximum principle, the solvability of (D_p) implies the one of (D_q) for q > p.

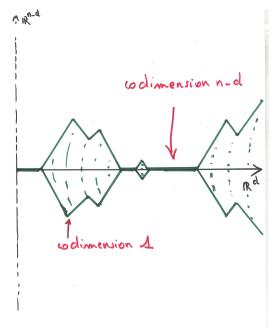


At some point, we need to work with saw-tooth domains.



In codimension 1,

we use a change of variable to come back to the case where the boundary is \mathbb{R}^d .



In higher codimension,

Saw tooth domains have mixed codimensions boundaries, and the solutions are not radially invariant,

- \hookrightarrow there is no way to flatten,
- \hookrightarrow we had to prove the estimates directly.

Elliptic operators with complex coefficients.

▶ We say that the Dirichlet problem (D_p) is solvable if for any $g \in C_0^{\infty}(\mathbb{R}^d, \mathbb{C})$, there exists a unique solution u satisfying

$$\begin{cases} Lu = 0 & \text{in } \mathbb{R}^n \setminus \mathbb{R}^d \\ \operatorname{Tr} u = g & \text{on } \mathbb{R}^d \\ \|\widetilde{N}(u)\|_p \le C \|g\|_p < +\infty, \end{cases}$$

where

$$\widetilde{N}(u)(x) := \sup_{X \in \gamma(x)} \left(\int_{B_{\delta(X)/2}(X)} |u|^2 \right).$$

▶ We say that $L = -\operatorname{div} A\nabla$ is p-elliptic if there exists $\lambda_p > 0$ such that

$$\lambda_p |t|^{n-d-1} |\xi|^2 \le \mathcal{R}e \langle A\xi, \mathcal{J}_p \xi \rangle$$
 for $\xi \in \mathbb{C}^n$,

where
$$\mathcal{J}_p(\alpha + i\beta) = \frac{1}{p}\alpha + \frac{i}{p'}\beta$$
.

Theorem

Let $p \in (1, +\infty)$. Assume that $L = -\mathrm{div} A \nabla$ is a weighted p-elliptic operator and such that

$$|t|^{n-d-1}A = \begin{pmatrix} A^1 & A^2 \\ B^3 + C^3 & b.I_{n-d} + C^4 \end{pmatrix},$$

where

- \triangleright \mathcal{B}^3 , b are real valued,
- $ightharpoonup C^3$, C^4 , $|t|\nabla B^3$, $|t|\nabla b$ satisfies $CM(\epsilon)$.

Then, if ϵ is small enough, the Dirichlet problem (D_p) is solvable.

Comment: since the maximum principle doesn't hold here, contrary to the real case, the solvability of (D_p) for p > 2 doesn't follow from (D_2) .

Thank you for your attention.