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POLYNOMIAL GROWTH MEASURES

o A measure 1 on RY has n-polynomial growth, 0 < n < d, if:

w(B(x, 1) < "

@ A polynomial measure may be doubling. Example: Lebesgue
measure on RY.

@ It may also be nondoubling. Example: Hausdorff measure
H"| A on a sufficiently bad A. However, there are always many
(c, B)-doubling balls, that is, balls B such that

n(aB) < Bu(B)

(5 needs to be large enough wrt «).
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A RESULT BY DAVID AND MATTILA

A compact set E C C is removable for Lipschitz harmonic
functions if whenever U D E open, u: U — R is a Lipschitz
function which is harmonic in U\ E then v is harmonic in U.

THEOREM (G. DAVID -HAPPY BIRTHDAY-, P. MATTILA "00)

Let £ C C be compact with H!|g < co. Then E is removable for
Lipschitz harmonic functions if and only if E is purely unrectifiable.

@ The proof requires the construction (and handling) of a
1-polynomial measure on a possibly wild set.

@ The handling requires the introduction of a filtration that
plays the role of the dyadic cubes.
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IN THE PROOF: A DIFFERENT DYADIC LATTICE

Fix 5 > 2009 and A very large.

PROPOSITION (G. DAVID -JOYEUX ANNIVERSAIRE-, P. MATTILA

'00)

There is a sequence Z = { P }k>o of nested partitions of E = supp(u)
s.t:

@ For each Q € %, there exists a ball Bg with r(Bg) ~ A~ and
ENBg C Q C EN50B.

© The sets Q have small boundaries.
@ Each Q € 7 is either (200, 3)-doubling or r(Bg) = A~ and

p(100Bg) < B~n(100Bg), (£ > 1, 100° < B).

Rmk: (3) means that between consecutive doubling cubes Q and R in 2,
1

/ ———du(x) S 1.
100Bk\100Bq |x — Bl
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CZ THEORY FOR POLYNOMIAL MEASURES

Calderén-Zygmund operators: L?(y) bounded linear operators T
s.t.

TF(x) ~ / K(x. y)F(y)du(y).

e Size condition adapted to the growth of u: |K(x,y)| < ﬁ
@ Smoothness: Lipschitz condition (say).
o Examples:

o Cauchy transform:

C.f(z) = p.V./

cZ—

o Riesz transform:

Ruf(x) =p.v. /Rd ﬁf(y)du(y)-
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PROBABILISTIC POINT OF VIEW

Back to Lebesgue measure and usual dyadic grid Z for a second.
e Dyadic BMO is easier to understand than BMO (and even
more powerful — easier interpolation, for example).
o Dyadic BMO is a martingale BMO space, with the family of
conditional expectations given by

Exf(x) = ) (Fole(x),

QEDy
and norm |If|[BMo = sup||Ex|f — Ek—1f|||oo
k

~ sup ||Ex|f — Exfl]|,, , because
K

the Lebesgue measure is diadically doubling (|Q| ~ |§])
—

The filtration Z is regular: Ex|f| S Ex—1|f].
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There exist a two-sided filtration ¥ = {X 4 }xez of increasing
atomic o-algebras of E = supp(u) that satisfy the following
properties:
@ For each Q € Xy, there exists a (200, 3)-doubling ball Bg
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A\

PROOF

See [David-Mattila] and modify (a little bit). O
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MARTINGALE BMO: RBMOs(u)

Form the conditional expectations w.r.t. % :

Ex,f(x) = Y _ (Aole(x).

Qexy

RBMOs (p) is the martingale BMO associated to Ex,, i.e. the
space normed by

HfHRBMOz(,u) .= sup HEZk }f - Ezk—lfmoo
keZ

Remark:

IfllRBMOS () ~ Sup ||Es, |f — Es, flllo, +sup||Es,f —Es, ||
kez keZ

= sup ——— /f d+supf —(F5l.
sup o [ I = (Flal die+sup [(F)a = (F)g
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PROPERTIES OF RBMOx (1)

THEOREM (C., PARCET)

@ RBMOsx(p) is a martingale BMO space:

o Interpolation:

[RBMOs (1), L} (11)] 1 = LP(1)-

o Duality: (HE(p))* = RBMOs(u).
e John-Nirenberg inequality:

1
Il flrRBMOS (1) ~p ilelz |Ex, |f — Ex, . f|°||2,, 0 < p < o

@ RBMO(u) € RBMOx(u):
o If Tis CZ, T : L(11) — RBMOs(1).
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FROM GEOMETRY TO PROBABILITY

The predual of RBMO(y) is known. We say that f € HY,, (u) if
f =3, bj, where:
@ bj is supported on a cube QJ-, and fQj bjdp = 0.
e bj =3, \jajj. Each ajj is supported in a cube R;j C Qj. Aj
are scalars.
laji]loo < 21 1
e ,U(RU) KR,‘j,Qj.

For such f we set

f 1 = Inf )\I
1l () f—Zjbj_ZiJ'AijaUz,j:| !

THEOREM (ToLsa ’01)

(Han(1))™ = RBMO(u).
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FROM GEOMETRY TO PROBABILITY Il

The predual of any martingale BMO is the martingale Hardy space
H! normed by

1
1l = ([ (D [Exf = Ecaf )2
k

THEOREM (C., PARCET)
feH' & f = Zj b;, where:
@ There exists k; s.t. Ex, (bj) =0.
J

e bj =3, \jajj. Each ajj is supported in a kj;1 measurable set
Aj.

o [|ajlloe < (A7)t

Also,
f ~ |nf Z A
I [] e =5 b, ey = RYiE
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A DYADIC CALDERON-ZYGMUND DECOMPOSITION

The filtration X allows a version of the Calderén-Zygmund
decomposition very similar to the classical one:

THEOREM (C., PARCET)

Fix A\ > 0, f € L}(u), and denote by Q the family of maximal
cubes in ¥ w.r.t. (f)g > \. Then

f=g+ Z bQ = fl(UQeQQ)C =4F Z<f10>516
QeQ QeQ

+3 [le . <f1Q>@15} .

QeQ

o llgllzguy S Al
o [bg =0, ocollballrgy S Ifllg-
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Thank you very much.



