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An application of David-Mattila cubes to non-homogeneous Calderón-Zygmund theory

Polynomial growth measures

A measure µ on Rd has n-polynomial growth, 0 < n ≤ d , if:

µ(B(x , r)) . rn.

A polynomial measure may be doubling. Example: Lebesgue
measure on Rd .

It may also be nondoubling. Example: Hausdorff measure
Hn|A on a sufficiently bad A. However, there are always many
(α, β)-doubling balls, that is, balls B such that

µ(αB) ≤ βµ(B)

(β needs to be large enough wrt α).
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A result by David and Mattila

A compact set E ⊂ C is removable for Lipschitz harmonic
functions if whenever U ⊃ E open, u : U → R is a Lipschitz
function which is harmonic in U \ E then u is harmonic in U.

Theorem (G. David -happy birthday-, P. Mattila ’00)

Let E ⊂ C be compact with H1|E <∞. Then E is removable for
Lipschitz harmonic functions if and only if E is purely unrectifiable.

The proof requires the construction (and handling) of a
1-polynomial measure on a possibly wild set.

The handling requires the introduction of a filtration that
plays the role of the dyadic cubes.
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In the proof: a different dyadic lattice

Fix β > 200d and A very large.

Proposition (G. David -joyeux anniversaire-, P. Mattila
’00)

There is a sequence D = {Dk}k≥0 of nested partitions of E = supp(µ)
s.t:

1 For each Q ∈ Dk , there exists a ball BQ with r(BQ) ∼ A−k and
E ∩ BQ ⊂ Q ⊂ E ∩ 50BQ .

2 The sets Q have small boundaries.

3 Each Q ∈ D is either (200, β)-doubling or r(BQ) = A−k and

µ(100BQ) ≤ β−`µ(100`BQ), (` > 1, 100` ≤ β).

Rmk: (3) means that between consecutive doubling cubes Q and R in D ,∫
100BR\100BQ

1

|x − xBQ
|n
dµ(x) . 1.
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CZ theory for polynomial measures

Calderón-Zygmund operators: L2(µ) bounded linear operators T
s.t.

Tf (x) ∼
∫

K (x , y)f (y)dµ(y).

Size condition adapted to the growth of µ: |K (x , y)| . 1
|x−y |n .

Smoothness: Lipschitz condition (say).

Examples:

Cauchy transform:

Cµf (z) = p.v.

∫
C

f (ζ)

z − ζ
dµ(ζ).

Riesz transform:

Rµf (x) = p.v.

∫
Rd

x − y

|x − y |n+1
f (y)dµ(y).
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BMO for polynomial measures

CZ operators map Lp(µ) into Lp(µ).

CZ operators map L1(µ) into L1,∞(µ).

CZ operators DO NOT map L∞(µ) into BMO(µ).

Alternative (Tolsa ’01): f is in RBMO(µ) if

‖f ‖RBMO(µ) := sup
B doubling

1

µ(B)

∫
B
|f − 〈f 〉B |dµ

+ sup
B⊂B′, both doubling

|〈f 〉B − 〈f 〉B′ |
KB,B′

<∞,

where

KB,B′ = 1 +

∫
2B′\2B

1

|xB − x |n
dµ(x).
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Probabilistic point of view

Back to Lebesgue measure and usual dyadic grid D for a second.

Dyadic BMO is easier to understand than BMO (and even
more powerful – easier interpolation, for example).
Dyadic BMO is a martingale BMO space, with the family of
conditional expectations given by

Ek f (x) =
∑
Q∈Dk

〈f 〉Q1Q(x),

and norm ‖f ‖BMO = sup
k
‖Ek |f − Ek−1f |‖∞

∼ sup
k
‖Ek |f − Ek f |‖∞ , because

the Lebesgue measure is diadically doubling (|Q| ∼ |Q̂|)
⇐⇒

The filtration D is regular: Ek |f | . Ek−1|f |.
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A filtration for polynomial measures

Dyadic BMO is not good if µ is not doubling (because usual BMO
is not good). However...

Proposition

There exist a two-sided filtration Σ = {Σk}k∈Z of increasing
atomic σ-algebras of E = supp(µ) that satisfy the following
properties:

1 For each Q ∈ Σk , there exists a (200, β)-doubling ball BQ

such that E ∩ BQ ⊂ Q ⊂ E ∩ 50BQ .

2 The union of L∞(Rd ,Σk , µ) is weak-∗ dense in L∞(µ).

3 If x ∈ Q, then
∫

100B
Q̂
\100BQ

1

|xBQ
− x |n

dµ(x) . 1.

Proof

See [David-Mattila] and modify (a little bit).
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Martingale BMO: RBMOΣ(µ)

Form the conditional expectations w.r.t. Σk :

EΣk
f (x) =

∑
Q∈Σk

〈f 〉Q1Q(x).

Definition

RBMOΣ(µ) is the martingale BMO associated to EΣk
, i.e. the

space normed by
‖f ‖RBMOΣ(µ) := sup

k∈Z

∥∥EΣk

∣∣f − EΣk−1
f
∣∣∥∥
∞ .

Remark:

‖f ‖RBMOΣ(µ) ∼ sup
k∈Z
‖EΣk

|f − EΣk
f |‖∞ + sup

k∈Z

∥∥EΣk
f − EΣk−1

f
∥∥
∞

= sup
Q∈Σ

1

µ(Q)

∫
Q
|f − 〈f 〉Q | dµ+ sup

Q

∣∣∣〈f 〉Q − 〈f 〉Q̂∣∣∣ .
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Properties of RBMOΣ(µ)

Theorem (C., Parcet)

1 RBMOΣ(µ) is a martingale BMO space:

Interpolation: [
RBMOΣ(µ), L1(µ)

]
1
p

= Lp(µ).

Duality: (H1
Σ(µ))∗ = RBMOΣ(µ).

John-Nirenberg inequality:

‖f ‖RBMOΣ(µ) ∼p sup
k∈Z

∥∥EΣk

∣∣f − EΣk−1
f
∣∣p∥∥ 1

p

∞ , 0 < p <∞.

2 RBMO(µ) ⊂ RBMOΣ(µ):

If T is CZ, T : L∞(µ)→ RBMOΣ(µ).
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From geometry to probability

The predual of RBMO(µ) is known. We say that f ∈ H1
atb(µ) if

f =
∑

j bj , where:

bj is supported on a cube Qj , and
∫
Qj

bjdµ = 0.

bj =
∑

i λijaij . Each aij is supported in a cube Rij ⊂ Qj . λij
are scalars.

‖aij‖∞ ≤
1

µ(Rij)

1

KRij ,Qj

.

For such f we set

‖f ‖H1
atb(µ) := inf

f =
∑

j bj=
∑

i,j λijaij

∑
i ,j

|λij |.

Theorem (Tolsa ’01)(
H1

atb(µ)
)∗

= RBMO(µ).
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From geometry to probability II

The predual of any martingale BMO is the martingale Hardy space
H1 normed by

‖f ‖H1 :=
∥∥(∑

k

|Ek f − Ek−1f |2
) 1

2
∥∥

1
.

Theorem (C., Parcet)

f ∈ H1 ⇔ f =
∑

j bj , where:

There exists kj s.t. EΣkj
(bj) = 0.

bj =
∑

i λijaij . Each aij is supported in a kj+1 measurable set
Aij .

‖aij‖∞ ≤ µ(Aij)
−1.

Also,
‖f ‖H1 ∼ inf

f =
∑

j bj=
∑

i,j λijaij

∑
i ,j

|λij |.
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A dyadic Calderón-Zygmund decomposition

The filtration Σ allows a version of the Calderón-Zygmund
decomposition very similar to the classical one:

Theorem (C., Parcet)

Fix λ > 0, f ∈ L1(µ), and denote by Q the family of maximal
cubes in Σ w.r.t. 〈f 〉Q > λ. Then

f = g +
∑
Q∈Q

bQ = f 1(∪Q∈QQ)c +
∑
Q∈Q
〈f 1Q〉Q̂1

Q̂

+
∑
Q∈Q

[
f 1Q − 〈f 1Q〉Q̂1

Q̂

]
.

‖g‖L2(µ) . λ‖f ‖L1(µ).∫
bQ = 0,

∑
Q∈Q ‖bQ‖L1(µ) . ‖f ‖L1(µ).
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Thank you very much.


