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	  The	  geometries	  of	  a	  subset	  of	  	  Euclidean	  space	  can	  be	  characterized	  by	  the	  proper8es	  
of	  operators	  defined	  on	  func8ons	  on	  the	  subset	  .	  Through	  the	  restric8on	  of	  classes	  of	  
func8ons	  to	  the	  subset	  .	  
The	  most	  elementary	  example	  are	  the	  coordinate	  func8ons	  ,	  
	  More	  interes8ng	  	  examples	  are	  	  the	  electrosta8c	  or	  acous8c,	  poten8al	  fields	  generated	  
by	  charges	  supported	  on	  the	  set	  ,	  	  	  
	  
The	  rela8onship	  between	  the	  geometry	  of	  the	  boundary	  of	  a	  domain	  and	  proper8es	  of	  
the	  space	  of	  solu8ons	  to	  boundary	  value	  problems	  has	  a	  long	  history	  .	  
	  
Here	  we	  focus	  on	  learning	  the	  geometry	  from	  the	  proper8es	  of	  extensions	  of	  func8ons	  
on	  the	  set	  as	  solu8ons	  to	  some	  PDE.	  For	  example,	  the	  Cauchy	  transform,	  which	  is	  an	  
oblique	  projec8on	  on	  the	  space	  of	  holomorphic	  func8ons	  	  on	  one	  side	  of	  a	  curve	  	  
	  	  
	  
	  
	  



The	  Riemann	  mapping	  from	  the	  upper	  half	  
plane	  to	  	  the	  region	  above	  the	  curve,	  maps	  the	  
horizontal	  lines	  to	  flow	  lines	  above	  the	  curve	  (a	  
river	  bed).	  	  The	  Cauchy	  transform	  is	  easily	  
converted	  through	  the	  Kerzman-‐Stein	  formula	  
into	  the	  Szego	  orthogonal	  projec8on	  which	  ,	  
itself	  yields	  the	  Riemann	  mapping.	  

C( f )(z) = 1
2πi

f (w)
w − zΓ
∫ dw

S = C(I +C −C*)−1

let   Γ1   Γ2   
   

be two curves parametrized by arc length

with  arguments α1(s),  α 2 (s)
C1,C2   the corresponding Cauchy transforms , then
 C1 −C2  ≈ α1(s)−α 2 (s) BMO

We	  also,connect	  the	  curve	  Geometry	  ,	  and	  distance	  between	  two	  curves	  to	  the	  
distance	  between	  two	  Cauchy	  or	  Szego	  operators.	  



Similar	  results	  were	  obtained	  	  in	  higher	  dimensions	  analyzing	  the	  restric8on	  of	  
Calderon	  Zygmund	  operators	  to	  subsets	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Guy	  David	  	  ,	  Steven	  
Semmes	  ,	  characterized	  the	  sets	  	  on	  which	  these	  operators	  are	  bounded	  on	  
L2	  .	  	  
	  	  
These	  results	  and	  related	  detailed	  geometries	  of	  Guy	  David	  sets	  were	  also	  
developed	  by	  Peter	  Jones	  and	  Raanan	  Schul	  ,	  characterizing	  them	  by	  Carleson	  
like	  condi8ons	  (	  beta	  numbers	  and	  their	  variants).	  
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Acoustic scattering off objects requires detailed effective  
Field  interactions between regions on boundary. 

The first approximation is given by geometric optics , or Billiards and is  
obtained automatically through geometry learning. 

Impossible d'afficher l'image. Votre ordinateur manque peut-être de mémoire pour ouvrir l'image ou l'image est endommagée. Redémarrez l'ordinateur, puis ouvrez à nouveau le fichier. Si le x rouge est toujours affiché, vous devrez peut-être supprimer l'image 
avant de la réinsérer.
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Acoustic scattering matrix off an ellipse ,while 
dense ,the number of parameters (features) needed 
to describe it is small.each box encapsulates geometric optics 
interaction. 

The same analysis 
 could be otained  
by local SVD  
analysis to track 
 rank of interactions 
The rank is one  
at the geometric 
 optic level 



Distances	  between	  subsets	  	  ?	  
•  How	  to	  measure	  the	  distance	  between	  curves	  ?	  
•  Viewing	  the	  points	  as	  defining	  a	  distribu8on,	  and	  taking	  a	  

distance	  to	  be	  a	  dual	  norm	  for	  some	  func8on	  spaces	  



Earth	  Mover’s	  Distance	  
•  Didn’t	  gain	  much	  popularity	  due	  to	  high	  computa8onal	  

complexity	  



Earth	  Mover’s	  Distances	  or	  transporta8on	  distances	  measure	  the	  total	  
cost	  of	  moving	  mass	  form	  one	  curve	  to	  the	  other,	  this	  	  op8miza8on	  
problem	  is	  by	  duality,equivalent	  to	  measuring	  the	  distance	  between	  the	  
curves	  as	  being	  in	  the	  dual	  to	  Lipschitz	  or	  Holder	  .	  	  

•  Efficient	  implementa8on	  via	  “filtering”:	  
obtaining	  coarser	  and	  coarser	  views	  [Shirdhonkar	  &	  Jacobs,	  08]	  
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                Dual metrics and EMD   
 

Consider  images Ii  to be sensed by correlation with a collection of 
sensors f, in a convex set B.

We can define a distance d
B* (Ii , I j ) = sup f∈B f (x)(

X
∫ Ii (x)− I j (x))dx

If  B is the unit ball in Holder classes we get the EMD distances , 
The point being that if B transforms nicely under certain distortions so 
does the dual metric.
The computation of the dual norm for standard classes of smoothness is 
linear in the number of samples. (Unlike the conventional EMD 
optimization or minimal distortion metrics)
This is applicable to general data sets , such as documents, or profiles .
Morever since dual norms are usually weighted combinations of lp  norms
at different scales, it is easy to adjust the weights to account for  noisy 
conditions.  (ie redefining smoothness).



Diffusion ( or prolate function ) embedding of the graph of orbits of the 
standard map on the torus, each orbit is a measure , we  use the earth 
moving distance to define distances between orbits and organize in a graph. 

 in particular the  parameter alpha as well as the 
orbit can be easily retrieved from a few points. 



A fundamental problem in statistical data analysis involves testing the hypothesis 
that two clouds of points in            are sampled from the same distribution.   
This is particularly painful when the distribution is unknown .   
The ideas described here are useful for that purpose .   
   
The basic Kolmogorov Smirnov test in one variable consists , in the comparison of 
the number of points in various bins ( intervals), ie our test functions are intervals 
having sufficiently many points to achieve accuracy.  

Rn





One of the first applications  of wavelet bases ,was the observation that CZ operators 
could be efficiently implemented in such bases .  
Assume more generally that we have the matrix of potentials of a collection of sources 
located on a spiral, which are evaluated on a flat disk located away . We need to find a 
wavelet  basis on each  structure relative to its geometry.  The full matrix is then 
expanded efficiently in the Tensor Wavelet basis .       
Observe also that a matrix is usually given in garbled order.  



We	  see	  that	  the	  basic	  Calderon	  Zygmund	  theory	  organizes	  both	  sets	  through	  the	  values	  
of	  certain	  collec8on	  of	  func8ons	  on	  them	  .	  	  	  The	  kernel	  establishes	  their	  rela8ons.	  
	  In	  the	  case	  of	  earth	  mover	  distance	  we	  view	  the	  distance	  between	  the	  sets	  through	  the	  
eyes	  of	  Holder	  func8ons.	  
	  
]We	  could	  also	  consider	  band	  limited	  func8ons,	  and	  match	  two	  sets	  by	  comparing	  their	  
Fourier	  transforms	  .	  
	  Or	  just	  organize	  a	  single	  set	  by	  looking	  at	  the	  kernel	  of	  the	  projec8on	  on	  band	  limited	  
func8ons	  and	  compute	  its	  spectral	  decomposi8on	  when	  restricted	  to	  the	  set	  	  (	  as	  we	  did	  
for	  the	  Cauchy	  transform).	  
The	  prolate	  func8ons	  so	  derived	  form	  a	  coordinate	  system	  on	  the	  set	  and	  enable	  its	  
embedding	  into	  low	  dimensions.	  
	  
Observe	  also	  that	  the	  kernel	  of	  band	  limited	  func8ons	  in	  high	  dimensions	  is	  numerically	  
close	  to	  a	  Gaussian	  kernel.	  	  Leading	  to	  prolates	  which	  are	  approximate	  eigenfunc8ons	  of	  
a	  Laplace	  operator	  on	  the	  subset	  whenever	  it	  is	  an	  embedded	  manifold,	  leading	  to	  a	  
diffusion	  geometry	  embedding.	  
	  
By	  duality	  	  we	  	  can	  also	  organize	  	  the”	  geometry”	  of	  the	  	  eigenfunc8ons	  of	  the	  Laplace	  
operator	  ,	  	  this	  defines	  a	  Heisenberg	  geometry	  	  of	  eigenfuncitons.	  	  	  



A permutation of the rows and 
columns of the matrix  sin(kx). 
On the left we recover the one 
dimensional geometry of x (which 
is oversampled  ), while on the 
right we recover the one 
dimensional geometry 
 of k . 
More generally we can build a dual 
geometry of eigenvectors of 
Laplace Beltrami  operators on 
manifolds  {	  example	  SU(2)}	  
    



No	  equa(ons,	  no	  parameters,	  no	  variables:	  data,	  and	  the	  reconstruc(on	  of	  
normal	  forms	  by	  learning	  informed	  observa(on	  geometries.	  
	  
Or	  Yair,	  Ronen	  Talmon,	  Ronald	  R.	  Coifman	  and	  Ioannis	  G.	  Kevrekidisc,	  
PNAS	  2017	  



 
 
 





Coupled	  Pendulum	  

•  A	  movie	  of	  the	  system	  for	  example:	  



Coupled	  Pendulum	  

•  Two	  normal	  modes:	  



Coupled	  Pendulum	  

•  Time-‐varying	  spring	  constant:	  



Coupled	  Pendulum	  

•  “Scrambled”	  movie	  as	  input:	  



Coupled	  Pendulum	  

•  Result:	  



“Empirical	  Physics”	  



“Empirical	  Physics”	  



Sensory-Motor Integration in the Mammalian Brain: experiment, dataanalysis 
and modeling                      
   A joint project with  
Gal Mishne , Jackie Schiller, Ronen Talmon and Ron Meir, Uri Dubin, 
 Technion - IIT, Israel 

 the setting of our tri-geometry analysis of the collected trial-based neuronal 
activity from the motor cortical region. These measurements were taken from a 
behaving mouse in a single day of experiments. The data is composed of 60 
trials, where after the first 20 trials, the activity of the somatosensory region was 
silenced by pharmacogenic activation. A single trial consists of 12 seconds, 
during which 120 frames are measured. The recordings are taken from 121 
neurons located in M1 cortex 



Experimental	  Selng	  



The Neuronal dynamics of mouse as it 
learns  to accomplish a task , or suffers 
from a neural pathology 
 
 

The data consists of a few hundred 
experiments, in which the mouse 
repeatedly performs a task  , initially 
learning to pick up food when the bell 
rings , being adept at it , then is dis 
functional due an infection ,  and 
recovers later  
Each experiment is a data base  which 
when combined is a three dimensional 
array . 
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Here we present the multiscale hierarchical organization of the 2D slices of all the neurons (Fig. 4 (right)) in a flexible tree. 
Same data as in previous figures. To demonstrate the organization obtained by the tree we highlight several interesting tree 
folders and present the 2D neuron slices under each folder of interest. We observe that indeed the neurons are grouped 
together according to similar properties. While this result is very preliminary and the full meaning of such an organization 
should be examined in depth, we can immediately detect few interesting features. For example, the orange folder (b) consists 
of neurons, which are active only during trials under the effect of somatosensory silencing (horizontal separation). The yellow 
folder (a) consists of neurons, which are active only at or after the tone (vertical separation), and mostly in trials under the 
effect of the silencing (horizontal separation). In contrast, the purple folder (c) consists of neurons, which are active after the 
tone but during trials without the silencing effect. Finally, the green folder (d) consists of neurons, which were silenced by the 
manipulation. We note that folders consisting of neurons, which are active only during a particular behavior (such as grabbing 
the food), were also identified, but are not displayed due to space constraints 



Mathematical  challenges for “emergent” data 
organization and knowledge building. 
 
The following items are the traditional functions of the 
librarian, they now need to be performed, on a massive 
scale, for heterogeneous  digital documents. 
 
• The initial tasks , are storage,  retrieval, and relevance search.  

• In view of massive amounts of continuously generated data , 
this needs to  occur automatically, in a data agnostic way . 

• In particular both “context” and “concept” need to emerge 
spontaneously from the data, once goals are defined. 

•   An analog of a geographic Data Atlas , in which  
heterogeneous documents are organized by context into 
different “geometries”  of Knowledge.     

                                   

 



Methodologies for principled mathematical learning of 
empirical functions, or regression, in an environment 
where most measured parameters are irrelevant or only 
marginally relevant  are needed. 
 
The community of machine learning have come up with 
remarkable useful tools such as various deep learning 
neural nets , to enable filtering irrelevant data and to 
build useful data features for coding ,and classification 
of complex data . 
 
Unfortunately not much theory is available to insure 
reliability or precision, more critically no explanatory 
model is associated with the “black box” 
 
The challenge is to render these methods transparent , 
and explanatory. 
 



•  Harmonic Analysis has over the last 60 years focused on the 
relationship between geometry , and appropriate representations, as a 
tool to understand and prove estimates on operators .  In particular 
kernels of operators restricted to subsets of Euclidean space have 
played a fundamental role in understanding the geometry and 
combinatorics of the set.  
 
• We claim that these methodologies open the door to organization of 
matrices viewed as either databases, or as linear transformations. 
 
The challenge is to organize a database or a matrix without any a 
priori knowledge of its internal model, in particular can we find 
data anomalies, fill in missing entries build classifiers and in 
general build  data agnostic, analytic mathematics for processing 
any kind data.  
 
• Agnostic data geometerization, enables automation of data 
organization and fusion +analytical intelligence.  
Like a good memory organization, we would have the first step to ab 
initio learning, learning in which we  have a feedback mechanism to 
reorganize the data according to the inferences we wish to achieve. 



•  The	  main	  analy8cal	  challenge	  is	  to	  simultaneously	  build	  a	  graph	  of	  
columns	  and	  a	  graph	  of	  rows	  so	  that	  the	  matrix	  entries	  are	  as	  
smooth	  (or	  predictable	  )as	  possible,	  rela8ve	  to	  the	  tensor	  product	  
of	  these	  geometries.	  	  This	  smoothness	  is	  measured	  in	  terms	  of	  an	  
appropriate	  	  tensor	  Besov	  norm	  or	  entropy	  .	  

•  	  	  	  	  The	  next	  challenge	  is	  to	  enable	  simple	  reorganiza8on	  to	  achieve	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  regression	  or	  machine	  learning,	  or	  fast	  numerical	  analysis.	  
	  
The	  underlying	  analy8cal	  methods	  enables	  filtering	  out	  anomalous	  

responses	  ,	  and	  provides	  detailed	  quan8ta8ve	  assessments	  of	  
consistency	  of	  responses	  .	  

The	  analysis-‐synthesis	  tools,	  that	  enable	  the	  geometric	  construc8on,	  
are	  useful	  to	  provide	  a	  metric	  to	  assess	  success	  in	  organizing	  the	  
data	  base.	  	  



     We extend ideas of Harmonic Analysis and approximation 
theory to the study of general matrices,( or higher order 
tensors,) whether the goal is organization of a data base to 
extract knowledge, or to build a representation relative to 
which a matrix is efficiently described.  
We illustrate the outcome of  such organization on the MMPI 
( Minnesota Multiphasic Psychological Inventory) 
questionnaire .  
The Tensor Haar Bases enable filtering out anomalous 
responses , and provide detailed “analysis”  (pun intended) . 
 
Stromberg’s observations about the efficiency of 
approximation of functions of bounded mixed variation in the 
tensor Haar basis  is particularly useful in the statistical data 
analysis context of analysing a data base  



  Start by considerimg the problem of unraveling the 
geometric structure in a matrix. We view the columns or 
the rows as collections of points in high dimension whose 
geometry we need to define. 

The matrix on the left is a 
permutation in rows and columns 
of the matrix  below it .  
 
The challenge is to unravel the 
various simple submatrices . 



More generally 
assume that the 
function 
represents a 
probability field 
which has be 
garbled by 
permuting rows 
and columns. 
At each pixel 
we toss a coin 
with 
corresponding 
probability . 
 
The Challenge 
is to recover the 
underlying field 
with some 
accuracy  
control. 



       The simplest joint organization is achieved as follows   
 
Assuming an initial  hierarchical organization of the columns of the database 
(see later) into contextual folders ( for example groups of responders which 
are similar at different “scales” )  use these folders to assign new response 
coordinates to each row (question), for example an average response of the 
demographic group.   
 
Use the augmented  response coordinates to organize responses into a 
conceptual hierarchy of folders of rows which are similar across the 
population of columns.   
 
We then use the conceptual folders to augment the response of the columns 
and to reorganize them into  a more precise contextual hierarchy .  
 
 This process is iterated as long as an  “entropy “ of the database is being 
reduced . 
 
 



A disorganized questionnaire ,on the left, 
the columns represent people , the row are 
binary questions. Mutual multiscale bi 
learning , organizes the data, bottom left , 
The questionnaire is split on a two scale 
grid below. Showing  in the highlighted 
rectangle , the consistency of responses of a 
demographic group (context) to a group of 
questions (concept)

The challenge is to organize a data base by organizing both rows and columns 
simultaneously , if the columns are observations and the rows are features or 
responses. We organize observations “contextually” and responses 
“conceptually “ each organization informs the other iteratively. 



Consider the example of a database of documents , in which the coordinates of  
each document , are the frequency of occurrence of individual words in a lexicon. 
Usually the documents are assumed to be related if their vocabulary  distributions 
 are “close” to each other.   
The problem is that we should be able to interchange words having similar meaning  
and similarity of meaning should be part of the document comparison .  
By duality if we wish to compare two words by conceptual similarity we should look 
at similarity  of frequency of occurrence in documents, here again we should be able  
to interchange documents if their topical difference is small. 
 There are at least three challenges which we claim can be resolved through  
Harmonic Analysis ; 
 
1. Define good document content flexible-distances , and 
simultaneously good conceptual vocabulary distances.  
 
2. Develop a method which is purely data driven and data agnostic , 
 
3. The complexity of calculations should scale linearly with data size. 
     
                                         We start by discussing metrics 



Mutual Organization / Tree Structures for context- concept duality,
Although we use linguistic analogies these trees were built on time series of observations of 
500 objects , the concepts are scenarios of times with similar responses among the 
population while  the contexts are group of objects with similar temporal responses.

PSG	  Confidential 2

Context
tree

Activity	  
Level	  
Map

Affinity based Groupings: 

Concepts  - clusters of “words” at 
different levels of abstraction as 
they relate to various documents 
clusters =contexts
Contexts- clusters of “documents” 
with similar vocabulary profile

Concept	  
tree Coarse	  interactions	  of	  

concepts	  with	  context	  ,at	  
the	  scale	  of	  the	  two	  
highlighted	  nodes



Demographic organization by earth mover distance among profiles of the population.  
The blue highlighted group  is on one extremity ,having problems.  



The red group is on the other end , being quite healthy . 



The demographic tree , where the previous red group is marked.  



 Conceptual organization of the questions into a geometry . 



Another group of questions 



The same questions as above on the metaquestion tree , and the response profile 
of various demographic groups , on the left problem groups , on the right healthy 
people. 



The three dimensional  plot above 
organizes time through various repetitive 
experiments to isolate the time where the 
sound trigger is activated for the mouse to 
reach for food . 



References  
[1] E. Stein, Topics in Harmonic Analysis related to the Littlewood-Paley theory, 
     Princeton University Press, 1970. 
[2] R. Coifman and G. Weiss, Analyse Harmonique Noncommutative sur Certains 
     Espaces Homogenes, Springer-Verlag, 1971.} 
[3] R. Coifman ,G. Weiss, Extensions of Hardy spaces and their use in analysis.  
Bul. Of the A.M.S., 83, #4, 1977, 569-645. 
[4] Belkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding 
 and clustering. Advances in Neural Information Processing Systems 14 (NIPS 2001) (p. 585). 
[5]Belkin, M., & Niyogi, P. (2003a). Laplacian eigenmaps for dimensionality reduction and data 
representation. Neural Computation, 6, 1373{1396. 
[6]Coifman, R. R., Lafon, S., Lee, A., Maggioni, M.,Nadler, B., Warner, F., & Zucker, S. (2005a) 
. Geometric diffusions as a tool for harmonic analysis and structure defnition of data. 
 part i: Diffusion maps.Proc. of Nat. Acad. Sci., 7426{7431. 
[7] Coifman R.R.,S Lafon, Diffusion maps, Applied and Computational Harmonic Analysis, 21: 5-30, 
2006. 
[8] Coifman R.R., B.Nadler, S Lafon, I G Kevrekidis, Diffusion maps, spectral clustering and reaction 
coordinates of dynamical systems, Applied and Computational Harmonic Analysis, 21:113-127, 
2006. 
[9] Ronald R Coifman1, Mauro Maggioni1, Steven W Zucker1 and 
Ioannis G Kevrekidis “Geometric diffusions for the analysis of data from sensor 
networks”    Current Opinion in Neurobiology 2005, 15:576–584  
   [10] Ham J, Lee DD, Mika S: Scholkopf: “A kernel view of the 
dimensionality reduction of manifolds”. In Proceedings of the XXI 
Conference on Machine Learning, Banff, Canada, 2004  



11.  R. Talmon and R. R. Coifman, "Empirical intrinsic geometry for nonlinear 
modeling and time series filtering," Proc. Nat. Acad. Sci. (PNAS), vol. 110, no. 
31, pp. 12535-12540, Jul. 2013.  
 
 
12.  Nonlinear intrinsic variables and state reconstruction in multiscale 
simulations 
Carmeline J. Dsilva, Ronen Talmon, Neta Rabin, Ronald R. Coifman, and Ioannis 
G. Kevrekidis . The Journal of Chemical Physics 139, 184109 (2013); doi: 
10.1063/1.4828457 
 
13Talmon, R. & Coifman, R.R. Intrinsic modeling of stochastic dynamical 
systems using empirical geometry. Applied and Computational Harmonic 
Analysis 39, 138-160 (2015). 
 
14. Gavish, M. & Coifman, R.R. Sampling, denoising and compression of 
matrices by coherent matrix organization. Applied and Computational 
Harmonic Analysis 33, 354-369 (2012). 
 
15. Coifman, R.R. & Gavish, M. Harmonic analysis of digital data bases. in 
Wavelets and Multiscale analysis 161-197 (Springer, 2011). 


