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Rectifiable metric spaces

• (X , d) metric space. S ⊂ X is n-rectifiable if there exist
countably many Lipschitz (equivalently biLipschitz)
fi : Ai ⊂ Rn → X such that

Hn(S \
⋃

fi(Ai)) = 0.

• S is purely n-unrectifiable if every n-rectifiable subset of S has
Hn measure zero. If Hn(X ) <∞ then X = U ∪ R, U purely
n-unrectifiable and R n-rectifiable.

• Classically (when X = Rm), a fundamental description of
rectifiable sets is given by the Besicovitch-Federer projection
theorem: Hn(S) <∞, S purely n-unrectifiable ⇒ almost
every n-dimensional orthogonal projection of S has Lebesgue
measure zero.
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BF in non-Euclidean settings I

• Is it possible to obtain a similar characterisation in
non-Euclidean settings?

• Metric spaces have no linear structure ⇒ no notion of
projection.

• In (infinite dimensional) Banach spaces: Projection =
continuous linear T : B → Rn (of full rank).

• “Almost every” projection? Prescribe a collection of null sets.
Standard examples exist in the theory of GMT in Banach
spaces.
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BF in non-Euclidean settings II

Theorem (De Pauw)
There exists a purely 1-unrectifiable S ⊂ `2 with H1(S) <∞ such
that |T (S)| > 0 for a non "Aronszajn" null set of projections.

• BF is false in `2 for “Aronszajn almost every projection”.
• However, this set of projections is “Haar” null.

Theorem (B, Csörnyei, Wilson)
In any separable infinite dimensional Banach space, there exists a
purely 1-unrectifiable S with H1(S) <∞ such that |T (S)| > 0 for
every projection.

• BF is completely false in infinite dimensional spaces.
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A new approach

• It is natural to consider Lipschitz mappings of a metric space
X into an Euclidean space.

• Let Lip1(X ,Rm) be the set of all bounded 1-Lipschitz
f : X → Rm equipped with the supremum norm.

• This is a complete metric space and so we can consider a
typical 1-Lipschitz function (i.e. residual/comeagre in the
sense of Baire category: a set that contains a countable
intersection of open dense sets).

• “A typical 1-Lipschitz function” is a suitable candidate to
replace “almost every projection”.
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A new characterisation

Theorem (B)
Let S ⊂ X be purely n-unrectifiable with Hn(S) <∞ and

lim inf
r→0

Hn(B(x , r))
rn > 0 (∗)

for Hn-a.e. x ∈ S.

For any m ∈ N, a typical f ∈ Lip1(X ,Rm) satisfies

Hn(f (S)) = 0.

• If S ⊂ Rm′ , (∗) is not necessary.
• Using deep results of the structure of Lebesgue null sets
announced by Csörnyei-Jones, (∗) is never necessary.

• If Hs(S) <∞ with s 6∈ N, then a typical f ∈ Lip1(X ,Rm)
satisfies Hs(f (S)) = 0.
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The converse statement

As with BF, we get a strong converse.

Theorem (B)
Let S ⊂ X be n-rectifiable. For any m ≥ n, a typical
f ∈ Lip1(X ,Rm) satisfies

Hn(f (S)) > 0.

• This direction is simpler: uses Kirchheim’s description of
rectifiable metric spaces.
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Idea of the proof of the main direction

Given f ∈ Lip1(X ,Rm), we must make arbitrarily small
modifications to obtain a f̃ such that Hn(f̃ (S)) is arbitrarily small.
These modifications cannot increase the Lipschitz constant.

Theorem (B, Li 2014)
Let S ⊂ X satisfy Hn(S) <∞ + (∗). If S has n "Alberti
representations", then S is n-rectifiable.

• ⇒ for any Lipschitz f : X → Rm, (after removing a set of Hn

measure zero) ∃ n − 1 dimensional “weak tangent field”:
Vx ∈ G(m, n − 1) s.t. any 1-rectifiable set γ ⊂ S has

Tanf (x) f (γ) ∈ Vx H1-a.e. x ∈ γ.

• If S ⊂ Rm′ , or using the announcement of Csörnyei-Jones, the
theorem can be proved without assuming (∗). Similarly, the
consequence is true for the case s 6∈ N.
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Idea of the proof of the main direction II

• Have a weak tangent field: Vx ∈ G(m, n − 1) s.t. any
1-rectifiable set γ ⊂ S has

Tanf (x) f (γ) ∈ Vx H1-a.e. x ∈ γ.

• To construct f̃ , we locally squeeze f in all directions
orthogonal to Vx .

• Since there are no 1-rectifiable sets in these directions, this can
be done without perturbing f very much.

• dimVx = n − 1 ⇒ can reduce Hn(f (S)) to an arbitrarily small
value.
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Perturbations of distances I

• The are other targets that are interesting from the point of
view of metric spaces.

• Recall that any separable metric space can be isometrically
embedded into `∞.

• If S is compact, then for any ε > 0 there exists a 1-Lipschitz
mapping f into `m(ε)

∞ such that
|d(x , y)− ‖f (x)− f (y)‖∞| < ε for each x , y ∈ S.

• Applying the Euclidean squeezing argument to f gives a f̃
with a huge Lipschitz constant (because of the ralationship
between ‖.‖2 and ‖.‖∞ in Rm).

• If we are more careful we can obtain something more useful.
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Perturbations of distances II

Theorem (B)
Let S be compact purely n-unrectifiable with Hn(S) <∞ + (∗).
For any ε > 0 ∃ L(n)-Lipschitz σ : S → `

m(ε)
∞ with

|d(x , y)− ‖σ(x)− σ(y)‖| < ε ∀x , y ∈ S (1)

and
Hn(σ(S)) < ε.

• Since L(n) is independent of ε, we have a suitable converse: if
S is n-rectifiable, infL>0 lim infε→0Hn(σ(S)) > 0,
σ : S → (Y , ρ) L-Lipschitz satisfying (1).

• (∗) is not necessary under the same conditions as before, and
have the corresponding statement for Hs(S), s 6∈ N.
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Perturbations of sets

• If S is a subset of a Banach space B with an unconditional
basis (`1, Lp(µ) 1 < p <∞, c0,. . . ) then σ can be chosen to
be a genuine perturbation.

• That is, ∃ L(n,B)-Lipschitz σ : B → B with

‖x − σ(x)‖ < ε ∀x ∈ S

and
Hn(σ(S)) < ε.

• Generalises a result of H. Pugh who proved this for Ahlfors
regular subsets of Euclidean space. The construction relies on
BF.
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