Rectifiability of metric spaces via arbitrarily small perturbations

David Bate

University of Helsinki

Rectifiable metric spaces

(X, d) metric space. S ⊂ X is n-rectifiable if there exist countably many Lipschitz (equivalently biLipschitz)
 f_i: A_i ⊂ ℝⁿ → X such that

 $\mathcal{H}^n(S\setminus \bigcup f_i(A_i))=0.$

Rectifiable metric spaces

(X, d) metric space. S ⊂ X is n-rectifiable if there exist countably many Lipschitz (equivalently biLipschitz)
 f_i: A_i ⊂ ℝⁿ → X such that

$$\mathcal{H}^n(S\setminus \bigcup f_i(A_i))=0.$$

 S is purely n-unrectifiable if every n-rectifiable subset of S has *Hⁿ* measure zero. If *Hⁿ(X)* < ∞ then X = U ∪ R, U purely *n*-unrectifiable and R n-rectifiable.

Rectifiable metric spaces

(X, d) metric space. S ⊂ X is n-rectifiable if there exist countably many Lipschitz (equivalently biLipschitz)
 f_i: A_i ⊂ ℝⁿ → X such that

$$\mathcal{H}^n(S\setminus \bigcup f_i(A_i))=0.$$

- S is purely n-unrectifiable if every n-rectifiable subset of S has *Hⁿ* measure zero. If *Hⁿ(X)* < ∞ then X = U ∪ R, U purely *n*-unrectifiable and R n-rectifiable.
- Classically (when X = ℝ^m), a fundamental description of rectifiable sets is given by the Besicovitch-Federer projection theorem: Hⁿ(S) < ∞, S purely *n*-unrectifiable ⇒ almost every *n*-dimensional orthogonal projection of S has Lebesgue measure zero.

• Is it possible to obtain a similar characterisation in non-Euclidean settings?

- Is it possible to obtain a similar characterisation in non-Euclidean settings?
- Metric spaces have no linear structure \Rightarrow no notion of projection.

- Is it possible to obtain a similar characterisation in non-Euclidean settings?
- Metric spaces have no linear structure ⇒ no notion of projection.
- In (infinite dimensional) Banach spaces: Projection = continuous linear T: B → ℝⁿ (of full rank).

- Is it possible to obtain a similar characterisation in non-Euclidean settings?
- Metric spaces have no linear structure \Rightarrow no notion of projection.
- In (infinite dimensional) Banach spaces: Projection = continuous linear T: B → ℝⁿ (of full rank).
- "Almost every" projection? Prescribe a collection of null sets. Standard examples exist in the theory of GMT in Banach spaces.

There exists a purely 1-unrectifiable $S \subset \ell_2$ with $\mathcal{H}^1(S) < \infty$ such that |T(S)| > 0 for a non "Aronszajn" null set of projections.

There exists a purely 1-unrectifiable $S \subset \ell_2$ with $\mathcal{H}^1(S) < \infty$ such that |T(S)| > 0 for a non "Aronszajn" null set of projections.

• BF is false in ℓ_2 for "Aronszajn almost every projection".

There exists a purely 1-unrectifiable $S \subset \ell_2$ with $\mathcal{H}^1(S) < \infty$ such that |T(S)| > 0 for a non "Aronszajn" null set of projections.

- BF is false in ℓ_2 for "Aronszajn almost every projection".
- However, this set of projections is "Haar" null.

There exists a purely 1-unrectifiable $S \subset \ell_2$ with $\mathcal{H}^1(S) < \infty$ such that |T(S)| > 0 for a non "Aronszajn" null set of projections.

- BF is false in ℓ_2 for "Aronszajn almost every projection".
- However, this set of projections is "Haar" null.

There exists a purely 1-unrectifiable $S \subset \ell_2$ with $\mathcal{H}^1(S) < \infty$ such that |T(S)| > 0 for a non "Aronszajn" null set of projections.

- BF is false in ℓ_2 for "Aronszajn almost every projection".
- However, this set of projections is "Haar" null.

Theorem (B, Csörnyei, Wilson)

In any separable infinite dimensional Banach space, there exists a purely 1-unrectifiable S with $\mathcal{H}^1(S) < \infty$ such that |T(S)| > 0 for **every** projection.

There exists a purely 1-unrectifiable $S \subset \ell_2$ with $\mathcal{H}^1(S) < \infty$ such that |T(S)| > 0 for a non "Aronszajn" null set of projections.

- BF is false in ℓ_2 for "Aronszajn almost every projection".
- However, this set of projections is "Haar" null.

Theorem (B, Csörnyei, Wilson)

In any separable infinite dimensional Banach space, there exists a purely 1-unrectifiable S with $\mathcal{H}^1(S) < \infty$ such that |T(S)| > 0 for **every** projection.

• BF is completely false in infinite dimensional spaces.

• It is natural to consider Lipschitz mappings of a metric space X into an Euclidean space.

- It is natural to consider Lipschitz mappings of a metric space X into an Euclidean space.
- Let $\operatorname{Lip}_1(X, \mathbb{R}^m)$ be the set of all bounded 1-Lipschitz $f: X \to \mathbb{R}^m$ equipped with the supremum norm.

- It is natural to consider Lipschitz mappings of a metric space X into an Euclidean space.
- Let $\operatorname{Lip}_1(X, \mathbb{R}^m)$ be the set of all bounded 1-Lipschitz $f: X \to \mathbb{R}^m$ equipped with the supremum norm.
- This is a complete metric space and so we can consider a typical 1-Lipschitz function (i.e. residual/comeagre in the sense of Baire category: a set that contains a countable intersection of open dense sets).

- It is natural to consider Lipschitz mappings of a metric space X into an Euclidean space.
- Let $\operatorname{Lip}_1(X, \mathbb{R}^m)$ be the set of all bounded 1-Lipschitz $f: X \to \mathbb{R}^m$ equipped with the supremum norm.
- This is a complete metric space and so we can consider a typical 1-Lipschitz function (i.e. residual/comeagre in the sense of Baire category: a set that contains a countable intersection of open dense sets).
- "A typical 1-Lipschitz function" is a suitable candidate to replace "almost every projection".

Theorem (B) Let $S \subset X$ be purely n-unrectifiable with $\mathcal{H}^n(S) < \infty$ and

$$\liminf_{r \to 0} \frac{\mathcal{H}^n(B(x,r))}{r^n} > 0 \tag{(*)}$$

for \mathcal{H}^n -a.e. $x \in S$.

For any $m \in \mathbb{N}$, a typical $f \in \text{Lip}_1(X, \mathbb{R}^m)$ satisfies

Theorem (B) Let $S \subset X$ be purely n-unrectifiable with $\mathcal{H}^n(S) < \infty$ and

$$\liminf_{r \to 0} \frac{\mathcal{H}^n(B(x,r))}{r^n} > 0 \tag{(*)}$$

for \mathcal{H}^n -a.e. $x \in S$.

For any $m \in \mathbb{N}$, a typical $f \in Lip_1(X, \mathbb{R}^m)$ satisfies

• If
$$S \subset \mathbb{R}^{m'}$$
, (*) is not necessary.

Theorem (B) Let $S \subset X$ be purely n-unrectifiable with $\mathcal{H}^n(S) < \infty$ and

$$\liminf_{r \to 0} \frac{\mathcal{H}^n(B(x,r))}{r^n} > 0 \tag{(*)}$$

for \mathcal{H}^n -a.e. $x \in S$.

For any $m \in \mathbb{N}$, a typical $f \in Lip_1(X, \mathbb{R}^m)$ satisfies

- If $S \subset \mathbb{R}^{m'}$, (*) is not necessary.
- Using deep results of the structure of Lebesgue null sets announced by Csörnyei-Jones, (*) is never necessary.

Theorem (B) Let $S \subset X$ be purely n-unrectifiable with $\mathcal{H}^n(S) < \infty$ and

$$\liminf_{r \to 0} \frac{\mathcal{H}^n(B(x,r))}{r^n} > 0 \tag{(*)}$$

for \mathcal{H}^n -a.e. $x \in S$.

For any $m \in \mathbb{N}$, a typical $f \in Lip_1(X, \mathbb{R}^m)$ satisfies

- If $S \subset \mathbb{R}^{m'}$, (*) is not necessary.
- Using deep results of the structure of Lebesgue null sets announced by Csörnyei-Jones, (*) is never necessary.
- If $\mathcal{H}^{s}(S) < \infty$ with $s \notin \mathbb{N}$, then a typical $f \in \operatorname{Lip}_{1}(X, \mathbb{R}^{m})$ satisfies $\mathcal{H}^{s}(f(S)) = 0$.

As with BF, we get a strong converse.

As with BF, we get a strong converse.

Theorem (B) Let $S \subset X$ be n-rectifiable. For any $m \ge n$, a typical $f \in \text{Lip}_1(X, \mathbb{R}^m)$ satisfies

As with BF, we get a strong converse.

Theorem (B) Let $S \subset X$ be n-rectifiable. For any $m \ge n$, a typical $f \in \text{Lip}_1(X, \mathbb{R}^m)$ satisfies

 $\mathcal{H}^n(f(S)) > 0.$

• This direction is simpler: uses Kirchheim's description of rectifiable metric spaces.

Given $f \in \operatorname{Lip}_1(X, \mathbb{R}^m)$, we must make arbitrarily small modifications to obtain a \tilde{f} such that $\mathcal{H}^n(\tilde{f}(S))$ is arbitrarily small. These modifications **cannot** increase the Lipschitz constant.

Given $f \in \text{Lip}_1(X, \mathbb{R}^m)$, we must make arbitrarily small modifications to obtain a \tilde{f} such that $\mathcal{H}^n(\tilde{f}(S))$ is arbitrarily small. These modifications **cannot** increase the Lipschitz constant.

Theorem (B, Li 2014)

Let $S \subset X$ satisfy $\mathcal{H}^n(S) < \infty + (*)$. If S has n "Alberti representations", then S is n-rectifiable.

Given $f \in \operatorname{Lip}_1(X, \mathbb{R}^m)$, we must make arbitrarily small modifications to obtain a \tilde{f} such that $\mathcal{H}^n(\tilde{f}(S))$ is arbitrarily small. These modifications **cannot** increase the Lipschitz constant.

Theorem (B, Li 2014)

Let $S \subset X$ satisfy $\mathcal{H}^n(S) < \infty + (*)$. If S has n "Alberti representations", then S is n-rectifiable.

⇒ for any Lipschitz f: X → ℝ^m, (after removing a set of Hⁿ measure zero) ∃ n − 1 dimensional "weak tangent field":
V_x ∈ G(m, n − 1) s.t. any 1-rectifiable set γ ⊂ S has
Tan_{f(x)} f(γ) ∈ V_x H¹-a.e. x ∈ γ.

Given $f \in \text{Lip}_1(X, \mathbb{R}^m)$, we must make arbitrarily small modifications to obtain a \tilde{f} such that $\mathcal{H}^n(\tilde{f}(S))$ is arbitrarily small. These modifications **cannot** increase the Lipschitz constant.

Theorem (B, Li 2014)

Let $S \subset X$ satisfy $\mathcal{H}^n(S) < \infty + (*)$. If S has n "Alberti representations", then S is n-rectifiable.

- ⇒ for any Lipschitz f: X → ℝ^m, (after removing a set of Hⁿ measure zero) ∃ n − 1 dimensional "weak tangent field":
 V_x ∈ G(m, n − 1) s.t. any 1-rectifiable set γ ⊂ S has
 Tan_{f(x)} f(γ) ∈ V_x H¹-a.e. x ∈ γ.
- If S ⊂ ℝ^{m'}, or using the announcement of Csörnyei-Jones, the theorem can be proved without assuming (*). Similarly, the consequence is true for the case s ∉ N.

 Have a weak tangent field: V_x ∈ G(m, n − 1) s.t. any 1-rectifiable set γ ⊂ S has

$$\operatorname{Tan}_{f(x)} f(\gamma) \in V_x$$
 \mathcal{H}^1 -a.e. $x \in \gamma$.

 Have a weak tangent field: V_x ∈ G(m, n − 1) s.t. any 1-rectifiable set γ ⊂ S has

$$\operatorname{Tan}_{f(x)} f(\gamma) \in V_x$$
 \mathcal{H}^1 -a.e. $x \in \gamma$.

 To construct *f*, we locally squeeze *f* in all directions orthogonal to V_x.

 Have a weak tangent field: V_x ∈ G(m, n − 1) s.t. any 1-rectifiable set γ ⊂ S has

$$\operatorname{Tan}_{f(x)} f(\gamma) \in V_x$$
 \mathcal{H}^1 -a.e. $x \in \gamma$.

- To construct \tilde{f} , we locally squeeze f in all directions orthogonal to V_x .
 - Since there are no 1-rectifiable sets in these directions, this can be done without perturbing *f* very much.

 Have a weak tangent field: V_x ∈ G(m, n − 1) s.t. any 1-rectifiable set γ ⊂ S has

$$\operatorname{Tan}_{f(x)} f(\gamma) \in V_x$$
 \mathcal{H}^1 -a.e. $x \in \gamma$.

- To construct \tilde{f} , we locally squeeze f in all directions orthogonal to V_x .
 - Since there are no 1-rectifiable sets in these directions, this can be done without perturbing *f* very much.
 - dim V_x = n − 1 ⇒ can reduce Hⁿ(f(S)) to an arbitrarily small value.

• The are other targets that are interesting from the point of view of metric spaces.

- The are other targets that are interesting from the point of view of metric spaces.
- Recall that any separable metric space can be isometrically embedded into $\ell_\infty.$

- The are other targets that are interesting from the point of view of metric spaces.
- Recall that any separable metric space can be isometrically embedded into $\ell_\infty.$
- If S is compact, then for any ε > 0 there exists a 1-Lipschitz mapping f into ℓ^{m(ε)}_∞ such that |d(x,y) ||f(x) f(y)||_∞| < ε for each x, y ∈ S.

- The are other targets that are interesting from the point of view of metric spaces.
- Recall that any separable metric space can be isometrically embedded into $\ell_\infty.$
- If S is compact, then for any ε > 0 there exists a 1-Lipschitz mapping f into ℓ^{m(ε)}_∞ such that |d(x,y) ||f(x) f(y)||_∞| < ε for each x, y ∈ S.
- Applying the Euclidean squeezing argument to f gives a f
 with a huge Lipschitz constant (because of the ralationship
 between ||.||₂ and ||.||_∞ in ℝ^m).

- The are other targets that are interesting from the point of view of metric spaces.
- Recall that any separable metric space can be isometrically embedded into $\ell_\infty.$
- If S is compact, then for any ε > 0 there exists a 1-Lipschitz mapping f into ℓ^{m(ε)}_∞ such that
 |d(x, y) - ||f(x) - f(y)||_∞| < ε for each x, y ∈ S.

- Applying the Euclidean squeezing argument to f gives a f
 with a huge Lipschitz constant (because of the ralationship
 between ||.||₂ and ||.||_∞ in ℝ^m).
- If we are more careful we can obtain something more useful.

Theorem (B)

Let S be compact purely n-unrectifiable with $\mathcal{H}^{n}(S) < \infty + (*)$. For any $\epsilon > 0 \exists L(n)$ -Lipschitz $\sigma \colon S \to \ell_{\infty}^{m(\epsilon)}$ with

$$|d(x,y) - \|\sigma(x) - \sigma(y)\|| < \epsilon \quad \forall x, y \in S$$
(1)

and

 $\mathcal{H}^n(\sigma(S)) < \epsilon.$

Theorem (B)

Let S be compact purely n-unrectifiable with $\mathcal{H}^{n}(S) < \infty + (*)$. For any $\epsilon > 0 \exists L(n)$ -Lipschitz $\sigma \colon S \to \ell_{\infty}^{m(\epsilon)}$ with

$$|d(x,y) - \|\sigma(x) - \sigma(y)\|| < \epsilon \quad \forall x, y \in S$$
(1)

and

$$\mathcal{H}^n(\sigma(S)) < \epsilon.$$

 Since L(n) is independent of ε, we have a suitable converse: if S is n-rectifiable, inf_{L>0} lim inf_{ε→0} Hⁿ(σ(S)) > 0, σ: S → (Y, ρ) L-Lipschitz satisfying (1).

Theorem (B)

Let S be compact purely n-unrectifiable with $\mathcal{H}^{n}(S) < \infty + (*)$. For any $\epsilon > 0 \exists L(n)$ -Lipschitz $\sigma \colon S \to \ell_{\infty}^{m(\epsilon)}$ with

$$|d(x,y) - \|\sigma(x) - \sigma(y)\|| < \epsilon \quad \forall x, y \in S$$
(1)

and

$$\mathcal{H}^n(\sigma(S)) < \epsilon.$$

- Since L(n) is independent of ε, we have a suitable converse: if S is n-rectifiable, inf_{L>0} lim inf_{ε→0} Hⁿ(σ(S)) > 0, σ: S → (Y, ρ) L-Lipschitz satisfying (1).
- (*) is not necessary under the same conditions as before, and have the corresponding statement for H^s(S), s ∉ N.

Perturbations of sets

If S is a subset of a Banach space B with an unconditional basis (ℓ₁, L^p(μ) 1 0</sub>,...) then σ can be chosen to be a genuine perturbation.

Perturbations of sets

- If S is a subset of a Banach space B with an unconditional basis (ℓ₁, L^p(μ) 1 0</sub>,...) then σ can be chosen to be a genuine perturbation.
- That is, $\exists L(n, B)$ -Lipschitz $\sigma \colon B \to B$ with

$$\|x - \sigma(x)\| < \epsilon \quad \forall x \in S$$

and

 $\mathcal{H}^n(\sigma(S)) < \epsilon.$

Perturbations of sets

- If S is a subset of a Banach space B with an unconditional basis (ℓ₁, L^p(μ) 1 0</sub>,...) then σ can be chosen to be a genuine perturbation.
- That is, $\exists L(n, B)$ -Lipschitz $\sigma \colon B \to B$ with

$$\|x - \sigma(x)\| < \epsilon \quad \forall x \in S$$

and

$$\mathcal{H}^n(\sigma(S)) < \epsilon.$$

 Generalises a result of H. Pugh who proved this for Ahlfors regular subsets of Euclidean space. The construction relies on BF.