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e (X, d) metric space. S C X is n-rectifiable if there exist
countably many Lipschitz (equivalently biLipschitz)
fi: Ai C R" — X such that

H(S\|Jfi(A)) = 0.

e S is purely n-unrectifiable if every n-rectifiable subset of S has
H" measure zero. If H"(X) < oo then X = UU R, U purely
n-unrectifiable and R n-rectifiable.

e Classically (when X = R™), a fundamental description of
rectifiable sets is given by the Besicovitch-Federer projection
theorem: H"(S) < oo, S purely n-unrectifiable = almost
every n-dimensional orthogonal projection of S has Lebesgue

measure zero.
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BF in non-Euclidean settings |

e |s it possible to obtain a similar characterisation in
non-Euclidean settings?

e Metric spaces have no linear structure = no notion of
projection.

e In (infinite dimensional) Banach spaces: Projection =
continuous linear T: B — R” (of full rank).

e “Almost every” projection? Prescribe a collection of null sets.
Standard examples exist in the theory of GMT in Banach
spaces.
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Theorem (De Pauw)

There exists a purely I-unrectifiable S C f» with H(S) < oo such
that | T(S)| > 0 for a non "Aronszajn" null set of projections.

e BF is false in ¢, for “Aronszajn almost every projection”.
e However, this set of projections is “Haar"” null.

Theorem (B, Csornyei, Wilson)

In any separable infinite dimensional Banach space, there exists a
purely I1-unrectifiable S with H'(S) < oo such that | T(S)| > 0 for
every projection.

e BF is completely false in infinite dimensional spaces.
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e It is natural to consider Lipschitz mappings of a metric space
X into an Euclidean space.

o Let Lip;(X,R™) be the set of all bounded 1-Lipschitz
f: X — R™ equipped with the supremum norm.

e This is a complete metric space and so we can consider a
typical 1-Lipschitz function (i.e. residual/comeagre in the
sense of Baire category: a set that contains a countable
intersection of open dense sets).

e “A typical 1-Lipschitz function” is a suitable candidate to
replace “almost every projection”.
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A new characterisation

Theorem (B)
Let S C X be purely n-unrectifiable with H"(S) < oo and

lim inf H'(B(x,r))

r—0 A0

>0 (%)

for H"-a.e. x € S.

For any m € N, a typical f € Lip;(X,R™) satisfies

HM(F(S)) = 0.

o If SCR™, (%) is not necessary.

e Using deep results of the structure of Lebesgue null sets
announced by Csornyei-Jones, () is never necessary.

o If #°(S) < oo with s ¢ N, then a typical f € Lip;(X,R™)
satisfies H*(f(S)) = 0.
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The converse statement

As with BF, we get a strong converse.

Theorem (B)
Let S C X be n-rectifiable. For any m > n, a typical
f € Lipy(X,R™) satisfies

H"(F(S)) > 0.

e This direction is simpler: uses Kirchheim's description of
rectifiable metric spaces.
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Theorem (B, Li 2014)
Let S C X satisfy H"(S) < oo + (x). If S has n "Alberti
representations”, then S is n-rectifiable.

e = for any Lipschitz f: X — R™, (after removing a set of H"
measure zero) 3 n — 1 dimensional “weak tangent field":
Vi € G(m,n—1) s.t. any 1-rectifiable set v C S has

Tang(,) f(7) € Vi H'-ae. x €.

e If SC R™, or using the announcement of Csérnyei-Jones, the
theorem can be proved without assuming (). Similarly, the
consequence is true for the case s ¢ N. 8
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Idea of the proof of the main direction Il

e Have a weak tangent field: Vi € G(m,n—1) s.t. any
1-rectifiable set v C S has

Tang( () € Vi H'-ae. x €.

e To construct ?, we locally squeeze f in all directions
orthogonal to V..
e Since there are no 1-rectifiable sets in these directions, this can

be done without perturbing f very much.
e dimV, = n—1 = can reduce H"(f(S)) to an arbitrarily small

value.
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e The are other targets that are interesting from the point of
view of metric spaces.

e Recall that any separable metric space can be isometrically
embedded into /.

e If S is compact, then for any € > 0 there exists a 1-Lipschitz
mapping f into 6&"0(6) such that
ld(x,y) — ||[f(x) = f(¥)|leo| < € for each x,y € S.

e Applying the Euclidean squeezing argument to f gives a f
with a huge Lipschitz constant (because of the ralationship
between ||.||2 and ||.||oc in R™).

e |f we are more careful we can obtain something more useful.

10
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Theorem (B)

Let S be compact purely n-unrectifiable with H"(S) < co + (x).
For any ¢ > 0 3 L(n)-Lipschitzo: S — 079 with

[d(x,y) = llo(x) —o(y)lll <e Vx,ye$ (1)

and

H"(o(S)) < e.

e Since L(n) is independent of €, we have a suitable converse: if
S is n-rectifiable, inf;~q liminf._o H"(c(S)) > 0,
o0: S — (Y, p) L-Lipschitz satisfying (1).

e (%) is not necessary under the same conditions as before, and
have the corresponding statement for H*(S), s ¢ N.
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Perturbations of sets

e If S is a subset of a Banach space B with an unconditional
basis (¢1, LP(n) 1 < p < 00, ¢p,...) then o can be chosen to
be a genuine perturbation.

e That is, 3 L(n, B)-Lipschitz o: B — B with

Ix —o(x)]| <e VxeS

and

H"(0(S)) < e

e Generalises a result of H. Pugh who proved this for Ahlfors
regular subsets of Euclidean space. The construction relies on
BF.
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