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The story begins with Coifman-McIntosh-Meyer’s theorem
(1982): The Cauchy integral operator C on a Lipschitz graph
x 7→ z(x) = x + iϕ(x) is bounded on L2.

Cf (x) = pv
∫

f (y)

z(x)− z(y)
z ′(y)dy .

David-Journé (1984) proved the T(1) theorem: a CNS for L2

boundedness for a singular integral operator T is
T (1),T ∗(1) ∈ BMO and T weakly bounded.



Cf (x) = pv
∫

f (y)

z(x)− z(y)
z ′(y)dy .

Observe
1) C(1) = 0 but C is not a singular integral : kernel not regular
in y .
2) C = TMz′ with T singular integral and T (z ′) = 0 in BMO
using the residue theorem.
3) z ′(x) is non degenerate: accretivity Re z ′(x) & 1.

McIntosh-Meyer (1985) Let T be a singular integral operator
and b is a bounded and accretive. Then T is L2 bdd if
T (b) = 0 = T ∗(b) = 0 in BMO and TMb is weakly bounded.
Proof: consequence of interpolation result that follows from the
proof of the Kato conjecture in 1d.

Applies to C = T



Kato conjecture in 1d was proven at the same time as the
boundedness of the Cauchy integral, with same method.

Need for another proof



Theorem (Global T (b) theorem. David-Journé-Semmes
(1985).)
Given a S.H.T. X (with extra assumptions). Let T be a singular
integral and b1,b2 are para-accretive functions. Then T
bounded on L2(X ) if and only if T (b1),T ∗(b2) ∈ BMO and
Mb2TMb1 is weakly bounded.

b para-accretivity means that b is bounded and on each cube
Q, |

∫
P b| & |P| on some subcube P of Q with comparable size.

Several ways of extensions.



1) Global T(b) statements for singular integrals

Nazarov-Treil-Volberg (2003) statement on S.N.H.T.
They implemented the random dyadic structures.

They allow BMO type testing condition



2) Global T(b) theorem for square functions (Semmes, 1990):

∫ ∞
0
‖θt f‖22

dt
t

. ‖f‖22

where θt is like a convolution operator: kernel at scale t , but
smooth in x only and θt (b) = 0 for some b para-accretive.

Proof: show |θt (1)|2 dxdt
t is a Carleson measure and apply a

result of Christ-Journé. Uses the Coifman-Meyer principal
approximation to apply Carleson theorem.



3) Local T (b) theorem with L∞ testing conditions: Christ, 1990.

Theorem
On a S.H.T (with no atoms). Let T be a singular integral
operator. If there is a pseudo-accretive system of test functions
indexed by balls such that T (b1

B) and T ∗(b2
B) are bounded

uniformly then T is bounded on L2.

(bB) pseudo-accretive system if bB bounded uniformly and
[bB]B = 1 for all balls.

Proof: construct global para-accretive functions adapted to T
and apply DJS. Used systems of dyadic cubes.

Motivation: analytic capacity. But one needs to remove the
S.H.T. assumption.



Influence of Christ’s paper: local T (b) theorems with L∞ testing
conditions for analytic capacity

1) David (1998). Proof of Vitushkin conjecture: Unrectifiable
1-sets have vanishing analytic capacity. needed a local T(b)
theorem on S.N.H.T

2) Nazarov-Treil-Volberg (2003) new proof of David’s T(b)
theorem on S.N.H.T. using random dyadic grids.

3) Tolsa (2003) : proof of Painlevé’s conjecture on analytic
capacity.



Influence of Christ’s and Semmes papers: Kato quare root
problem.

Upshot: prove a square function estimate∫ ∞
0
‖(1− t2divA∇)−1tdivf‖22

dt
t

. ‖f‖22

L = −divA∇ elliptic operator with bounded measurable
complex coefficients on Rn. The square function estimate will
ultimately imply the Kato’s conjecture:

‖L1/2f‖2 ∼ ‖∇f‖2,

which gives the domain of L1/2.

A.-Tchamitchian (98): Kato’s conjecture follows from local T (b)
criterion with L2 testing conditions.



Proof of Kato’s conjecture in 2002 in a series of paper
(involving A., Hofmann, Lacey, Lewis, McIntosh, Tchamtichian):
The square function estimate holds for all −divA∇.

The method opened two different directions of investigations:
motivations are links to PDE’s and geometry.

1) Functional analytic approach of square functions

2) study of local T(b) theorem for singular integral and square
functions with Lp testing conditions.



Functional analytic approach of square functions

Here the impetus came from a paper of Axelsson, Keith,
McIntosh (2006) simplified in 2008 (A., Axelsson, McIntosh).
Upshot: prove square function estimates∫ ∞

0
‖(1 + t2DBDB)−1tDBf‖22

dt
t

. ‖f‖22

in some algebraic context where D is a self-adjoint matrix of
first order operators and B is a an accretive multiplication
operator on a vector-valued L2 space. This gives rise to the
holomorphic functional calculus of DB on this L2 space. The
Kato problem is seen by specializing.



2 Applications:

1) A.-Axelsson, McIntosh, 2009) There is a choice of D and B
which allows to study BVP for elliptic equations
−divx ,tA(x)∇x ,tu = 0 on upper half space Rn × (0,∞). One
can reobtain Jerison-Kenig and Kenig-Pipher results on L2

solvability, extend them and get some others.

2) Rosén (2013). The functional calculus of this particular DB
encodes the L2 boundedness properties of the layer potentials
(single and double) for real and also complex coefficients in
general. In particular this subsumes the boundedness of the
double layer potential on Lipschitz domains proved by CMcM.



Extensions of Euclidean Kato to other contexts.

1) Morris (2012) submanifolds with bounded second
fundamental form.
2) Bandara, Ter Elst, McIntosh (2013), subelliptic operators on
connected Lie groups
3) Bandara, McIntosh (2016), on Riemannian manifolds with
Ricci lower bounds and bounded geometry
4) Bandara, McIntosh (2016) on vector bundles with
Generalized Bounded Geometry.
5) Egert-Haller-Dintelmann-Tolksdorf (2016) Kato with mixed
boundary conditions (Lions’ problem)
6) Cruz Uribe-Rios (2015) degenerate elliptic operators with A2
degeneracy
7) A.-Rosén-Rule (2015) BVP for degenerate elliptic equations.



Parabolic Kato problem

Consider H = ∂t − divxA(x , t)∇x on Rn+1

Theorem (A.Egert, Nyström (2017))

H can be defined as a maximal-accretive operator on L2(Rn+1)

and ‖H1/2 f‖22 ∼ ‖∇x f‖22 + ‖D1/2
t f‖22.

There is a square function reduction using a “first order”
operator “DB” to prove∫

‖(1 + λ2DBDB)−mλDBϕ‖2λ
λ

. ‖ϕ‖22

This is again a T(b) argument. New difficulties: D is no longer
self-adjoint and D contains half-order derivatives in time:
non-local estimates.



Study of local T (b) theorems with Lp testing conditions.
Impetus from A.-Hofmann-Muscalu-Tao-Thiele (2002)

Perfect dyadic CZO:

|K (x , y)| . 1
|x − y |

and the perfect dyadic Calderón-Zygmund conditions

|K (x , y)− K (x ′, y)|+ |K (y , x)− K (y , x ′)| = 0

whenever x , x ′ ∈ I and y ∈ J fo some disjoint dyadic cubes I
and J. Equivalently, K is constant on all dyadic rectangles not
touching the diagonal.



Theorem (Dyadic local T (b) theorem)

Let T be a perfect CZO, and suppose that for each dyadic cube
P we can find functions b1

P , b2
P supported on P obeying the

normalization
[b1

P ]P = [b2
P ]P = 1 (1)

and the bounds∫
P
|b1

P |2 + |Tb1
P |2 + |b2

P |2 + |T ∗b2
P |2 . |P|. (2)

Then T is bounded on L2.

(b1
P) and (b2

P) are called accretive systems (adapted to T ).
Note: L2 testing conditions: compare to Christ’s result.



Theorem (Dyadic local T (b) theorem)

Let T be a perfect CZO, and suppose that for each dyadic cube
P we can find functions b1

P , b2
P supported on P obeying the

normalization
[b1

P ]P = [b2
P ]P = 1 (3)

and the bounds∫
P
|b1

P |2 + |Tb1
P |2 + |b2

P |2 + |T ∗b2
P |2 . |P|. (4)

Then T is bounded on L2.

Strategy: Chrsit’s argument does not work. Estimate
‖T (1P)‖L1(P) and ‖T ∗(1P)‖L1(P) and apply local T (1) theorem.



One can relax (2), to∫
P
|b1

P |p + |Tb1
P |q

′
+ |b2

P |q + |T ∗b2
P |p

′
. |P|

with 1 < p,q <∞.

AHMTT: “It is also straightforward to generalize [this result] to
Calderón-Zygmund operators which do not obey the perfect
dyadic cancellation condition, and instead obey a more
classical cancellation condition such as

|∇xK (x , y)|+ |∇yK (x , y)| . 1/|x − y |2.′′



One can relax (2), to∫
P
|b1

P |p + |Tb1
P |q

′
+ |b2

P |q + |T ∗b2
P |p

′
. |P|

with 1 < p,q <∞.

AHMTT: It is also straightforward (?) to generalize [this result]
to Calderón-Zygmund operators which do not obey the perfect
dyadic cancellation condition, and instead obey a more
classical cancellation condition such as

|∇xK (x , y)|+ |∇yK (x , y)| . 1/|x − y |2.

Problem: control on “boundary” integrals
∫

Tb1
P(x)b2

P′(x) dx
whenever P,P ′ are adjacent disjoint dyadic intervals?



Hofmann ’08 (Icm address). Thm true if∫
P
|b1

P |2+ε + |Tb1
P |2 + |b2

P |2+ε + |T ∗b2
P |2 . |P|.

Motivation: layer potentials St for elliptic equations:
Lu = −divA∇u on upper half space. For t 6= 0,

Tf (x) := ∂tSt f (x) =

∫
∂t Γ(x , t , y ,0)f (y) dy , x ∈ Rn.

A.-Alfonseca-Axelsson-Hofmann-Kim (2011): If A is real
symmetric then T is bounded on L2(Rn), uniformly in t .
Consequently, St is bounded from L2 to Ḣ1. (Compare Rosén)

Idea: use local T(b) above with b1
P = b2

P = c|P|1Pk (cP ,−`(P)),
where kX is the Poisson kernel at pole X , cP is the center of P.
Size estimates come from the solvability of the Dirichlet
problem in L2 proved by Jerison-Kenig. Mean condition is from
the CFMS estimate.



Hofmann (2008 Icm address). Thm true for CZ0 if∫
P
|b1

P |2+ε + |Tb1
P |2 + |b2

P |2+ε + |T ∗b2
P |2 . |P|

A.-Yang (2009) True in the subdual case 1/p + 1/q ≥ 1
(includes p = q = 2).
Idea: use the Beylkin-Coifman-Rokhlin algorithm to show any
CZO is a perfect CZO plus an Lp bounded operator (any
1 < p <∞).
Subdual condition arises from the fact that

∫
Tb1

P(x)b2
P′(x) dx

can be handled by Hölder’s inequality.



Hofmann (2008 Icm address). Thm true for CZO if∫
P
|b1

P |2+ε + |Tb1
P |2 + |b2

P |2+ε + |T ∗b2
P |2 . |P|

A.-Yang (2009) True in the subdual case 1/p + 1/q ≤ 1
(includes p = q = 2).
A.-Routin (2013) True, with additional technical condition in
supdual case 1/p + 1/q > 1.
Direct proof following AHMTT and additional technical
conditions to handle the boundary integrals and compensate
the impossibility of using Hardy’s inequality



Hofmann (2008 Icm address). Thm true for CZO if∫
P
|b1

P |2+ε + |Tb1
P |2 + |b2

P |2+ε + |T ∗b2
P |2 . |P|

A.-Yang (2009) True in the subdual case 1/p + 1/q ≤ 1
(includes p = q = 2).
A.-Routin (2013) True, with additional technical condition in
supdual case 1/p + 1/q > 1.
Hytönen-Nazarov (2013) True for any p,q under stronger
condition ∫

2P
|b1

P |p + |Tb1
P |q

′
+ |b2

P |q + |T ∗b2
P |p

′
. |P|

with 1 < p,q <∞, and 2P concentric enlargement of P.
idea:



Hofmann (2008 Icm address). Thm true for CZO if∫
P
|b1

P |2+ε + |Tb1
P |2 + |b2

P |2+ε + |T ∗b2
P |2 . |P|

A.-Yang (2009) True in the subdual case 1/p + 1/q ≤ 1
(includes p = q = 2).
A.-Routin (2013) True, with additional technical condition in
supdual case 1/p + 1/q > 1.
Hytönen-Nazarov (2013) True for any p,q under stronger
buffered condition∫

2P
|b1

P |p + |Tb1
P |q

′
+ |b2

P |q + |T ∗b2
P |p

′
. |P|

Martikainen-Mourgoglou-Tolsa (2015) buffered condition not
needed in some range of supdual exponents for antisymmetric
kernels (S.N.H.T.).
Hytönen-Martikainen (2012 : S.N.H.T. version of Hofmann’s
result: random dyadic structures



Hofmann (2008 Icm address). Thm true if∫
P
|b1

P |2+ε + |Tb1
P |2 + |b2

P |2+ε + |T ∗b2
P |2 . |P|

A.-Yang (2009) True in the subdual case 1/p + 1/q ≤ 1
(includes p = q = 2).
A.-Routin (2013) True, with additional technical condition in
supdual case 1/p + 1/q > 1.
Hytönen-Nazarov (2013) True for any p,q under stronger
buffered condition∫

2P
|b1

P |p + |Tb1
P |q

′
+ |b2

P |q + |T ∗b2
P |p

′
. |P|

Martikainen-Mourgoglou-Tolsa (2015) buffered condition not
needed in some range of supdual exponents for antisymmetric
kernels (S.N.H.T.).
Lacey-Vähäkangas (2014-2016) new arguments for perfect
CZ0.



Bon anniversaire, Guy.


