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On the set of quantum states:

What picture does one see, looking at a physical theory
from a distance, so that the details disappear?

Since quantum mechanics is a statistical theory, the most
universal picture which remains after the details are
forgotten is that of a convex set.

Bogdan Mielnik, (1981)
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Pure states in a finite dimensional Hilbert space HN

Qubit = quantum bit; N = 2, 〈ψ|ψ〉 = 1, |ψ〉 ∼ e iα|ψ〉
|ψ〉 = cos ϑ2 |1〉 + e iφ sin ϑ

2 |0〉
CP1 = S2, Bloch sphere of N = 2 pure states

Key feature: Quantum Superposition

define pure states |+〉 := 1√
2

(|0〉+ |1〉) and |−〉 := 1√
2

(|0〉 − |1〉)
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Unitary evolution in projective space

Space of pure states for an arbitrary (finite) N :

a complex projective space CPN−1 of 2N − 2 real dimensions.

Fubini-Study distance in CPN−1

DFS(|ψ〉, |ϕ〉) := arccos |〈ψ|ϕ〉|
Unitary evolution (determined by a Hamiltonian H)

Let U = exp(iHt). Then |ψ′〉 = U|ψ〉.
Since |〈ψ|ϕ〉|2 = |〈ψ|U†U|ϕ〉|2 any unitary evolution is an isometry

(with respect to any standard distance !)

Quantum Chaos: what happends for large N?

How an isometry may lead to a classically chaotic dynamics?
The limits t →∞ and N →∞ do not commute.
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A ’classical’ (non unitary-invariant) distance

Coherent state |x〉 defined for any point x of the classical space X

e.g. Displacement operator coherent state, |x〉 = Tx |0〉,
Probability distribution: Husimi distribution (Q-function)

Qρ(x) = 〈x |ρ|x〉, for a pure state ρ = |ψ〉〈ψ| one has Qψ(x) = |〈x |ψ〉|2

Monge distance between quantum states: DM(ρ, σ) = DM(Qρ,Qσ)

For two coherent states it gives the classical distance,
DM(|x〉, |y〉) = DM(Qx ,Qy ) = |x − y |. W. S lomczyński, K.Ż (1998)
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The set MN of mixed states (density matrices) of size N

definition

MN := {ρ : HN → HN ; ρ = ρ†, ρ ≥ 0,Trρ = 1}

Distances in the set of quantum states

a) Hilbert–Schmidt distance, DHS(ρ, σ) := [Tr(ρ− σ)2]1/2

b) trace distance, Dtr(ρ, σ) := 1
2Tr|ρ− σ|

c) Bures distance, DB(ρ, σ) :=
(
2[1−√F (ρ, σ)]

)1/2
,

where fidelity between two states reads (Uhlmann ’76, Jozsa ’94),

F (ρ, σ) := [Tr|√ρ√σ|]2 =
(
Tr
√√

ρ σ
√
ρ
)2
.

Warning! An alternative definition of fidelity
(without the square!) is sometimes used, F ′ =

√
F = Tr|√ρ√σ|
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Metrics in the space MN of quantum states

properties

a) Riemannian metric - related to a geodesic distance
b) monotone metric - the corresponding monotone distance Dmon does
not grow under the action of any quantum operation Φ,

Dmon

(
ρ, σ
) ≥ Dmon

(
Φ(ρ),Φ(σ)

)
(1)

Metric Hilbert–Schmidt Trace Bures
Is it Riemannian ? Yes No Yes
Is it monotone ? No Yes Yes

Theorem of Morozova and Chentsov ’90

There exist infinitely many monotone Riemannian metrics on MN ...
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Geometry of the set Quantum States
depends on the metric used:

Example: N = 2 – quantum states for a one–qubit system

M2 ≡ B3 – Bloch ball for Hilbert–Schmidt (Euclidean) metric

M2 ≡ 1
2 S3 – Uhlmann hemisphere for Bures metric
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Otton Nikodym & Stefan Banach,

talking at a bench in Planty Garden, Cracow, summer 1916
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Mixed quantum states = density matrices

Set MN of all mixed states of size N

MN := {ρ : HN → HN ; ρ = ρ†, ρ ≥ 0, Trρ = 1}
Example: N = 2, One–qubit states + Hilbert-Schmidt metric:

M2 = B3 ⊂ R3 - Bloch ball with all pure states at the boundary

The set MN is compact and
convex: ρ =

∑
i ai |ψi〉〈ψi |,

where ai ≥ 0 and
∑

i ai = 1.

It has N2 − 1 real
dimensions, MN ⊂ RN2−1.

What the set of all N = 3 mixed states looks like?

An 8–dimensional convex set with only 4–dimensional subset of pure
(extremal) states, which belong to its 7–dim boundary
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The set MN of quantum mixed states:

What it looks like for (for N ≥ 3)

?

An apophatic approach :
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KŻ (IF UJ/CFT PAN ) Geometry of Quantum Entanglement Aug. 31, 2017 15 / 59
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rotated edges of an equilateral triangle and its convex hull
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Vistula river and Wawel castle in Cracow
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The set MN of quantum mixed states for N ≥ 3

A constructive approach:

Analysis of its structure by studying its
2D and 3D cross-sections and projections.

The same tools are useful to investigate the structure of
the subsets of MN , namely sets of

a) separable states
and

b) maximally entangled states.
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Projections of the set MN onto a plane

Mathematical tool: Numerical Range Λ(A) of an operator

For any operator A acting on HN one defines its Numerical Range

(Wertevorrat) as a subset of the complex plane defined by:

Λ(A) = {〈x |A|x〉 : |x〉 ∈ HN , 〈x |x〉 = 1}. (2)

Hermitian case, A = A†

For any hermitian A with spectrum λ1 ≤ λ2 ≤ · · · ≤ λN its numerical
range forms an interval: the set of all possible expectation values of the
observable A among any normalized pure states, Λ(A) = [λ1, λN ].
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Numerical range and its properties

Compactness

Λ(A) is a compact subset of C.

Convexity: Hausdorf-Toeplitz theorem

- Λ(A) is a convex subset of C.

Example

Numerical range for random matrices of order N = 6
a) normal, b) generic (non-normal)
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Normal case: a projection of the classical simplex...

Normal matrix, ([A,A∗] = 0), of size N = 2 with spectrum {λ1, λ2}
Numerical range Λ(A) forms the interval [λ1, λ2] on the complex plane,

Examples for diagonal matrices A of size two and three

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
Density plot of numerical range of operator [1, 0; 0, i]

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
Density plot of numerical range of operator diag(1, i,−i)

Normal matrices of order N = 3 with spectrum {λ1, λ2, λ3}
Numerical range Λ(A) forms the triangle ∆(λ1, λ2, λ3) on the complex
plane.
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Numerical range for matrices of order N = 2

with spectrum {λ1, λ2}.
a) normal matrix, ([A,A∗] = 0), ⇒ Λ(A) = closed interval [λ1, λ2]

b) not normal matrix A ⇒ Λ(A) = elliptical disk with λ1, λ2 as focal
points and minor axis, d =

√
TrAA∗ − |λ1|2 − |λ2|2
(Murnaghan, 1932; Li, 1996).

Example: The Jordan matrix J =

[
0 1
0 0

]
.

Its numerical range forms a circular disk, Λ(J) = D(0, r = 1/2).

The set of N = 2 pure quantum states

A projection of the Bloch sphere S2 = CP1 onto a plane
forms an ellipse,

(which could be degenerated to an interval).
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Numerical range for N = 2

Non–normal matrices of size N = 2

Numerical range Λ(A) forms an (eliptical) disk on the complex plane:
projection of (empty!) Bloch sphere, S2 = CP1 on the complex plane.
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Density plot of numerical range of operator [0, 1; 0, 1/2]
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Wawel castle in Cracow
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Danuta & Krzysztof Ciesielscy theorem:
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Ciesielscy theorem: With probability 1− ε the bench Banach talked to
Nikodym in 1916 was localized in η-neighbourhood of the red arrow.
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Plate commemorating the discussion between
Stefan Banach and Otton Nikodym (Kraków, summer 1916)
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Shadows of three dimensional objects...
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Quantum States and Numerical Range

Classical States & normal matrices

Proposition 1.Let CN denote the set of classical states of size N, which
forms the regular simplex ∆N−1 in RN−1. Then the set of similar images
of orthogonal projections of CN on a 2–plane is equivalent to the set of
all possible numerical ranges Λ(A) of all normal matrices A of order N

(such that AA∗ = A∗A).

Quantum States & non–normal matrices

Proposition 2.Let MN denotes the set of quantum states size N
embedded in RN2−1 with respect to Euclidean geometry induced by
Hilbert-Schmidt distance. Then the set of similar images of
orthogonal projections MN on a 2-plane is equivalent to the set of all
possible numerical ranges Λ(A) of all matrices A of order N.
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Projections of the 8D set M3 onto a 2D plane

belong to one of four different classes specified e.g. by the number s of
flat segments of the boundary, s = 0, 1, 2, 3; Keeler et al. 1993
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3D projections = Joint Numerical Range Λ(A1,A2,A3)

N = 3: projections of a one–qutrit mixed states into 3D

For any triple of hermitian operators {A1,A2,A3} of size N = 3, find their
expectation values and define the 3D set called joint numerical range,

Λ(A1,A2,A3) =
(
〈ψ|A1|ψ〉, 〈ψ|A2|ψ〉, 〈ψ|Am|ψ〉

)
.

It gives a projection of the 8D set M3 of mixed states of a qutrit
into 3D. Examples:

There exist 9 classes of such projections of M3 into 3D
(K. Szymański, S. Weiss, K.Ż, 2016)
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Konrad Szymański producing a 3D joint numerical range
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Recall the shadows on the wall of the cave of Plato:

we do not understand all details of the 8D set M3 of quantum
states of size three, but at least we can study its 2D and 3D projections

How to classify possible shapes of JNR
of three Hermitian matrices A1,A2,A3 of size N = 3?
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To classify the 3D numerical ranges for each body we count:

a) the number s of flat segments in the boundary
b) the number e of flat faces (ellipses) in the boundary

the number of segments s and of ellipses e in boundaryKŻ (IF UJ/CFT PAN ) Geometry of Quantum Entanglement Aug. 31, 2017 38 / 59



Convex sets in high dimensions

How a cross-section of a 3–cube looks like??

How a generic cross-section of a n–cube looks like??

Dvoretzky theorem
A. Dvoretzky, Some results on convex bodies and Banach spaces (1961)

(Under some technical assumptions)
a generic cross-section of a compact, high dimensional, convex set almost
surely forms a disk !

Quand les cubes deviennent ronds
Webpage by Guillaume Auburn and Jos Leys
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KŻ (IF UJ/CFT PAN ) Geometry of Quantum Entanglement Aug. 31, 2017 39 / 59



Convex sets in high dimensions

How a cross-section of a 3–cube looks like??

How a generic cross-section of a n–cube looks like??

Dvoretzky theorem
A. Dvoretzky, Some results on convex bodies and Banach spaces (1961)

(Under some technical assumptions)
a generic cross-section of a compact, high dimensional, convex set almost
surely forms a disk !

Quand les cubes deviennent ronds
Webpage by Guillaume Auburn and Jos Leys
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Numerical range of random matrices

Non–hermitian Ginibre matrices of size N normalized as TrGG ∗ = N
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=

r

ρ

N = 10 N = 100 N = 1000
Numerical range and spectrum of random Ginibre matrices of size N.
Note circular disk of eigenvalues of Girko and the non–normality belt.

Result:
In the limit N →∞ the numerical range of a random Ginibre matrix G

converges (in the Hausdorff distance) to the disk of radius
√

2.

KŻ (IF UJ/CFT PAN ) Geometry of Quantum Entanglement Aug. 31, 2017 40 / 59



Random matrices & quantum states for a large size N

Theorem (Collins, Gawron, Litvak, KŻ, 2014)

Let R > 0 and let {XN}N be a sequence of complex random matrices or
order N such that for every θ ∈ R with probability one

lim
N→∞

||Re
(
e iθXN

)|| = R

Then with probability one

lim
N→∞

dH

(
Λ(XN),D(0,R)

)
= 0.

Example: For random Ginibre matrix G the operator norm ||.|| does not
depend on the phase θ and (upon the normalization used) converges to
R =

√
2. Hence the numerical range of G almost surely forms a disk of

radius R.
Relation to the Dvoretzky theorem !

=⇒ a generic projection of the set MN of mixed states on a plane
is close a disk (for large N).
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Where is physics ?

What is physics ?

Kick a ball !

It will stop at some point...

Buy an ice cream and wait a
while..

It will melt !

Create an entangled state and do

nothing...
It will decohere to a separable one.

KŻ (IF UJ/CFT PAN ) Geometry of Quantum Entanglement Aug. 31, 2017 42 / 59



Where is physics ?

What is physics ?

Kick a ball !

It will stop at some point...

Buy an ice cream and wait a
while..

It will melt !

Create an entangled state and do

nothing...
It will decohere to a separable one.
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Composed systems & entangled states

bi-partite systems: H = HA ⊗HB

separable pure states: |ψ〉 = |φA〉 ⊗ |φB〉
entangled pure states: all states not of the above product form.

Two–qubit system: N = 2× 2 = 4

Maximally entangled Bell state |ϕ+〉 := 1√
2

(
|00〉+ |11〉

)
Entanglement measures

For any pure state |ψ〉 ∈ HA ⊗HB define its partial trace σ = TrB |ψ〉〈ψ|.
Definition: Entanglement entropy of |ψ〉 is equal to von Neuman
entropy of the partial trace

E (|ψ〉) := −Tr σ lnσ

The more mixed partial trace, the more entangled initial pure state...
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Entanglement of two real qubits

Entanglement entropy at the thetrahedron of N = 4 real pure states
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Book published by Cambridge University Press in 2006,

II edition (with new chapters on multipartite
entanglement & discrete structures in the Hilbert space),

August 2017
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KŻ (IF UJ/CFT PAN ) Geometry of Quantum Entanglement Aug. 31, 2017 45 / 59



Entanglement of mixed quantum states

Mixed states of a bi-partite system, (A,B)

separable mixed states: ρsep =
∑

j pjρ
A
j ⊗ ρB

j (∗∗)
entangled mixed states: all states not of the above product form.

How to find,
whether a given density matrix ρ can be written in the form (**)
and is separable ?

The separability problem is solved only for the simplest cases of 2× 2
and 2× 3 problems...
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Positive partial transpose: Two–qubit mixed states

Peres – Horodeccy criterion (1996):
(I⊗ T )ρ = ρT2 ≥ 0 ⇔ ρ is separable.

The set of separable states of two–qubit system arises as an intersection of
M(4) and its mirror image with respect to partial transposition TA

(M(4)
)
.
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Two–qubit mixed states

The maximal ball inscribed into M(4) of radius r4 = 1/
√

12
centred at ρ∗ = 1/4 is separable !

thetrahedron of eigenvalues

K. Ż, P. Horodecki, M. Lewenstein, A. Sanpera, 1998
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Two–qubit mixed states

Degree of entanglement: a distance to the closest separable state

( E = Entanglement of formation)

K. Ż, M. Kuś, 2001
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Stefan Banach sitting at his bench close to the Wawel Castle

Sculpture: Stefan Dousa Fot. Andrzej Kobos
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Quantum maps

Quantum operation: linear, completely positive trace preserving map

Enviromental form

ρ′ = Φ(ρ) = TrE [U (ρ⊗ ωE ) U†] .

where ωE is an initial state of the environment while UU† = 1.

Kraus form

ρ′ = Φ(ρ) =
∑

i AiρA
†
i ,

where the Kraus operators satisfy
∑

i A
†
i Ai = 1 .
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A model discrete quantum dynamics

a) unitary dynamics (rotation), ρ′ = UρU†

b) decoherence (contraction), ρ′′ =
∑k

i Aiρ
′A†i

Two qubit model - N = 2× 2 = 4

a) free evolution: U = exp(itH) where H = σx ⊗ σy

(non-local unitary dynamics !)

variant b1) bistochastic channel: Φ(1/N) = 1/N,
One–qubit Pauli channel: k = 4, A1 =

√
1− ε 1⊗ 1,

A2 =
√
ε/3 1⊗ σx , A3 =

√
ε/3 1⊗ σy , A4 =

√
ε/3 1⊗ σz .

variant b2) non bistochastic channel:
One qubit amplitude damping channel, (decaying channel), k = 2,
where A1 = 1⊗ B1 and A2 = 1⊗ B2

with B1 =

(
1 0
0
√

p

)
and B2 =

(
0
√

1− p
0 0

)
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Dynamics of entanglement

Entanglement of formation E as a function of time tn
for some initially pure states of a two–qubit system.

revivals of entanglement
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Dynamics of entanglement

Entanglement of formation E as a function of time tn
for some initially pure states of a two–qubit system.

sudden death of entanglement

K. Ż, P. Horodecki, M. Horodecki, R. Horodecki, Phys. Rev. A 2001
the name sudden death coined by Yau and Eberly,

who reported this effect in 2003.
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Dynamics of Entanglement and separable shadow

Trajectories of quantum dynamics on the complex plane

z(t) = 〈ψ(t)|A|ψ(t)〉

−0.4 0.0 0.4
<

−0.2

0.0

0.2

=
a) sketch of the problem; b) data for 2× 2 system

with initial separable pure state |ψ(0)〉
and suitably chosen (non–Hermitian !) operator A of size N = 4

visualize possible behaviour of quantum entanglement...
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Quantum computing and coping with noise

Alternative 1 (optimistic)

Gil Kalai (2016)
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Quantum computing and coping with noise

Alternative 2 (pessimistic)

Gil Kalai (2016)
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Concluding Remarks

The set MN of mixed quantum states of size N forms a scene for
which the screenplays of quantum information processing are
written.
It is useful for any author to learn about the structure & geometry
of the scene.

As the set MN has N2 − 1 dimensions for N ≥ 3 it is possible to
investigate it by studying the numerical range:

its projections onto a 2−planes or 3−hyper-planes.

Geometric approach is usefull to study quantum entanglement
and its dynamics. It allows one to explain the effects of
entanglement revival and entanglement sudden death.

More work is still required to understand the consequences of noise
and decoherence for known schemes of quantum computation.
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Bench commemorating the discussion between
Otton Nikodym and Stefan Banach (Kraków, summer 1916)

Sculpture: Stefan Dousa Fot. Andrzej Kobos

opened in Planty Garden, Cracow, Oct. 14, 2016
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