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– Probabilistic curvature via optimal transport

– Extension to metric measure spaces (Sturm, Lott–Villani)

• Another appearance of information-theoretic geometry

– The thin shell property of Gaussians

– Concentration of information

• Concluding remarks



Isoperimetry in Geometry

Let (M, g) be a (connected, smooth) Riemannian manifold of dimension
n ≥ 2. Let dv be the Riemannian volume element, so that the volume of
an open set A ⊂ M is vol(A) =

∫
A dv. Say that A is “nice” if we have a

meaningful notion of surface area of A, e.g., if

σ(∂A) = lim
ε→0

vol(Aε)− vol(A)

ε

exists, where Aε = {x ∈ M : d(x, y) ≤ ε for some y ∈ A} and d denotes
the distance function on M

Question: If we consider all “nice” sets of fixed volume c, what are the sets
of minimal surface area?

Model examples

• Euclidean space Rn: The isoperimetric extremizers are Euclidean balls

• Sphere Sn: The isoperimetric extremizers are spherical caps (geodesic balls)

Why important? Central geometric question, with many applications to
physics. . . (e.g., shape of soap bubbles)



The role of curvature

The Lévy-Gromov comparison theorem [Gromov ’86]

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 2, and
dµ = 1

vol(M)dv be the normalized volume element. Assume that the Ricci

curvature is bounded from below by k > 0. If S is the n-sphere with
constant Ricci curvature k, and A ⊂ M is open with volM(A) = volS(B)
with B a spherical cap on S, then

σM(∂A) ≥ σS(∂B)

Recall

• The Ricci curvature tensor is a symmetric bilinear form on the tangent space of M ,

representing the amount by which the volume of a small wedge of a geodesic ball in a

curved Riemannian manifold deviates from that of the standard ball in Euclidean space

• The Ricci curvature is determined by the sectional curvatures of a Riemannian manifold,

but generally contains less information

• The model spaces Rn, Sn and Hn each have constant sectional curvature; in particular,

the Ricci curvature of the n-sphere with radius r is the constant n−1
r2

• We say that Ricci curvature is bounded from below by k (or Ric ≥ k) if Ric(ξ, ξ) ≥ k

for every ξ ∈ TpM and every p ∈M



The importance of curvature lower bounds

Multiple comparison theorems for nonnegative Ricci curvature

• Lévy-Gromov comparison theorem: applies for Ricci curvature bounded
from below by positive constant

• Bonnet-Myers comparison theorem: If M is (geodesically) complete and

Ric ≥ k > 0, then its diameter is at most π
√

n−1
k (which is the diameter

of a sphere of constant Ricci curvature k)

• Bishop-Gromov inequality: If M is complete and Ric ≥ k ∈ R, then for
any r > 0, the volume of a geodesic ball of radius r in M is at most the
volume of a geodesic ball of radius r in the corresponding model space
(of constant sectional curvature, i.e., rescaled version of Rn, Sn or Hn)

On the other hand. . .

[Lohkamp ’94] showed that if n ≥ 3, then any n-manifold can be equipped
with a complete Riemannian metric that has negative Ricci curvature. Thus
Ricci curvature upper bounds can have no topological implications when
n ≥ 3, which means one cannot have (for example) a volume comparison
theorem



Isoperimetry in Probability

Let µ be a probability measure on Rn. For A ⊂ Rn open, we say A is “nice”
if the surface area of A with respect to µ, defined as

µ+(∂A) = lim
ε→0

µ(Aε)− µ(A)

ε
,

exists, where Aε = {x ∈ Rn : ‖x− y‖ ≤ ε for some y ∈ A}

Question: If we consider all “nice” sets A with µ(A) = c, what are the sets
of minimal surface area w.r.t. µ?

Model example

Let γ be the standard Gaussian measure N(0, In) on Rn, i.e., with probability density

function

φ(x) =
1

(2π)
n
2
e−
|x|2
2

Then the isoperimetric extremizers are half-spaces [Sudakov–Tsirelson ’74, Borell ’75]

Why important? Enormous implications in probability (also statistics,
physics, computer science), especially via the concentration phenomenon. . .



A probabilistic comparison theorem

Consider the Gaussian density φ(x) = 1

(2π)
n
2
e−
|x|2
2 , and observe that log φ(x) is just a

quadratic function and hence has constant Hessian: in fact,

Hess(− log φ(x)) = Hess

[
|x|2

2
+
n

2
log(2π)

]
= In

The Bakry–Ledoux comparison theorem [Bakry–Ledoux ’96]

Let µ be a probability measure on Rn with density function of the form e−U ,
where U is C2 and Hess(U) ≥ In. If A is a nice set with µ(A) = γ(B),
with B being a half-space in Rn, then

µ+(∂A) ≥ γ+(∂B)

Remarks

• This resembles the Lévy-Gromov comparison theorem, with the Gaussian replacing the

sphere and Hess(U) replacing the Ricci curvature

• Having any constant positive lower bound on Hess(U) works if we take the Gaussian of

corresponding variance



Is there a probabilistic notion of curvature?

It seems that a lower bound on Hess(U) for a probability density function e−U

on Rn (in Probability) has similar effects to a lower bound on Ricci curvature
for Riemannian manifolds (in Geometry). . . Can a theory of curvature be built
in probability?

The Bakry–Émery framework [Bakry–Émery ’85]

Builds a probabilistic theory of curvature lower bounds, BUT it applies not directly to

measure spaces but to Markov semigroups defined on them in a nontrivial way.

• Motivated by the example of Brownian motion on a manifold (or more generally stochas-

tic diffusions), they consider a class of semigroups of operators that can be specified

by a generator and that have a probabilistic interpretation as conditional expectations

under a Markov process

• For a connected Riemannian manifold (M, g) equipped with the measure e−Udv, they

can construct an associated Markov semigroup whose curvature is bounded below (in

the Bakry-Émery sense) by k if

Hess(U) + Ric ≥ kIn

• This object is now often called the Bakry-Émery-Ricci tensor, and there exist several

comparison theorems for it providing generalizations of those in classical Riemannian

geometry [Lott ’03, Bakry–Qian ’05, Wei–Wylie ’09, . . . ]



Log-concavity

A probability density function f on Rn is log-concave if

f (αx + (1− α)y) ≥ f (x)αf (y)1−α,

for each x, y ∈ Rn and each 0 ≤ α ≤ 1

Remarks

• A variety of densities is log-concave, including the uniform density on any compact,

convex set, the (one-sided or two-sided) exponential density, and any Gaussian

• Deeply studied in probability, statistics, optimization and geometry

• The intuition is that log-concave densities resemble Gaussian densities, e.g., several

functional inequalities (Poincaré, logarithmic Sobolev) that hold for Gaussians also hold

for appropriate subclasses of log-concave distributions

• Not surprising in hindsight: log-concave measures are precisely those that give Rn

nonnegative curvature!
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Isoperimetry in Rn: Brunn-Minkowski inequality

The most basic measure on Rn is the Lebesgue measure voln. One way to
understand isoperimetry here is via the Brunn-Minkowski inequality

Brunn-Minkowski inequality

For Borel sets A,B in Rn,

voln(λA + (1− λ)B) ≥ voln(A)λvoln(B)1−λ

where λA + (1− λ)B = {λx + (1− λ)y : x ∈ A, y ∈ B}

Remarks

• To see the isoperimetric inequality as a consequence, simply takeB to be a Euclidean ball

of vanishing radius in the equivalent form voln(A+B)1/n ≥ voln(A)1/n+ voln(B)1/n. . .

• The Brunn-Minkowski inequality motivates the definition of a log-concave measure;

the measure µ is said to be log-concave if

µ(αA + (1− α)B) ≥ µ(A)αµ(B)1−α

for any Borel sets A,B ⊂ Rn and each 0 ≤ α ≤ 1

• An absolutely continuous (w.r.t Lebesgue measure) probability measure µ on Rn is

log-concave iff it has a log-concave density [Prékopa ’73, Borell ’74]



The Prékopa–Leindler inequality

If f, g, h : Rn → [0,∞) are integrable functions satisfying, for a given
λ ∈ (0, 1),

h(λx + (1− λ)y) ≥ fλ(x)g1−λ(y)

for every x, y ∈ Rn, then∫
h ≥

(∫
f

)λ(∫
g

)1−λ

Remarks

• Observe that f = 1A, g = 1B and h = 1λA+(1−λ)B satisfy the hypothesis; in this case,

the conclusion is precisely the Brunn-Minkowski inequality; so the Prékopa–Leindler

inequality is often called the functional version of the Brunn-Minkowski inequality

• It can be seen as a reversal of Hölder’s inequality, which can be written as(∫
f

)λ(∫
g

)1−λ
≥
∫
fλg1−λ;

the upper bound is in terms of the integral of

h∗(z) = ess sup{fλ(x)g1−λ(y) : λx + (1− λ)y = z}



The magic of the Prékopa-Leindler inequality

If f, g, h : Rn → [0,∞) are integrable functions satisfying, for a given λ ∈ (0, 1),

h(λx + (1− λ)y) ≥ fλ(x)g1−λ(y)

for every x, y ∈ Rn, then ∫
h ≥

(∫
f

)λ(∫
g

)1−λ

Implications

• If f, g, h satisfy the hypothesis, then so do fe−U , ge−U and he−U , when
U convex. Thus If f, g, h : Rn → [0,∞) are integrable functions satis-
fying, for a given λ ∈ (0, 1),

h(λx + (1− λ)y) ≥ fλ(x)g1−λ(y)

for every x, y ∈ Rn, then∫
hdµ ≥

(∫
fdµ

)λ(∫
gdµ

)1−λ

when µ has a log-concave density

• In particular, any measure with log-concave density is log-concave



Curvature via the Prékopa-Leindler inequality

Let µ be a probability measure on Rn with a density of form e−V , where
Hess(V ) ≥ c ∈ R. Suppose f, g, h : Rn → [0,∞) are integrable functions
satisfying, for a given λ ∈ (0, 1),

h(λx + (1− λ)y) ≥ exp

{
− cλ(1− λ)

|x− y|2

2

}
fλ(x)g1−λ(y)

for every x, y ∈ Rd, then∫
hdµ ≥

(∫
fdµ

)λ(∫
gdµ

)1−λ
.

Remarks

• Interpret geometrically for sets

• Implies many consequences of positive curvature such as log-Sobolev in-
equalities etc. [Bobkov-Ledoux ’00]

• [Cordero-McCann-Schmuckenschlager ’06] extended this to weighted Rieman-
nian manifolds under lower bound on Bakry-Émery-Ricci tensor



Relative Entropy

Suppose M is a space equipped with a reference measure `. Suppose prob-
ability measures µ and ν have densities f and g with respect to `. Then the
relative entropy between µ and ν is defined by

D(µ‖ν) = D(f‖g) =

∫
f (x) log

f (x)

g(x)
d`(x)

For any µ, ν, D(µ‖ν) ≥ 0, with equality iff µ = ν

Why is it relevant?

• Relative Entropy is a very useful notion of “distance” between probability
measures (non-negative, and dominates several of the usual distances,
although non-symmetric)

• Specifically one has Pinsker’s inequality: if dTV (µ, ν) := ‖f − g‖L1(`) is

the total variation distance, then dTV (µ, ν)2 ≤ 2D(µ‖ν)



Wasserstein distance

Suppose (M,d) is a metric space, and we have probability measures µ and
ν on M . Let C(µ, ν) be the set of all couplings of µ and ν, i.e., the set of all
probability measures on M ×M with first marginal µ and second marginal
ν. The Wasserstein distance between µ and ν is defined by

W2(µ, ν)2 = inf
π∈C(µ,ν)

∫
M×M

d(x, y)2dπ(x, y)

Remarks

• This is a metric on the space of probability measures with finite second moment

• Can be thought of as the minimal cost of transporting material from a configuration

distributed according to µ to one distributed according to ν

• Remarkable results of Brenier and McCann imply that if µ and ν are “nice” probability

measures on Rn, then the optimal coupling has a particularly nice description

• Allows for an infinitesimal description of Wasserstein distance, and an interpretation of

it as the length of the geodesic between µ and ν in the space of probability measures. In

particular, one has the displacement interpolation µs with s ∈ [0, 1] such that µ0 = µ

and µ1 = ν



Displacement convexity

Let µs be the displacement interpolation between µ and ν. A functional E
on the space of probability measures is said to be K-displacement convex if

(1− s)E(µ0) + sE(µ1)− E(µs) ≥
K

2
s(1− s)W 2

2 (µ0, µ1)

Remarks

• In particular, E is 0-displacement convex if E(µs) is convex in s ∈ [0, 1]
along each displacement interpolation path



Geometry of metric spaces equipped with measures

Basic idea

• For a Riemannian manifold with Riemannian volume m,

Ric(M) > K ⇐⇒ D(·‖m) is K-displacement-convex on P2(M)

[Otto-Villani ’00, Cordero-McCann-Schmuckenchlager ’01-’06, von Renesse-Sturm ’05]

• The entropy condition above only uses the metric structure. Hence, for
any metric measure space, say that it has “Ricci curvature bounded from
below” if this convexity of entropy holds. Is this a sensible definition?

• Answer: Yes [Sturm ’05-’06, Lott-Villani ’09]



The work of Sturm and Lott–Villani

• Extends the notion of curvature lower bound via displacement convexity
of relative entropy to a general class of metric measure spaces

• Proves remarkable closure properties under Gromov-Hausdorff conver-
gence of the set of metric measure spaces with a given curvature lower
bound

• Finally provides a synthetic notion of curvature for metric measure spaces
without demanding additional infrastructure such as Markov diffusion
semigroups on the space

• In fact, they provide a more general curvature-dimension criterionCD(K,N)
for metric measures; these hold for Riemannian manifolds iff the manifold
has dimension at most N and curvature at least K

•More recently, a number of works [Ambrosio–Gigli–Savare ’14–’15, Erbar–Kuwada–

Sturm ’15, . . . ] have noted that one can actually prove equivalence between
Bakry-Émery-type curvature conditions and Lott–Sturm–Villani-type cur-
vature conditions
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High-dimensional Gaussians lie in a thin shell

Let Z ∼ N(0, In), i.e., its density on Rn is

φ(x) =
1

(2π)
n
2
e−
|x|2
2

When the dimension n is large, the distribution of Z is highly concentrated
around the sphere of radius

√
n: note E|Z|2 =

∑n
i=1EZ

2
i = n and

Var(|Z|2) = Var

( n∑
i=1

Z2
i

)
=

n∑
i=1

Var(Z2
i ) = 2n

so that the standard deviation of |Z|2 is
√

2n, much smaller than the mean
n of |Z|2

Can also express this concentration property is through a deviation inequality (Chernoff

bound, since |Z|2/n is just the empirical mean of i.i.d. random variables):

P

{
|Z|2

n
− 1 > t

}
≤ exp

{
− n

2
[t− log(1 + t)]

}
for the upper tail, and a corresponding upper bound on the lower tail



Thin shells beyond Gaussians?

Like many other facts about Gaussian measures, does this concentration
property extend to log-concave measures?

Two possible formulations

• We say that X is isotropic if Cov(X) = In (this ensures the normalization E|X|2 = n)

Q: Is there a universal constant C such that Var(|X|2) ≤ Cn for every
isotropic, log-concave X?

“Thin shell conjecture” in convex geometry, related to Bourgain’s hyperplane conjecture

and KLS conjecture. Best known bound due to [Lee-Vempala ’16] is Var(|X|2) ≤ Cn3/2

• Since − log φ(x) = n
2 log(2π) + |x|2

2 , the quantity that concentrates in Gaussian case,

namely |Z|2, is essentially the logarithm of the Gaussian density function

Q: Is there a universal constant C such that

Var(− log f (X)) ≤ Cn

for every log-concave X on Rn?



Entropy and Information Content

Let X be a random vector in Rn, with density f . The random variable

h̃(X) = − log f (X)

may be thought of as the information content of X

Discrete case: h̃(X) is the number of bits needed to represent X by an optimal

coding scheme [Shannon ’48]

Continuous case: No coding interpretation, but may think of it as the

log likelihood function in a nonparametric statistical model

The entropy of X is defined by

h(X) = −
∫
f (x) log f (x) dx = Eh̃(X)

Remarks

• Usual abuse of notation: we write h(X) even though the entropy is a
functional depending only on the distribution of X

• h(X) takes values in the extended real line [−∞,+∞] (if it exists)



Optimal Varentropy bound for log-concave measures

The varentropy of a random vector X is defined as V (X) = Var(h̃(X))

Theorem: Given a random vector X in Rn with log-concave density f ,

V (X) ≤ n

Remarks

• The bound does not depend on f– it is universal over the class of log-
concave densities

• The bound is sharp: if X ∼ f (x) = e−
∑n
i=1 xi1{x1,...,xn≥0},

then V (X) = Var[
∑n

i=1Xi] = n

In fact, V (X) = n also holds for f (x) ∝ e−‖x‖K for any norm ‖ · ‖K
• The distribution of h̃(X) − h(X) is invariant under any affine transfor-

mation of Rn; hence the varentropy V (X) is also affine-invariant

• Discovered independently by [Nguyen ’13] and [Wang ’14] in their Ph.D. the-
ses, improving [Bobkov–M.’11]. Simplest proof due to [Fradelizi–M.–Wang ’16];
another given by [Bolley–Gentil–Guillin ’15]



Concentration of h̃(X)

Theorem 2: [Fradelizi–M.–Wang ’16] If X has log-concave density f on
Rn, then for any t > 0,

P{h̃(X)− h(X) ≥ nt} ≤ e−nr(t)

P{h̃(X)− h(X) ≤ −nt} ≤ e−nr(−t)

where

r(u) =

{
u− log(1 + u) for − 1 < u <∞
+∞ for u ≤ −1

Remarks

• The probability bound does not depend on f– it is universal over the class of log-

concave densities

• Note that the function r is convex on R and has a quadratic behavior in the neighbor-

hood of 0 (r(u) ∼0
u2

2 ) and a linear behavior at +∞ (r(u) ∼∞ u)

• The moment generation function bound is sharp, and a product of exponential distri-

butions is again extremal

• Improves significantly the results of [Bobkov–M.’11], who first showed concentration of

information in log-concave setting



Typical Sets

• The Theorem says that for a random vector X in Rn with log-concave
density f , 1

n log f (X) is highly concentrated about its mean

• For fixed ε > 0, define the “typical set” by

Aε = {x ∈ Rn : e−h(X)−nε ≤ f (x) ≤ e−h(X)+nε},
i.e., this is the region where 1

n log f (X) deviates from its mean by not
more than ε

• The typical set can be thought of as the effective support of the distri-
bution of X , since X lies in it with high probability

•Moreover, the distribution of X itself is effectively the uniform distri-
bution on the typical set (since f (X) is trapped in a certain range on
it)



Typical Sets: A Picture

X is effectively uniformly distributed on the typical set, which is the annulus
between two nested convex sets

[Why? Consider the “one-sided” typical set

{x ∈ Rn : f(x) ≥ C} = {x ∈ Rn : − log f(x) ≤ − logC}

where C = e−h(X)−nε, as an effective support. This is a convex set.]

Well known example: Standard Gaussian lives effectively in a thin shell
around the Euclidean sphere of radius

√
n



Summary

• Notions of curvature are closely related to isoperimetry and concentration
results in both Geometry and Probability

•While one framework for curvature lower bounds in the setting of Markov
semigroups was provided by Bakry and Émery, more recently a powerful
framework has emerged for metric measure spaces due to Lott–Sturm–
Villani

• The Lott–Sturm–Villani framework relies on a convexity property of the
relative entropy functional

• Entropy also plays other roles in understanding the geometry of probability
measures

Thank you for your attention!

◦ − ◦ − ◦


