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Maximum entropy on metric spaces


 Let p be a probability distribution on a finite metric space. There is a
natural definition of the entropy Hqppq of order q P r0,8s.


 When dpx , yq � 8 for all x � y , it reduces to Rényi entropy of order q
(e.g. Shannon when q � 1).


 Theorem: There is a single distribution p maximizing Hqppq for all q
simultaneously. (It’s not uniform!) And supp Hqppq is the same for all q.


 Almost always, the maximum entropy distribution is unique. So:

Almost every finite metric space comes with a
canonical probability distribution.

The result probably extends to compact metric spaces.
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it is there whether we like it or not.

We’ll do this using some category theory. . .
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What is category theory?

Category theory takes a bird’s eye view of mathematics.

From high in the sky, we can spot patterns that are impossible to detect
from ground level.

It makes analogies systematic and precise.

What category theory I’ll need in this talk:


 starting about half-way through: category, functor, natural
transformation, monoidal category.


 right at the end: a bit more.
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1. Operads and their algebras



The definition of operad

(i) composition: for each k, n1, . . . , nk P N, a
function

On � Ok1 � � � � � Okn ÝÑ Ok1�����kn

pθ, φ1, . . . , φnq ÞÝÑ θ � pφ1, . . . , φnq

(ii) unit: an element 1 P O1

θ P O3

φ1 φn

θ
���

� � �
��� ���

satisfying associativity and unit axioms.

(Then every tree has a unique composite.)
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Examples of operads


 The terminal operad O � 1 has On � t
u for all n.


 Given a monoid M (semigroup with identity, ‘group without inverses’),

get operad OpMq with pOpMqqn �

#
M if n � 1,

H otherwise.


 The operad of polynomials P over a field k has Pn � krx1, . . . , xns.
Composition is given by substitution and reindexing: e.g. if

φ1 � 2x1x3 � x2 P P3, φ2 � x1 � x2x3x4 P P4,

θ � x2
1 � x3

2 P P2

then
θ � pφ1, φ2q � p2x1x3 � x2q

2 � px4 � x5x6x7q
3 P P7.
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Example: the operad of simplices

The operad of simplices ∆ has

∆n �
 

probability distributions on t1, . . . , nu
(
� ∆n�1.

Composition: given

q1 � pq1
1 , . . . , q

1
k1
q, . . . , qn � pqn

1 , . . . , q
n
kn
q,

p � pp1, . . . , pnq,

define

p � pq1, . . . ,qnq � pp1q1
1 , . . . , p1q1

k1 , . . . , pnqn
1 , . . . , pnqn

knq.

E.g.: p � � p12 ,
1
2q, q1 � � p16 , . . . ,

1
6q, q2 � � p 1

52 , . . . ,
1
52q.

Then
p � pq1,q2q � p 1

12 , . . . ,
1
12loooomoooon

6

, 1
104 , . . . ,

1
104looooomooooon

52

q P ∆58.
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Algebras for an operad

Fix an operad O.

An O-algebra is a set A together with a map

θ : An ÝÑ A

for each n P N and θ P On, satisfying action-like axioms:

(i) composition, (ii) unit.

Examples:

a. When O is the terminal algebra 1, an O-algebra is exactly a monoid.

b. An OpMq-algebra is a set with an M-action.

c. Let A � Rd be a convex set. Then A becomes a ∆-algebra as follows:
given p P ∆n, define

p : An ÝÑ A
pa1, . . . , anq ÞÝÑ

°
i pia

i .
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Categorical algebras for an operad

Fix an operad O.

Extending the definition in the natural way, we can consider O-algebras in
any category with finite products (not just Set).

A categorical O-algebra is an O-algebra in Cat.

Explicitly, it is a category A together with a functor

θ : An ÝÑ A

for each n P N and θ P On, satisfying action-like axioms.

Examples:

a. A categorical algebra for the operad 1 is a strict monoidal category.

b. A categorical OpMq-algebra is a category with an M-action.

c. Let A be a linear subspace of pRd ,�, 0q. We can view A as a one-object
category, whose maps are the elements of A and with � � �.
It is a categorical ∆-algebra via convex combinations, as defined above.
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Maps between categorical algebras for an operad

Fix an operad O and categorical O-algebras B and A.

A

lax

map B ÝÑ A is a functor G : B ÝÑ A

together with a natural
transformation

Bn Gn
//

θ
��

An

θ
��

B
G

// A

for each n P N and θ P On, satisfying axioms.

Explicitly: it’s a functor G together with a map

γθ,b1,...,bn : θ
�
Gb1, . . . ,Gbn

�
ÝÑ G

�
θpb1, . . . , bnq

�
for each θ P On and b1, . . . , bn P B, satisfying naturality and axioms on:

(i) composition, (ii) unit.
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2. Internal algebras



Internal algebras in a categorical algebra for an operad

Fix an operad O and a categorical O-algebra A.

Write 1 for the terminal categorical O-algebra.

Definition (Batanin): An internal algebra in A is a lax map 1 ÝÑ A.

Explicitly: it’s an object a P A together with a map

γθ : θpa, . . . , aq ÝÑ a

for each n P N and θ P On, satisfying axioms on

(i) composition, (ii) unit.

Examples:

a. Let O � 1. Let A be a strict monoidal category.
An internal O-algebra in A is just a monoid in A.

b. Let O � OpMq. Let A be a category with an M-action.
An internal O-algebra in A is an object a P A with a map
γm : m � a ÝÑ a for each m P M, satisfying action-like axioms.
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Topologizing everything

Everything so far can be done in the world of topological spaces instead of
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Explicitly, this means that throughout, we add a condition

(iii) continuity

to the conditions (i) and (ii) that appear repeatedly.
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The theorem

Recall: we have


 the (topological) operad ∆ � p∆nqnPN of simplices


 the (topological) categorical ∆-algebra R � pR,�, 0q.

We just saw that an internal algebra in the categorical ∆-algebra R
is a sequence of functions

�
∆n ÝÑ R

�
nPN satisfying certain axioms.

One famous sequence of functions
�
∆n ÝÑ R

�
nPN is Shannon entropy,

H : p ÞÑ �
¸
i

pi log pi .

Theorem

The internal algebras in the categorical ∆-algebra R are precisely the scalar
multiples of Shannon entropy.
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Theorem

The internal algebras in the categorical ∆-algebra R are precisely the scalar
multiples of Shannon entropy.

Explicitly, this says: take a sequence of functions
�
γ : ∆n ÝÑ R

�
nPN.

Then γ � cH for some c P R if and only if γ satisfies:

(i) composition: γ
�
p � pq1, . . . ,qnq

�
� γppq �

°
i piγpq

i q

(ii) unit: γ
�
p1q

�
� 0

(iii) continuity: each function γ is continuous.

Proof: This explicit form is almost equivalent to a 1956 theorem of Faddeev,
except that he also imposed a symmetry axiom (which here is redundant). l
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4. Low-tech corollary

(with John Baez and Tobias Fritz)



The free categorical algebra containing an internal algebra

Thought: A monoid in a monoidal category A is the same thing as a lax
monoidal functor 1 ÝÑ A.

But it’s also the same as a strict monoidal functor D ÝÑ A, where
D � (finite totally ordered sets).

That is: D is the free monoidal category containing a monoid.

We can try to imitate this for algebras for operads other than 1, such as ∆.

Fact: The free categorical ∆-algebra containing an internal algebra is nearly
the category FinProb in which:


 an object pX ,pq is a finite set X with a probability measure p


 the maps are the measure-preserving maps (‘deterministic processes’).

So, an internal ∆-algebra in pR,�, 0q is a functor FinProb ÝÑ pR,�, 0q
satisfying certain axioms.
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An explicit characterization of entropy

Corollary (with John Baez and Tobias Fritz, Entropy (2011))

Let

L : tmeasure-preserving maps of finite probability spacesu ÝÑ R

be a function that ‘measures information loss’, that is, satisfies:


 Lpg � f q � Lpf q � Lpgq �
f
ÝÑ �

g
ÝÑ �


 L
�
λf ` p1 � λqf 1

�
� λLpf q � p1 � λqLpf 1q :

f //
f 1

// :


 Lpf q � 0 if f is invertible


 L is continuous.

Then there is some constant c P R such that

L
�
pX ,pq

f
ÝÑ pY ,qq

	
� c �

�
Hppq � Hpqq

�
for all f .
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 Given an operad O and an O-algebra A in Cat, there is a general
concept of internal algebra in A.

� Applied to the terminal operad 1, this gives the concept of (internal)
monoid in a monoidal category.

� Applied to the operad ∆ of simplices and its algebra pR,�, 0q in Cat, it
gives the concept of Shannon entropy.

So: entropy is inevitable in the topological/algebraic context.


 Given an operad O, we can form the free categorical O-algebra
containing an internal algebra.

� When O � 1, this is the category of finite totally ordered sets.

� When O � ∆, this is the category of finite probability spaces (nearly).

This gives a new and entirely explicit characterization of Shannon
entropy.
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