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Entropy of a Gas

S = Entropy Q= Heat Tr:
T = Temperature

- AQ

2nd Law: S2= 54 = o

Differential 2nd Law: dS = 99

n -

H = Enthalpy Vv = Volume p
Differential 1st Law: dQ =dH - V

C = Heat Capacity R = Gas Coi

frnnctant nroccursy
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Second Law of Thermodynamics

ENTROPY (simplicity) increases

in closed system

C_= Heat Capacity
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Category theory takes a bird's eye view of mathematics.

From high in the sky, we can spot patterns that are impossible to detect
from ground level.

It makes analogies systematic and precise.

What category theory I'll need in this talk:

e starting about half-way through: category, functor, natural
transformation, monoidal category.

e right at the end: a bit more.
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An operad O is a sequence (Op)nen Of sets together with:

(i) composition: for each k,ny,...,nx €N, a
function
On x Okl Koo X Okn - Okl"r""‘rkn

6,6L,....6") > Bo(oh....0")
(ii) unit: an element 1 € Oy

satisfying associativity and unit axioms.

(Then every tree has a unique composite.)
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Examples of operads

o The terminal operad O =1 has O, = {e} for all n.

e Given a monoid M (semigroup with identity, ‘group without inverses'),

M ifn=1

get operad O(M) with (O(M)), = " _’
5 otherwise.

e The operad of polynomials P over a field k has P, = k[x1,...,Xp].
Composition is given by substitution and reindexing: e.g. if

P = 2x1x3 — x2 € P3, ¢* = x1 + xox3%a € Pa,
0= X12 + XS’ € P,

then
fo (¢1, ¢>2) = (2x1x3 — X2)2 + (xa + X5X6X7)3 € P;.
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Algebras for an operad
Fix an operad O.

An O-algebra is a set A together with a map
0: A" — A
for each n € N and 6 € O,, satisfying action-like axioms:

(i) composition, (ii) unit.

Examples:

a. When O is the terminal algebra 1, an O-algebra is exactly a monoid.
b. An O(M)-algebra is a set with an M-action.
c. Let A< R? be a convex set. Then A becomes a A-algebra as follows:

given p € A, define
p: Al —> A
(al" "7an) — Zi Pia’-
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Categorical algebras for an operad
Fix an operad O.

Extending the definition in the natural way, we can consider O-algebras in
any category with finite products (not just Set).

A categorical O-algebra is an O-algebra in Cat.
Explicitly, it is a category A together with a functor

6: A" — A

for each n € N and 6 € O,, satisfying action-like axioms.

Examples:

a. A categorical algebra for the operad 1 is a strict monoidal category.
b. A categorical O(M)-algebra is a category with an M-action.

c. Let A be a linear subspace of (]Rd, +,0). We can view A as a one-object
category, whose maps are the elements of A and with o = +.
It is a categorical A-algebra via convex combinations, as defined above.
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Maps between categorical algebras for an operad

Fix an operad O and categorical O-algebras B and A.

A lax map B — A is a functor G: B — A together with a natural
transformation

B" —> A"

B——A

for each n € N and 6 € O,, satisfying axioms.

Explicitly: it's a functor G together with a map
Yopr,..pn: O(GbY, ..., Gb") —> G(O(b',...,b")
for each § € O, and b',. .., b" € B, satisfying naturality and axioms on:

(i) composition, (i) unit.
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Internal algebras in a categorical algebra for an operad
Fix an operad O and a categorical O-algebra A.

Write 1 for the terminal categorical O-algebra.
Definition (Batanin): An internal algebra in A is a lax map 1 — A.

Explicitly: it's an object a € A together with a map
v9: 0(a,...,a) — a
for each n € N and 6 € O,, satisfying axioms on

(i) composition, (i) unit.

Examples:

a. Let O = 1. Let A be a strict monoidal category.
An internal O-algebra in A is just a monoid in A.

b. Let O = O(M). Let A be a category with an M-action.
An internal O-algebra in A is an object a € A with a map
Ym: m-a—> a for each me M, satisfying action-like axioms.
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We fixed an operad O and a categorical O-algebra A.
Consider the case where A has only one object, i.e. it's a monoid A.

An internal algebra in A then consists of a function
v: 0, — A
for each n e N, satisfying axioms on

(i) composition, (ii) unit.



Topologizing everything



Topologizing everything

Everything so far can be done in the world of topological spaces instead of
sets.



Topologizing everything

Everything so far can be done in the world of topological spaces instead of
sets.

(Jargon: we work internally to the category Top instead of Set.)



Topologizing everything

Everything so far can be done in the world of topological spaces instead of
sets.

(Jargon: we work internally to the category Top instead of Set.)

Explicitly, this means that throughout, we add a condition
(iii) continuity

to the conditions (i) and (ii) that appear repeatedly.
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The theorem

Theorem

The internal algebras in the categorical A-algebra R are precisely the scalar
multiples of Shannon entropy.

Explicitly, this says: take a sequence of functions (7: A, —> R)
Then ~v = cH for some c € R if and only if v satisfies:

neN’

(i) composition: y(po(q,...,q") = v(p) + X; piv(a’)
(i) unit: v((1)) =0

(iii) continuity: each function ~y is continuous.

Proof: This explicit form is almost equivalent to a 1956 theorem of Faddeev,
except that he also imposed a symmetry axiom (which here is redundant). [J
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The free categorical algebra containing an internal algebra

Thought: A monoid in a monoidal category A is the same thing as a lax
monoidal functor 1 — A.

But it's also the same as a strict monoidal functor D — A, where
D = (finite totally ordered sets).

That is: D is the free monoidal category containing a monoid.

We can try to imitate this for algebras for operads other than 1, such as A.

Fact: The free categorical A-algebra containing an internal algebra is nearly
the category FinProb in which:

e an object (X, p) is a finite set X with a probability measure p

e the maps are the measure-preserving maps (‘deterministic processes’).

So, an internal A-algebra in (R, +,0) is a functor FinProb — (R, +,0)
satisfying certain axioms.
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An explicit characterization of entropy
Corollary (with John Baez and Tobias Fritz, Entropy (2011))

Let

L: {measure-preserving maps of finite probability spaces} — R

be a function that ‘measures information loss’, that is, satisfies:

e Ligof)=L(F)+Lg) .

o LMF® (1 —\)F) = AL(F) + (1 = N)L(F") —

e L(f) =0 iff isinvertible

e [ is continuous.

Then there is some constant ¢ € R such that
f
L((X.p) 5 (v.@)) = c- (H(p) - H(a))

for all f.
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Summary

e Given an operad O and an O-algebra A in Cat, there is a general
concept of internal algebra in A.

» Applied to the terminal operad 1, this gives the concept of (internal)
monoid in a monoidal category.

» Applied to the operad A of simplices and its algebra (R, +,0) in Cat, it
gives the concept of Shannon entropy.

So: entropy is inevitable in the topological/algebraic context.

e Given an operad O, we can form the free categorical O-algebra
containing an internal algebra.

» When O =1, this is the category of finite totally ordered sets.
» When O = A, this is the category of finite probability spaces (nearly).

This gives a new and entirely explicit characterization of Shannon
entropy.



