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Main goal

Use shape analysis to improve statistical processing of radar signals

Since a locally stationary radar signal can be represented by a curve in a manifold using
information geometry,

how can we perform statistics on these curves, and thereby the signals they represent ?
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Information geometry

Information geometry

I Family of probability densities {f (·,θ),θ ∈Θ}
Each f (·,θ) is represented by parameter θ in the parameter space Θ

I e.g. Gaussian distribution N (µ,σ2) can be represented in the upper half-plane
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Information geometry

Fisher metric

Riemannian manifold structure on the space of parameters

I The Euclidean metric is not a good choice in general

[Costa, Santos, Strapasson, 2014]

d(A,B) > d(C,D)

I The Fisher metric is used instead

gij (θ) = I(θ)ij = Eθ

[(
∂

∂θi
ln f (X ;θ)

)(
∂

∂θj
ln f (X ;θ)

)]
θ = (θ1, . . . ,θp)

In parametric estimation, the Fisher information I(θ)

– measures the « quantity of information » contained in the data
– limits the precision with which one can estimate θ (Cramer-Rao bound)
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Information geometry

Statistical manifold

Parameter space Θ + Fisher metric = statistical manifold

e.g. for univariate Gaussian distributions N (µ,σ2),

Fisher geometry⇔ hyperbolic geometry.

The space of parameters (µ,σ) equipped with the Fisher metric is in bijection with the hyperbolic
upper half-plane via the change of variables (µ,σ) 7→ ( µ√

2
,σ).
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Application to radar signal processing

Radar setting

n pulses → n echoes → 1 vector of observations z = (z1, . . . ,zn) ∈ Cn
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Application to radar signal processing

Stationary signal

If z is a realization of a stationary centered Gaussian vector Z = (Z1, . . . ,Zn)

I Z entirely described by its covariance matrix Σ hermitian positive definite and Toeplitz

Σ =


r0 r1 · · · rn−1

r1

. . .
. . .

.

.

.
.
.
.

. . .
. . . r1

rn−1 · · · r1 r0

 , rk = E(Zi Zi+k ) k = 0, . . . ,n−1.

I Space of parameters = T +
n = { HPDT matrices }

I Metric on T +
n defined using the hessian of the entropy

ds2 =−dΣ∗HessH(Σ)dΣ,

with H(Σ) :=−EΣ

(
ln f (Z ;Σ)

)
= n ln(πe) + ln(detΣ).

I Coincides with the Fisher metric on H +
n = { HPD matrices } but not on T +

n .
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Application to radar signal processing

Stationary signal

I Equivalent coordinate system : reflection coefficients [Burg 1967]

bijection Φ : T +
n → R∗+×Dn−1, where D = {z ∈ C, |z|< 1}

Σ 7→ (P0,µ1, . . . ,µn−1).

The coefficients (P0,µ1, . . . ,µn−1) are associated to n−1 AR models that maximize the
entropy under the autocorrelation constraints given by Σ.

I The entropic metric becomes a product metric in R∗+×Dn−1 [Barbaresco 2008]

ds2 = n

(
dP0

P0

)2

+
n−1

∑
k=1

(n− k)
|dµk |2

(1−|µk |2)2 .
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entropy under the autocorrelation constraints given by Σ.

I The entropic metric becomes a product metric in R∗+×Dn−1 [Barbaresco 2008]

ds2 = n

(
dP0

P0

)2

︸ ︷︷ ︸
ds2

0

+
n−1

∑
k=1

(n− k)
|dµk |2

(1−|µk |2)2︸ ︷︷ ︸
ds2

k

.

I 2 equivalent parameter spaces :

– T +
n equipped with ds2 =−dΣ∗HessH(Σ)dΣ

– The Poincaré polydisk R∗+×Dn−1 = (R∗+,ds2
0)× (D,ds2

1)× . . .× (D,ds2
n−1)

11 / 62



Table of contents Motivation Shape analysis of manifold-valued curves Discretization and simulations Example of application to radar signal processing

Application to radar signal processing

Stationary signal

We choose the second representation :

1 stationary signal ←→ 1 point in the Poincaré polydisk R∗+×Dn−1
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Application to radar signal processing

Locally stationary signal

If z is a realization of a locally stationary centered Gaussian vector Z = (Z1, . . . ,ZN )

I We decompose z in stationary portions

I For each stationary portion we estimate a covariance matrix
↔ 1 point in the polydisk

I z is represented by a time series of covariance matrices
↔ time series in the Poincaré polydisk.

1 locally stationary signal ←→ 1 (discrete) curve in the Poincaré polydisk
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Application to radar signal processing

Motivation

Perform statistics on locally stationary radar signals

I Classification for target recognition

I Statistical tests for target detection

by exploiting the shapes of the curves that represent them in the Poincaré polydisk.
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Introduction

Comparing shapes of curves

Shape = curve "rid of its parameterization"

To compare 2 shapes, we need a notion of distance

To perform statistics, a Riemannian structure is more convenient

The space of curves is seen as a manifold and equipped with a Riemannian metric

– geodesic↔ optimal deformation between 2 curves

– allows us to locally linearize around a curve (tangent space)→ statistics in a flat space
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Introduction

Notations

M = { Parameterized curves in a Rm. manifold (M,〈·, ·〉) with velocity that never vanishes }

c : [0,1]→M, c′(t) 6= 0 ∀t
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The tangent vectors to M are infinitesimal vector fields along the curves

w : [0,1]→ TM, w(t) ∈ Tc(t)M ∀t

A curve is reparameterized by composition with an increasing diffeomorphism

c 7→ c ◦ϕ, ϕ ∈ Diff+([0,1])

t : parameter of the curves
s : parameter of the paths of curves.

ct :=
∂c
∂t

, ∇t ct := ∇ct ct .
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Introduction

Reparameterization invariance

We equip M with a Riemannian metric G

Gc : TcM ×TcM → R, (w ,z) 7→ Gc(w ,z), c ∈M

It induces a distance on M

dist(c0,c1) = inf
c(0)=c0 ,c(1)=c1

L(c), avec L(c) =
∫ 1

0
‖cs(s)‖G ds.

If G is reparameterization invariant

Gc◦ϕ(w ◦ϕ,z ◦ϕ) = Gc(w ,z), ∀ϕ ∈ Diff+([0,1]),

then the distance between two curves does not change if we reparameterize them the same way

dist(c0 ◦ϕ,c1 ◦ϕ) = dist(c0,c1), ∀ϕ

but it does change if we reparameterize them in different ways !
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Introduction

Reparameterization invariance

dist(c0,c1)≈ 7.17 dist(c0 ◦ϕ,c1 ◦ϕ)≈ 7.16 dist(c0 ◦ϕ,c1 ◦ψ)≈ 7.48
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Introduction

Shape principal bundle

→We induce a metric on the shape space S = M /Diff+([0,1]).
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Introduction

Reparameterization invariant metrics (M = Rd )

I The L2 metric induces a zero distance on the shape space [Michor, Mumford, 2006]

G0
c (w ,z) =

∫ 1

0
〈w(t),z(t)〉|c′(t)|dt | · |=

√
〈·, ·〉
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Reparameterization invariant metrics (M = Rd )

I The L2 metric induces a zero distance on the shape space [Michor, Mumford, 2006]

G0
c (w ,z) =

∫
〈w ,z〉d` d` = |c′(t)|dt

I We add derivatives : Sobolev metrics

e.g. G1
c (w ,z) =

∫
〈w ,z〉+ 〈D`w ,D`z〉 d`

D`w = w ′/|c′|
d` = |c′(t)|dt

I Different weights in front of the tangential and normal components : elastic metrics
[Mio, Srivastava, Joshi 2006]

Ga,b
c (w ,z) =

∫
a2〈D`w

N ,D`z
N 〉+ b2〈D`w

T ,D`z
T 〉 d`,

D`wT = 〈D`h,v〉v with v = c′/|c′|,
D`wN = D`w−D`wT ,

a : degree "bending" of the curve,
b : degree of "stretching".
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Introduction

The Square Root Velocity Function

I Elastic metric for a = 1, b = 1/2 and M = Rd

G
1, 1

2
c (w ,w) =

∫ (
|D`w

N |2 +
1
4
|D`w

T |2
)

d`,

is flat [Srivastava,Klassen,Joshi,Jermyn’11], [Younes’98] :

distG(c0,c1) = distL2 (q0,q1).

"Square root velocity function"

q(t) =
c′(t)√
|c′(t)|

I Extension to any metric Ga,b with 4b2 ≥ a2 [Bauer, Bruveris, Marsland, Michor 2012]

I Extension to curves in a manifold using parallel transport [Zhang, Su, Klassen, Le, Srivastava
2015], [Le Brigant, Arnaudon, Barbaresco 2015]

I Extension to curves in a Lie group [Celledoni, Eslitzbichler, Schmeding 2016]
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Riemannian structure on the space of parameterized curves

Our generalization of the SRV framework

(M,〈·, ·〉,∇) Rm. manifold. We consider the metric

Gc(w ,w) = |w(0)|2 +
∫ (
|∇`w

N |2 +
1
4
|∇`w

T |2
)

d`

d` = |c′|dt , ∇`w = ∇t w
|c′| , | · |=

√
〈·, ·〉,

wT = 〈w ,v〉v , wN = w−wT .
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(M,〈·, ·〉,∇) Rm. manifold. We consider the metric

Gc(w ,w) = |w(0)|2 +
∫ (
|∇`w

N |2 +
1
4
|∇`w

T |2
)

d`

d` = |c′|dt , ∇`w = ∇t w
|c′| , | · |=

√
〈·, ·〉,

wT = 〈w ,v〉v , wN = w−wT .

Proposition

The metric G takes a compact form in the SRV coordinates

Gc(w ,w) = |w(0)|2 +
∫ 1

0
|∇w(t)q|2dt.

q(t) =
c′(t)√
|c′(t)|
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Riemannian structure on the space of parameterized curves

Geodesic equation

Squared norm of the speed of a path of curves s 7→ c(s) :

‖cs(s)‖2
G = G(cs(s),cs(s)) = |cs(s,0)|2 +

∫ 1

0
|∇sq(s, t)|2dt
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‖cs(s)‖2
G = G(cs(s),cs(s)) = |cs(s,0)|2 +

∫ 1

0
|∇sq(s, t)|2dt

The geodesics are (locally) the length-minimizing paths and the critical points of the energy

L(c) =
∫ 1

0
‖cs(s)‖G ds

E(c) =
∫ 1

0
‖cs(s)‖2

G ds
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Riemannian structure on the space of parameterized curves

Geodesic equation

Proposition (Geodesic equation)

The shortest paths are those that verify

∇scs(s,0) + r(s,0) = 0, ∀s

∇
2
sq(s, t) + |q(s, t)|

(
r(s, t) + r(s, t)T ) = 0, ∀t,s

where r depends on the curvature tensor R of M

r(s, t) =
∫ 1

t
R (q,∇sq)cs(s,τ)τ,t dτ.
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Riemannian structure on the space of parameterized curves

Geodesic equation

In the zero curvature case, we recover

∇scs(s,0) = 0, ∀s,

∇
2
sq(s, t) = 0, ∀t,s,

i.e. c(s, ·) is a straight line between the origins and q is a linear interpolation between q0 and q1.
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Riemannian structure on the space of parameterized curves

Geodesic equation

Proof

We are looking for the path s 7→ c(s) in which the derivative of the energy vanishes, i.e. s.t.

TcE(w) = 0 ∀w ⇔ d
da

∣∣∣∣
a=0

E(ĉ(a)) = 0 for any variation ĉ : (−ε,ε)→M ,

ĉ(0,s, t) = c(s, t), ĉ(a,0, t) = c0(t), ĉ(a,1, t) = c1(t).

E(ĉ(a)) =
1
2

∫
〈ĉs(a,s,0), ĉs(a,s,0)〉ds +

∫ ∫
〈∇s q̂(s, t),∇s q̂(s, t)〉dt ds,

d
da

E(ĉ(a)) =
∫
〈∇aĉs(a,s,0), ĉs(a,s,0)〉ds +

∫ ∫
〈∇a∇s q̂(a,s, t),∇s q̂(a,s, t)〉dt ds.
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Riemannian structure on the space of parameterized curves

Geodesic equation

Proof

This can be rewritten for a = 0∫ 1

0
〈 ∇scs(s,0)+r(s,0) , ĉa(0,s,0) 〉ds

+
∫ 1

0

∫ 1

0
〈 ∇s∇sq(s, t) + |q(s, t)|

(
r(s, t) + r(s, t)T ) , ∇aq̂(0,s, t) 〉dt ds = 0,

with r(s, t) =
∫ 1

t R (q,∇sq)cs(s,τ)τ,t dτ.
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t R (q,∇sq)cs(s,τ)τ,t dτ.

→ Vanishes for any value of ĉa(0,s,0) and ∇aq̂(0,s, t)

→We obtain {
∇scs(s,0) + r(s,0) = 0 ∀s,
∇s∇sq(s, t) + |q(s, t)|

(
r(s, t) + r(s, t)T

)
= 0 ∀t,s.
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Riemannian structure on the space of parameterized curves

Constructing geodesics

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

We numerically solve the geodesic equation

c(s + ε, t) = expM
c(s,t) (εcs(s, t))

cs(s + ε, t) =
(
cs(s, t) + ε∇scs(s, t)

)s,s+ε
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Riemannian structure on the space of parameterized curves

Constructing geodesics

Geodesic shooting : gives the optimal deformation of c0 into c1.

Simulation in the hyperbolic upper half-plane
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Riemannian structure on the space of parameterized curves

Computing a mean curve

Fréchet mean : cm = argmin
c

N

∑
i=1

dist2(ci ,c)
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Riemannian structure on the space of unparameterized curves

Table of contents

1. Motivation
Information geometry
Application to radar signal processing

2. Shape analysis of manifold-valued curves
Introduction
Riemannian structure on the space of parameterized curves
Riemannian structure on the space of unparameterized curves

3. Discretization and simulations
The discrete model
Simulations

4. Example of application to radar signal processing
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Riemannian structure on the space of unparameterized curves

Optimal matching between two curves

The geodesics of S are projections of the horizontal geodesics of M .

Fix c0, and search for c1 ◦ϕ that minimizes the distance between the two fibers.

(c0,c1 ◦ϕ) gives an optimal matching between the two shapes c̄0 and c̄1.
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Riemannian structure on the space of unparameterized curves

Motivation for optimal matching

Several curves with same shape but different parameterizations Pointwise mean

→ it is interesting to redistribute the points on the different curves.
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Riemannian structure on the space of unparameterized curves

Optimal matching algorithm

We decompose any path of curves s 7→ c(s) ∈M into

c(s) = chor (s)◦ϕ(s)

where chor horizontal path and ϕ path in Diff+([0,1]).
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Riemannian structure on the space of unparameterized curves

Optimal matching algorithm

Proposition

The horizontal part of a path of curves is at most as long as the path itself

L(chor )≤ L(c).
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Riemannian structure on the space of unparameterized curves

Optimal matching algorithm

Algorithm : set ĉ1 = c1 and iterate

– compute the geodesic c between c0 and ĉ1

– compute the horizontal part chor of c and set ĉ1 = chor (1).
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35 / 62



Table of contents Motivation Shape analysis of manifold-valued curves Discretization and simulations Example of application to radar signal processing

Riemannian structure on the space of unparameterized curves

Optimal matching algorithm
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Horizontal part of a tangent vector

Vertical space : Verc = {mv = m c′/|c′|, m ∈ C∞([0,1],R), m(0) = m(1) = 0}.
Horizontal space : Horc = (Verc)⊥G .

Proposition (Horizontal vector and horizontal part of a vector)

A vector h ∈ TcM tangent in c ∈M is horizontal for the elastic metric Ga,b iff(
(a/b)2−1

)
〈∇t h,∇t v〉−〈∇2

t h,v〉+ |c′|−1〈∇t c
′,v〉〈∇t h,v〉= 0.

a = 2b = 1 : 3〈∇t h,∇t v〉−〈∇2
t h,v〉+ |c′|−1〈∇t c

′,v〉〈∇t h,v〉= 0.

The vertical and horizontal parts of a vector w ∈ TcM are given by

wver = mv , whor = w−mv ,

where m ∈ C∞([0,1],R) is solution of{
m′′−〈∇t c′/|c′|,v〉m′−4|∇t v |2m = 〈∇2

t w ,v〉−3〈∇t w ,∇t v〉−〈∇t c′/|c′|,v〉〈∇t w ,v〉.
m(0) = m(1) = 0.
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Horizontal part of a path of curves

Proposition (Horizontal part of a path of curves)

Let s 7→ c(s) be a path in M . Its horizontal part is given by

chor (s, t) = c(s,ϕ(s)−1(t)),

where s 7→ ϕ(s) is solution of{
ϕs(s, t) = m(s, t)/|ct (s, t)| ·ϕt (s, t),

ϕ(0, ·) = Id

and where m(s) : [0,1]→ R, t 7→m(s, t) is solution for all s of{
mtt −〈∇t ct/|ct |,v〉mt −4|∇t v |2m = 〈∇2

t cs,v〉−3〈∇t cs,∇t v〉−〈∇t ct/|ct |,v〉〈∇t cs,v〉
m(s,0) = m(s,1) = 0.
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Riemannian structure on the space of unparameterized curves

Example : optimal matching in H2

Geodesics between different pairs of parameterizations of two segments of H2 (blue)
and the corresponding horizontal geodesics (red)
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Riemannian structure on the space of unparameterized curves

Example : optimal matching in H2

Superposition of horizontal geodesics→ geodesic between the shapes

Initial geodesics Horizontal geodesics

Common lengths of the horizontal geodesics→ distance between the shapes (d ≈ 0.56)

0.6287 0.5611 0.6249 0.5633
0.7161 0.5601 0.7051 0.5601
0.5798 0.5608 0.6106 0.5615
0.6213 0.5601 0.6104 0.5601

Length of the initial geodesics (blue)
and the corresponding horizontal geodesics (red)
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Riemannian structure on the space of unparameterized curves

Back to the first example

Several curves with same shape but different parameterizations Mean for our metric after optimal matching
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The discrete model

Table of contents

1. Motivation
Information geometry
Application to radar signal processing

2. Shape analysis of manifold-valued curves
Introduction
Riemannian structure on the space of parameterized curves
Riemannian structure on the space of unparameterized curves

3. Discretization and simulations
The discrete model
Simulations

4. Example of application to radar signal processing
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The discrete model

The applications

I In practice, the applications give series of points
Space of "discrete curves" = Mn+1

I Hyp : M has constant sectional curvature K .

K = +1

Hurricane trajectories∗

K = 0

Car trajectories∗∗

K =−1

Radar signals

∗[Su, Kurtek, Klassen, Srivastava ’14]
∗∗[Zhang, Su, Klassen, Le, Srivastava ’15]
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The discrete model

Riemannian structure on Mn+1

"Discrete curve" α = (x0, . . . ,xn) ∈Mn+1,

Tangent vector w = (w0, . . . ,wn), wk ∈ Txk M.
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The discrete model

Riemannian structure on Mn+1

"Discrete curve" α = (x0, . . . ,xn) ∈Mn+1,

Tangent vector w = (w0, . . . ,wn), wk ∈ Txk M.

Discrete metric on Mn+1 :

Gn
α(w ,w) = |w0|2 +

1
n

n−1

∑
k=0
|∇sqw (0, k

n )|2,

s 7→ cw (s, ·) path of piecewise-geodesic curves

and qw the SRV of cw .

44 / 62



Table of contents Motivation Shape analysis of manifold-valued curves Discretization and simulations Example of application to radar signal processing

The discrete model

Convergence of the discrete model to the continuous model

Définition

We say that α = (x0, . . . ,xn) ∈Mn+1 is the discretization of size n of c ∈M when

c( k
n ) = xk for all k = 0, . . . ,n.

A path s 7→ α(s) of discrete curves is the discretization of size n of a path of curves s 7→ c(s)
when α(s) is the discretization of c(s) for all s.

We show the convergence of the energies when n→ ∞

En(α) =
1
2

∫ 1

0

(
|x ′0(s)|2 +

1
n

n−1

∑
k=0
|∇sqk (s)|2

)
ds

E(c) =
1
2

∫ 1

0

(
|cs(s,0)|2 +

∫ 1

0
|∇sq(s, t)|2dt

)
ds
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The discrete model

Convergence of the discrete model to the continuous model

Theorem (Convergence of the discrete model to the continuous model)

Let s 7→ c(s) be a C1 path of C2 curves whose speed in t never vanishes, identifiable to an
element (s, t) 7→ c(s, t) of C1,2([0,1]× [0,1],M) such that ct 6= 0.

Let s 7→ α(s) = (x0(s), . . . ,xn(s)) be the discretization of size n of c.

Then there exists a constant λ > 0 that does not depend on c and such that for n big enough,

|E(c)−En(α)| ≤ λ

n
(inf |ct |)−1|cs|22,∞ (1 + |ct |1,∞)3 ,

with

|ct |1,∞ := |ct |∞ + |∇t ct |∞,

|cs|2,∞ := |cs|∞ + |∇t cs|∞ + |∇2
t cs|∞,

and |w |∞ := sup
s,t∈[0,1]

|w(s, t)|.
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The discrete model

Discrete geodesic equation

We find the geodesic equation by a method analogous to that of the continuous case.
The coefficients depend on the curvature K of M.

Proposition (Discrete geodesic equation)

The path s 7→ α(s) = (x0(s), . . . ,xn(s)) ∈Mn+1 is a geodesic for Gn iff its SRV coordinates
s 7→

(
x0(s),(qk (s))k

)
verify

∇sx0
′(s) =−r0(s) + o(1),

∇
2
sqk (s) =−|qk (s)|(rk (s) + rk (s)T ) + o(1), k = 0, . . . ,n−1,

for all s ∈ [0,1], with

rk (s) :=
1
n

n−1

∑
`=k+1

P
l
n ,

k
n

c
(
R (q,∇sq)cs(s, `n )

)
→

n→∞
r(s, k

n ), k = 1, . . . ,n−2,

rn−1(s) := 0.
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The discrete model

Implementation

This allowed us to implement :

1. the exponential map 2. the geodesic shooting algorithm

3. the optimal matching algorithm
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Simulations

Table of contents

1. Motivation
Information geometry
Application to radar signal processing

2. Shape analysis of manifold-valued curves
Introduction
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3. Discretization and simulations
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Simulations

4. Example of application to radar signal processing
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Simulations

Geodesic shooting in H2

Geodesics between parameterized curves in H2 for metric G (blue) and the L2 metric (green)
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Simulations

Geodesic shooting in R2

Geodesics between parameterized curves in R2 for metric G (blue) and the L2 metric (green)
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Simulations

Geodesic shooting in S2

Geodesics between parameterized curves in S2 for metric G (blue) and the L2 metric (green)
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Simulations

Optimal matching in R2

Superposition of geodesics between different parameterizations of the same curves (blue)
and of the associated horizontal geodesics (red)
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Computing a mean helicopter signature

I Data : m vectors X k = (X k
1 , . . . ,X

k
N ) of N radar observations obtained using a simulator of

helicopter signatures

I Each observation vector X k corresponds to a slightly different rotation speed of the blades

I We want to create a mean signature that takes these variations into account.
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Computing a mean helicopter signature

I For each X k , we estimate the evolution of the reflection coefficients(
Pk (t), µk

1(t), . . . , µk
n−1(t)

)
∈ R∗+×Dn−1

n = size of the gliding window = size of the stationary portions.

I Since we have a product metric on R∗+×Dn−1, to compare X k and X ` we simply pairwise
compare the curves µk

i and µ`i for each i = 1, . . . ,n−1.

I They are curves in the Poincaré disk.
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Computing a mean helicopter signature
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Computing a mean helicopter signature

-6 -4 -2 0 2 4 6 8

×10
-3

0.944

0.946

0.948

0.95

0.952

0.954

0.956

0.958

0.96

mu389.5

mu389.6

mu389.7

mu389.8

mu389.9

mu390.0

mu390.1

mu390.2

mu390.3

mu390.4

mu390.5

mu
m

58 / 62



Table of contents Motivation Shape analysis of manifold-valued curves Discretization and simulations Example of application to radar signal processing

Computing a mean helicopter signature
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Computing a mean helicopter signature
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What still needs to be done

I These mean curves are computed without optimal matching :

– interpolate between points (splines in the hyperbolic space),
– compute the mean between the shapes of the interpolations (with optimal matching).

I Compare the results obtained by considering the signals as locally stationary (curves) to
those obtained by considering them as stationary (points).

I In the locally stationary case, compare the efficiency of different metrics between curves for
target detection or recognition.

I More generally : exploit the Riemannian setting to perform statistics on sets of curves.
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Thank you for your attention !
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