Information geometry and shape analysis for radar signal processing

Alice Le Brigant, Marc Arnaudon and Frédéric Barbaresco

Topological and Geometrical Structures of Information 31 August 2017

1/62

イロト イポト イヨト イヨト

Main goal

Use shape analysis to improve statistical processing of radar signals

Since a locally stationary radar signal can be represented by a curve in a manifold using **information geometry**,

how can we perform statistics on these curves, and thereby the signals they represent?

Table of contents

1. Motivation

Information geometry Application to radar signal processing

2. Shape analysis of manifold-valued curves

Introduction Riemannian structure on the space of parameterized curves Riemannian structure on the space of unparameterized curves

3. Discretization and simulations

The discrete model Simulations

4. Example of application to radar signal processing

Table of contents

1. Motivation Information geometry

Application to radar signal processing

2. Shape analysis of manifold-valued curves

Introduction Riemannian structure on the space of parameterized curves Riemannian structure on the space of unparameterized curves

3. Discretization and simulations

The discrete mode Simulations

4. Example of application to radar signal processing

Information geometry

Family of probability densities {f(·,θ), θ ∈ Θ} Each f(·,θ) is represented by parameter θ in the parameter space Θ

• e.g. Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ can be represented in the upper half-plane

Fisher metric

Riemannian manifold structure on the space of parameters

> The Euclidean metric is not a good choice in general

The Fisher metric is used instead

$$g_{ij}(\theta) = I(\theta)_{ij} = \mathbb{E}_{\theta}\left[\left(\frac{\partial}{\partial \theta_i} \ln f(X; \theta)\right) \left(\frac{\partial}{\partial \theta_j} \ln f(X; \theta)\right)\right] \qquad \theta = (\theta_1, \dots, \theta_p)$$

In parametric estimation, the Fisher information $I(\theta)$

- measures the « quantity of information » contained in the data
- limits the precision with which one can estimate θ (Cramer-Rao bound)

Statistical manifold

Parameter space Θ + Fisher metric = statistical manifold

e.g. for univariate Gaussian distributions $\mathcal{N}(\mu, \sigma^2)$,

Fisher geometry \Leftrightarrow hyperbolic geometry.

The space of parameters (μ, σ) equipped with the Fisher metric is in bijection with the hyperbolic upper half-plane via the change of variables $(\mu, \sigma) \mapsto (\frac{\mu}{\sqrt{2}}, \sigma)$.

Application to radar signal processing

Table of contents

1. Motivation Information geometry Application to radar signal processing

2. Shape analysis of manifold-valued curves

Introduction Riemannian structure on the space of parameterized curves Riemannian structure on the space of unparameterized curves

3. Discretization and simulations

The discrete mode Simulations

4. Example of application to radar signal processing

- If z is a realization of a stationary centered Gaussian vector $Z = (Z_1, ..., Z_n)$
 - Z entirely described by its covariance matrix Σ hermitian positive definite and Toeplitz

$$\Sigma = \begin{pmatrix} r_0 & r_1 & \cdots & r_{n-1} \\ \hline r_1 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \hline r_{n-1} & \cdots & \overline{r_1} & r_0 \end{pmatrix}, \quad r_k = \mathbb{E}(Z_i \overline{Z_{i+k}}) \quad k = 0, \dots, n-1.$$

- Space of parameters = $T_n^+ = \{ \text{ HPDT matrices } \}$
- Metric on \mathcal{T}_n^+ defined using the hessian of the entropy

$$\begin{split} & ds^2 = -d\Sigma^* \text{Hess}\, H(\Sigma) d\Sigma, \\ & \text{with} \quad H(\Sigma) := -\mathbb{E}_{\Sigma}\big(\ln f(Z;\Sigma)\big) = n \ln(\pi e) + \ln(\det \Sigma). \end{split}$$

• Coincides with the Fisher metric on $\mathcal{H}_n^+ = \{ \text{ HPD matrices } \}$ but not on \mathcal{T}_n^+ .

Equivalent coordinate system : reflection coefficients [Burg 1967]

$$\begin{array}{ll} \text{bijection} \quad \Phi: \quad \mathcal{I}_n^+ \to \mathbb{R}_+^* \times D^{n-1}, \qquad \text{where} \quad D = \{z \in \mathbb{C}, |z| < 1\} \\ \quad \Sigma \mapsto (P_0, \mu_1, \dots, \mu_{n-1}). \end{array}$$

The coefficients $(P_0, \mu_1, \dots, \mu_{n-1})$ are associated to n-1 AR models that maximize the entropy under the autocorrelation constraints given by Σ .

► The entropic metric becomes a product metric in ℝ^{*}₊ × Dⁿ⁻¹ [Barbaresco 2008]

$$ds^{2} = n \left(\frac{dP_{0}}{P_{0}}\right)^{2} + \sum_{k=1}^{n-1} (n-k) \frac{|d\mu_{k}|^{2}}{(1-|\mu_{k}|^{2})^{2}}.$$

イロン 不良 とくほど 不良 とうほう

11/62

Equivalent coordinate system : reflection coefficients [Burg 1967]

$$\begin{array}{ll} \text{bijection} \quad \Phi: \quad \mathcal{T}_n^+ \to \mathbb{R}_+^* \times D^{n-1}, \qquad \text{where} \quad D = \{z \in \mathbb{C}, |z| < 1\} \\ \quad \Sigma \mapsto (P_0, \mu_1, \dots, \mu_{n-1}). \end{array}$$

The coefficients $(P_0, \mu_1, \dots, \mu_{n-1})$ are associated to n-1 AR models that maximize the entropy under the autocorrelation constraints given by Σ .

► The entropic metric becomes a product metric in ℝ^{*}₊ × Dⁿ⁻¹ [Barbaresco 2008]

$$ds^{2} = \underbrace{n\left(\frac{dP_{0}}{P_{0}}\right)^{2}}_{ds_{0}^{2}} + \sum_{k=1}^{n-1} \underbrace{(n-k)\frac{|d\mu_{k}|^{2}}{(1-|\mu_{k}|^{2})^{2}}}_{ds_{k}^{2}}.$$

- 2 equivalent parameter spaces :
 - $-T_n^+$ equipped with $ds^2 = -d\Sigma^* Hess H(\Sigma) d\Sigma$
 - The Poincaré polydisk $\mathbb{R}^*_+ \times \mathbb{D}^{n-1} = (\mathbb{R}^*_+, ds_0^2) \times (\mathbb{D}, ds_1^2) \times \ldots \times (\mathbb{D}, ds_{n-1}^2)$

We choose the second representation :

1 stationary signal \iff 1 point in the Poincaré polydisk $\mathbb{R}^*_+ imes \mathbb{D}^{n-1}$

 \mathbb{D} = Poincaré disk

Locally stationary signal

If z is a realization of a *locally* stationary centered Gaussian vector $Z = (Z_1, ..., Z_N)$

- We decompose z in stationary portions
- ► For each stationary portion we estimate a covariance matrix ↔ 1 point in the polydisk
- ► z is represented by a time series of covariance matrices ↔ time series in the Poincaré polydisk.

1 locally stationary signal \iff 1 (discrete) curve in the Poincaré polydisk

$$z = \begin{bmatrix} z_1 \\ \vdots \\ z_i \\ \vdots \\ z_{i+n} \\ \vdots \\ z_N \end{bmatrix} \rightarrow (P_0(t), \mu_1(t), \dots, \mu_{n-1}(t))$$

Motivation

Perform statistics on locally stationary radar signals

- Classification for target recognition
- Statistical tests for target detection

by exploiting the shapes of the curves that represent them in the Poincaré polydisk.

Table of contents

1. Motivation

Information geometry Application to radar signal processing

2. Shape analysis of manifold-valued curves Introduction

Riemannian structure on the space of parameterized curves Riemannian structure on the space of unparameterized curves

3. Discretization and simulations

The discrete mode Simulations

4. Example of application to radar signal processing

Shape = curve "rid of its parameterization"

Shape = curve "rid of its parameterization"

To compare 2 shapes, we need a notion of distance

Shape = curve "rid of its parameterization"

To compare 2 shapes, we need a notion of distance

To perform statistics, a Riemannian structure is more convenient

Shape = curve "rid of its parameterization"

To compare 2 shapes, we need a notion of distance

To perform statistics, a Riemannian structure is more convenient

The space of curves is seen as a manifold and equipped with a Riemannian metric

Shape = curve "rid of its parameterization"

To compare 2 shapes, we need a notion of distance

To perform statistics, a Riemannian structure is more convenient

The space of curves is seen as a manifold and equipped with a Riemannian metric

Shape = curve "rid of its parameterization"

To compare 2 shapes, we need a notion of distance

To perform statistics, a Riemannian structure is more convenient

The space of curves is seen as a manifold and equipped with a Riemannian metric

- geodesic \leftrightarrow optimal deformation between 2 curves

Shape = curve "rid of its parameterization"

To compare 2 shapes, we need a notion of distance

To perform statistics, a Riemannian structure is more convenient

The space of curves is seen as a manifold and equipped with a Riemannian metric

- geodesic \leftrightarrow optimal deformation between 2 curves
- allows us to locally linearize around a curve (tangent space) ightarrow statistics in a flat space

	Shape analysis of manifold-valued curves	
Introduction		
Notations		

 $\mathcal{M} = \{$ Parameterized curves in a Rm. manifold $(M, \langle \cdot, \cdot \rangle)$ with velocity that never vanishes $\}$

$$c: [0,1] \rightarrow M, \qquad c'(t) \neq 0 \quad \forall t$$

	Shape analysis of manifold-valued curves	
Introduction		

 $\mathcal{M} = \{$ Parameterized curves in a Rm. manifold $(M, \langle \cdot, \cdot \rangle)$ with velocity that never vanishes $\}$

$$c: [0,1] \rightarrow M, \qquad c'(t) \neq 0 \quad \forall t$$

The tangent vectors to ${\mathcal M}$ are infinitesimal vector fields along the curves

$$w: [0,1] \to TM, \qquad w(t) \in T_{c(t)}M \quad \forall t$$

	Shape analysis of manifold-valued curves	
Introduction		

 $\mathcal{M} = \{$ Parameterized curves in a Rm. manifold $(M, \langle \cdot, \cdot \rangle)$ with velocity that never vanishes $\}$

$$c:[0,1] \rightarrow M, \qquad c'(t) \neq 0 \quad \forall t$$

The tangent vectors to ${\mathcal M}$ are infinitesimal vector fields along the curves

 $w: [0,1] \to TM, \qquad w(t) \in T_{c(t)}M \quad \forall t$

A curve is reparameterized by composition with an increasing diffeomorphism

 $c \mapsto c \circ \phi$, $\phi \in \text{Diff}^+([0,1])$

	Shape analysis of manifold-valued curves	
Introduction		

 $\mathcal{M} = \{$ Parameterized curves in a Rm. manifold $(M, \langle \cdot, \cdot \rangle)$ with velocity that never vanishes $\}$

$$c: [0,1] \rightarrow M, \qquad c'(t) \neq 0 \quad \forall t$$

The tangent vectors to ${\mathcal M}$ are infinitesimal vector fields along the curves

 $w: [0,1] \to TM, \qquad w(t) \in T_{c(t)}M \quad \forall t$

A curve is reparameterized by composition with an increasing diffeomorphism

$$c \mapsto c \circ \phi, \quad \phi \in \text{Diff}^+([0,1])$$

t : parameter of the curves

	Shape analysis of manifold-valued curves	
Introduction		

 $\mathcal{M} = \{$ Parameterized curves in a Rm. manifold $(M, \langle \cdot, \cdot \rangle)$ with velocity that never vanishes $\}$

$$c: [0,1] \rightarrow M, \qquad c'(t) \neq 0 \quad \forall t$$

The tangent vectors to ${\mathcal M}$ are infinitesimal vector fields along the curves

 $w: [0,1] \to TM, \qquad w(t) \in T_{c(t)}M \quad \forall t$

A curve is reparameterized by composition with an increasing diffeomorphism

$$c \mapsto c \circ \phi, \quad \phi \in \text{Diff}^+([0,1])$$

t : parameter of the curves

s : parameter of the paths of curves.
	Shape analysis of manifold-valued curves	
Introduction		

Notations

 $\mathcal{M} = \{$ Parameterized curves in a Rm. manifold $(M, \langle \cdot, \cdot \rangle)$ with velocity that never vanishes $\}$

$$c: [0,1] \rightarrow M, \qquad c'(t) \neq 0 \quad \forall t$$

The tangent vectors to ${\mathcal M}$ are infinitesimal vector fields along the curves

 $w: [0,1] \to TM, \qquad w(t) \in T_{c(t)}M \quad \forall t$

A curve is reparameterized by composition with an increasing diffeomorphism

 $c \mapsto c \circ \phi$, $\phi \in \text{Diff}^+([0,1])$

t : parameter of the curves *s* : parameter of the paths of curves.

$$c_t := \frac{\partial c}{\partial t}, \quad \nabla_t c_t := \nabla_{c_t} c_t.$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

	Shape analysis of manifold-valued curves	
Introduction		

Reparameterization invariance

We equip $\mathcal M$ with a Riemannian metric G

$$G_c: T_c \mathcal{M} \times T_c \mathcal{M} \to \mathbb{R}, \quad (w, z) \mapsto G_c(w, z), \qquad c \in \mathcal{M}$$

It induces a distance on $\mathcal M$

$${
m dist}(c_0,c_1) = \inf_{c(0)=c_0,c(1)=c_1} L(c), \qquad {
m avec} \quad L(c) = \int_0^1 \|c_s(s)\|_G \, {
m d}s.$$

	Shape analysis of manifold-valued curves	
Introduction		

Reparameterization invariance

We equip $\mathcal M$ with a Riemannian metric G

$$G_c: T_c \mathcal{M} \times T_c \mathcal{M} \to \mathbb{R}, \quad (w, z) \mapsto G_c(w, z), \qquad c \in \mathcal{M}$$

It induces a distance on ${\mathcal M}$

$$\operatorname{dist}(c_0, c_1) = \inf_{c(0)=c_0, c(1)=c_1} L(c), \quad \text{avec} \quad L(c) = \int_0^1 \|c_s(s)\|_G \, \mathrm{d}s.$$

.

If G is reparameterization invariant

$$G_{c\circ\phi}(w\circ\phi,z\circ\phi)=G_c(w,z), \quad \forall\phi\in \mathrm{Diff}^+([0,1]),$$

then the distance between two curves does not change if we reparameterize them the same way

$$\mathsf{dist}(c_0 \circ \varphi, c_1 \circ \varphi) = \mathsf{dist}(c_0, c_1), \quad \forall \varphi$$

but it does change if we reparameterize them in different ways !

	Shape analysis of manifold-valued curves	
Introduction		

Reparameterization invariance

	Shape analysis of manifold-valued curves	
Introduction		

 \rightarrow We induce a metric on the *shape space* $S = \mathcal{M} / \text{Diff}^+([0, 1])$.

	Shape analysis of manifold-valued curves	
Introduction		

 \rightarrow We induce a metric on the shape space $S = \mathcal{M} / \text{Diff}^+([0, 1])$.

Principal bundle structure $\pi: \mathcal{M} \to \mathcal{S}$

	Shape analysis of manifold-valued curves	
Introduction		

 \rightarrow We induce a metric on the shape space $S = \mathcal{M} / \text{Diff}^+([0,1])$.

Principal bundle structure $\pi: \mathcal{M} \to \mathcal{S} \implies$ Decomposition of tangent space :

$$T_c \mathcal{M} = V_c \mathcal{M} \oplus H_c \mathcal{M}$$
 with $V_c \mathcal{M} = \ker(T_c \pi), H_c \mathcal{M} = (V_c \mathcal{M})^{\perp_G}$

	Shape analysis of manifold-valued curves	
Introduction		

 \rightarrow We induce a metric on the shape space $S = \mathcal{M} / \text{Diff}^+([0,1])$.

Principal bundle structure $\pi: \mathcal{M} \to \mathcal{S} \implies$ Decomposition of tangent space :

$$T_c \mathcal{M} = V_c \mathcal{M} \oplus H_c \mathcal{M}$$
 with $V_c \mathcal{M} = \ker(T_c \pi), H_c \mathcal{M} = (V_c \mathcal{M})^{\perp_G}$

The geodesics of ${\mathcal S}$ are the projections of the horizontal geodesics of ${\mathcal M}$

	Shape analysis of manifold-valued curves	
Introduction		

 \rightarrow We induce a metric on the shape space $S = \mathcal{M} / \text{Diff}^+([0,1])$.

 $\label{eq:principal} \mbox{Principal bundle structure } \pi: \mathcal{M} \to \mathcal{S} \quad \Rightarrow \mbox{Decomposition of tangent space}:$

$$T_c \mathcal{M} = V_c \mathcal{M} \oplus H_c \mathcal{M}$$
 with $V_c \mathcal{M} = \ker(T_c \pi), H_c \mathcal{M} = (V_c \mathcal{M})^{\perp_G}$

The geodesics of S are the projections of the horizontal geodesics of \mathcal{M} Induced distance on S: dist_S $(\bar{c}_0, \bar{c}_1) = \inf_{\substack{\phi \in \text{Diff}^+([0,1])}} \text{dist}(c_0, c_1 \circ \phi).$

	Shape analysis of manifold-valued curves	
Introduction		

 \rightarrow We induce a metric on the shape space $S = \mathcal{M} / \text{Diff}^+([0,1])$.

 $\label{eq:principal} \mbox{Principal bundle structure } \pi: \mathcal{M} \to \mathcal{S} \quad \Rightarrow \mbox{Decomposition of tangent space}:$

$$T_c \mathcal{M} = V_c \mathcal{M} \oplus H_c \mathcal{M}$$
 with $V_c \mathcal{M} = \ker(T_c \pi), H_c \mathcal{M} = (V_c \mathcal{M})^{\perp_G}$

The geodesics of S are the projections of the horizontal geodesics of \mathcal{M} Induced distance on S: dist_S $(\bar{c}_0, \bar{c}_1) = \inf_{\substack{\phi \in \text{Diff}^+([0,1])}} \text{dist}(c_0, c_1 \circ \phi).$

► The L² metric induces a zero distance on the shape space [Michor, Mumford, 2006]

$$G^0_c(w,z) = \int_0^1 \langle w(t), z(t)
angle | c'(t) | \mathrm{d}t \qquad |\cdot| = \sqrt{\langle \cdot, \cdot
angle}$$

	Shape analysis of manifold-valued curves	
Introduction		

► The L² metric induces a zero distance on the shape space [Michor, Mumford, 2006]

$$G_c^0(w,z) = \int \langle w,z \rangle \mathrm{d}\ell \qquad d\ell = |c'(t)| \mathrm{d}t$$

	Shape analysis of manifold-valued curves	
Introduction		

► The L² metric induces a zero distance on the shape space [Michor, Mumford, 2006]

$$G_c^0(w,z) = \int \langle w,z \rangle \mathrm{d}\ell \qquad d\ell = |c'(t)| \mathrm{d}t$$

We add derivatives : Sobolev metrics

e.g.
$$G_c^1(w,z) = \int \langle w, z \rangle + \langle D_\ell w, D_\ell z \rangle \, \mathrm{d}\ell$$
 $D_\ell w = w'/|c'|$
 $d\ell = |c'(t)|\mathrm{d}t$

► The L² metric induces a zero distance on the shape space [Michor, Mumford, 2006]

$$G_c^0(w,z) = \int \langle w,z \rangle \mathrm{d}\ell \qquad d\ell = |c'(t)| \mathrm{d}t$$

We add derivatives : Sobolev metrics

e.g.
$$G_c^1(w,z) = \int \langle w, z \rangle + \langle D_\ell w, D_\ell z \rangle \, d\ell$$
 $D_\ell w = w'/|c'|$
 $d\ell = |c'(t)|dt$

 Different weights in front of the tangential and normal components : *elastic metrics* [Mio, Srivastava, Joshi 2006]

$$G_c^{a,b}(w,z) = \int a^2 \langle D_\ell w^N, D_\ell z^N \rangle + b^2 \langle D_\ell w^T, D_\ell z^T \rangle \, \mathrm{d}\ell,$$

 $D_{\ell} w^{T} = \langle D_{\ell} h, v \rangle v \text{ with } v = c'/|c'|,$ $D_{\ell} w^{N} = D\ell w - D_{\ell} w^{T},$

a : degree "bending" of the curve, *b* : degree of "stretching".

The Square Root Velocity Function

• Elastic metric for
$$a = 1$$
, $b = 1/2$ and $M = \mathbb{R}^d$

$$G_{c}^{1,\frac{1}{2}}(w,w) = \int \left(|D_{\ell}w^{N}|^{2} + \frac{1}{4} |D_{\ell}w^{T}|^{2} \right) \mathrm{d}\ell,$$

is flat [Srivastava,Klassen,Joshi,Jermyn'11], [Younes'98] :

$$\operatorname{dist}_{G}(c_{0},c_{1})=\operatorname{dist}_{L^{2}}(q_{0},q_{1}).$$

"Square root velocity function" $q(t) = \frac{c'(t)}{\sqrt{|c'(t)|}}$

The Square Root Velocity Function

• Elastic metric for
$$a = 1$$
, $b = 1/2$ and $M = \mathbb{R}^d$

$$G_{c}^{1,\frac{1}{2}}(w,w) = \int \left(|D_{\ell}w^{N}|^{2} + \frac{1}{4} |D_{\ell}w^{T}|^{2} \right) \mathrm{d}\ell,$$

is flat [Srivastava,Klassen,Joshi,Jermyn'11], [Younes'98] :

$$\operatorname{dist}_{G}(c_{0},c_{1})=\operatorname{dist}_{L^{2}}(q_{0},q_{1}).$$

- Extension to any metric $G^{a,b}$ with $4b^2 \ge a^2$ [Bauer, Bruveris, Marsland, Michor 2012]
- Extension to curves in a manifold using parallel transport [Zhang, Su, Klassen, Le, Srivastava 2015], [Le Brigant, Arnaudon, Barbaresco 2015]
- Extension to curves in a Lie group [Celledoni, Eslitzbichler, Schmeding 2016]

Table of contents

1. Motivation

Information geometry Application to radar signal processing

2. Shape analysis of manifold-valued curves

Introduction

Riemannian structure on the space of parameterized curves

Riemannian structure on the space of unparameterized curves

3. Discretization and simulations

The discrete mode Simulations

4. Example of application to radar signal processing

Motivation Shape analysis of manifold-valued curves Disc

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

24/62

Riemannian structure on the space of parameterized curves

Our generalization of the SRV framework

 $(M, \langle \cdot, \cdot \rangle, \nabla)$ Rm. manifold. We consider the metric

$$G_{c}(w,w) = |w(0)|^{2} + \int \left(|\nabla_{\ell}w^{N}|^{2} + \frac{1}{4} |\nabla_{\ell}w^{T}|^{2} \right) d\ell$$
$$d\ell = |c'|dt, \ \nabla_{\ell}w = \frac{\nabla_{\ell}w}{|c'|}, \ |\cdot| = \sqrt{\langle \cdot, \cdot \rangle},$$
$$w^{T} = \langle w, v \rangle v, \ w^{N} = w - w^{T}.$$

Shape analysis of manifold-valued curves

Riemannian structure on the space of parameterized curves

Our generalization of the SRV framework

 $(M, \langle \cdot, \cdot \rangle, \nabla)$ Rm. manifold. We consider the metric

$$G_{c}(w,w) = |w(0)|^{2} + \int \left(|\nabla_{\ell}w^{N}|^{2} + \frac{1}{4} |\nabla_{\ell}w^{T}|^{2} \right) d\ell$$
$$d\ell = |c'|dt, \ \nabla_{\ell}w = \frac{\nabla_{t}w}{|c'|}, \ |\cdot| = \sqrt{\langle \cdot, \cdot \rangle},$$
$$w^{T} = \langle w, v \rangle v, \ w^{N} = w - w^{T}.$$

Proposition

 $d\ell =$

The metric G takes a compact form in the SRV coordinates

$$G_c(w,w) = |w(0)|^2 + \int_0^1 |\nabla_{w(t)}q|^2 \mathrm{d}t.$$

Shape analysis of manifold-valued curves

Riemannian structure on the space of parameterized curves

Our generalization of the SRV framework

 $(M, \langle \cdot, \cdot \rangle, \nabla)$ Rm. manifold. We consider the metric

$$G_{c}(w,w) = |w(0)|^{2} + \int \left(|\nabla_{\ell}w^{N}|^{2} + \frac{1}{4} |\nabla_{\ell}w^{T}|^{2} \right) d\ell$$
$$d\ell = |c'|dt, \ \nabla_{\ell}w = \frac{\nabla_{t}w}{|c'|}, \ |\cdot| = \sqrt{\langle \cdot, \cdot \rangle},$$
$$w^{T} = \langle w, v \rangle v, \ w^{N} = w - w^{T}.$$

Proposition

 $w^T =$

The metric G takes a compact form in the SRV coordinates

$$G_c(w,w) = |w(0)|^2 + \int_0^1 |\nabla_{w(t)}q|^2 \mathrm{d}t.$$

► Term of order 0 measures the difference of position between the curves le of contents Motivation Shape analysis of manifold-valued curves Discretization and simulations Example of applica

Riemannian structure on the space of parameterized curves

Our generalization of the SRV framework

 $(M, \langle \cdot, \cdot \rangle, \nabla)$ Rm. manifold. We consider the metric

$$G_{c}(w,w) = |w(0)|^{2} + \int \left(|\nabla_{\ell}w^{N}|^{2} + \frac{1}{4} |\nabla_{\ell}w^{T}|^{2} \right) d\ell$$
$$d\ell = |c'|dt, \ \nabla_{\ell}w = \frac{\nabla_{t}w}{|c'|}, \ |\cdot| = \sqrt{\langle \cdot, \cdot \rangle},$$
$$w^{T} = \langle w, v \rangle v, \ w^{N} = w - w^{T}.$$

Proposition

The metric G takes a compact form in the SRV coordinates

$$G_c(w,w) = |w(0)|^2 + \int_0^1 |\nabla_{w(t)}q|^2 \mathrm{d}t.$$

- Term of order 0 measures the difference of position between the curves
- Integral measures the difference between the velocities.

Geodesic equation

Squared norm of the speed of a path of curves $s \mapsto c(s)$:

$$\|c_s(s)\|_G^2 = G(c_s(s), c_s(s)) = |c_s(s, 0)|^2 + \int_0^1 |\nabla_s q(s, t)|^2 dt$$

Squared norm of the speed of a path of curves $s \mapsto c(s)$:

$$\|c_s(s)\|_G^2 = G(c_s(s), c_s(s)) = |c_s(s, 0)|^2 + \int_0^1 |\nabla_s q(s, t)|^2 dt$$

The geodesics are (locally) the length-minimizing paths and the critical points of the energy

Geodesic equation

Proposition (Geodesic equation)

The shortest paths are those that verify

$$\nabla_{s}c_{s}(s,0) + r(s,0) = 0, \quad \forall s$$
$$\nabla_{s}^{2}q(s,t) + |q(s,t)| \left(r(s,t) + r(s,t)^{T}\right) = 0, \quad \forall t,s$$

where *r* depends on the curvature tensor \mathcal{R} of *M*

$$r(s,t) = \int_t^1 \mathcal{R}(q, \nabla_s q) c_s(s, \tau)^{\tau, t} \mathrm{d}\tau.$$

Geodesic equation

In the zero curvature case, we recover

$$abla_s c_s(s,0) = 0, \quad \forall s,$$

 $abla_s^2 q(s,t) = 0, \quad \forall t, s,$

i.e. $c(s, \cdot)$ is a straight line between the origins and q is a linear interpolation between q_0 and q_1 .

イロト イポト イヨト イヨト

Geodesic equation

Proof

We are looking for the path $s \mapsto c(s)$ in which the derivative of the energy vanishes, i.e. s.t.

$$T_{c}E(w) = 0 \quad \forall w \quad \Leftrightarrow \quad \frac{d}{da} \Big|_{a=0} E(\hat{c}(a)) = 0 \text{ for any variation } \hat{c} : (-\varepsilon, \varepsilon) \to \mathcal{M},$$
$$\hat{c}(0, s, t) = c(s, t), \quad \hat{c}(a, 0, t) = c_{0}(t), \quad \hat{c}(a, 1, t) = c_{1}(t).$$

$$E(\hat{c}(a)) = \frac{1}{2} \int \langle \hat{c}_s(a,s,0), \hat{c}_s(a,s,0) \rangle \mathrm{d}s + \int \int \langle \nabla_s \hat{q}(s,t), \nabla_s \hat{q}(s,t) \rangle \mathrm{d}t \mathrm{d}s,$$

$$\frac{d}{da} E(\hat{c}(a)) = \int \langle \nabla_a \hat{c}_s(a,s,0), \hat{c}_s(a,s,0) \rangle \mathrm{d}s + \int \int \langle \nabla_a \nabla_s \hat{q}(a,s,t), \nabla_s \hat{q}(a,s,t) \rangle \mathrm{d}t \mathrm{d}s,$$

Geodesic equation

Proof

This can be rewritten for a = 0

$$\begin{aligned} \int_0^1 \langle \nabla_s c_s(s,0) + r(s,0), \hat{c}_a(0,s,0) \rangle \, \mathrm{d}s \\ + \int_0^1 \int_0^1 \langle \nabla_s \nabla_s q(s,t) + |q(s,t)| \left(r(s,t) + r(s,t)^T \right), \nabla_a \hat{q}(0,s,t) \rangle \, \mathrm{d}t \, \mathrm{d}s = 0, \end{aligned}$$
with $r(s,t) = \int_t^1 \mathcal{R}(q, \nabla_s q) c_s(s,\tau)^{\tau,t} \mathrm{d}\tau. \end{aligned}$

Geodesic equation

Proof

This can be rewritten for a = 0

$$\int_{0}^{1} \langle \nabla_{s} c_{s}(s,0) + r(s,0), \hat{c}_{a}(0,s,0) \rangle ds$$

+
$$\int_{0}^{1} \int_{0}^{1} \langle \nabla_{s} \nabla_{s} q(s,t) + |q(s,t)| \left(r(s,t) + r(s,t)^{T} \right), \nabla_{a} \hat{q}(0,s,t) \rangle dt ds = 0,$$

with $r(s,t) = \int_{t}^{1} \mathcal{R}(q, \nabla_{s} q) c_{s}(s,\tau)^{\tau,t} d\tau.$

ightarrow Vanishes for any value of $\hat{c}_a(0,s,0)$ and $abla_a \hat{q}(0,s,t)$

Geodesic equation

Proof

This can be rewritten for a = 0

$$\int_{0}^{1} \langle \nabla_{s} c_{s}(s,0) + r(s,0), \hat{c}_{a}(0,s,0) \rangle ds$$

+
$$\int_{0}^{1} \int_{0}^{1} \langle \nabla_{s} \nabla_{s} q(s,t) + |q(s,t)| \left(r(s,t) + r(s,t)^{T} \right), \nabla_{a} \hat{q}(0,s,t) \rangle dt ds = 0,$$

with $r(s,t) = \int_{0}^{1} q(a, \nabla, a) a(a, s)^{\frac{1}{2}} ds$

with
$$r(s,t) = \int_t^1 \mathcal{R}(q, \nabla_s q) c_s(s, \tau)^{\tau, t} d\tau$$
.

ightarrow Vanishes for any value of $\hat{c}_a(0,s,0)$ and $abla_a \hat{q}(0,s,t)$

\rightarrow We obtain

$$\begin{cases} \nabla_s c_s(s,0) + r(s,0) = 0 \quad \forall s, \\ \nabla_s \nabla_s q(s,t) + |q(s,t)| \left(r(s,t) + r(s,t)^T \right) = 0 \quad \forall t, s. \end{cases}$$

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right) \\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)} \left(\varepsilon c_{s}(s,t)\right) \\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right) \\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right) \\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right) \\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right) \\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right) \\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$
Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

We numerically solve the geodesic equation

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right) \\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

We numerically solve the geodesic equation

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right) \\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

We numerically solve the geodesic equation

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right) \\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

◆□ ▶ < 団 ▶ < 豆 ▶ < 豆 ▶ Ξ の Q ○ 28/62

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

We numerically solve the geodesic equation

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right)\\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

Exponential map : gives the geodesic starting from c at speed w

Simulation in the hyperbolic upper half-plane

We numerically solve the geodesic equation

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right) \\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

Constructing geodesics

Exponential map : gives the geodesic starting from c at speed w

We numerically solve the geodesic equation

$$\begin{split} c(s+\varepsilon,t) &= \exp^{M}_{c(s,t)}\left(\varepsilon c_{s}(s,t)\right)\\ c_{s}(s+\varepsilon,t) &= \left(c_{s}(s,t) + \varepsilon \nabla_{s} c_{s}(s,t)\right)^{s,s+\varepsilon} \end{split}$$

イロト イポト イヨト イヨト

28/62

Geodesic shooting : gives the optimal deformation of c_0 into c_1 .

Geodesic shooting : gives the optimal deformation of c_0 into c_1 .

- "shoot" from c_0 in a direction w

Geodesic shooting : gives the optimal deformation of c_0 into c_1 .

- "shoot" from c_0 in a direction w
- measure the gap J(1) to the target curve

Geodesic shooting : gives the optimal deformation of c_0 into c_1 .

- "shoot" from c_0 in a direction w
- measure the gap J(1) to the target curve
- compute the initial speed of the corresponding Jacobi field

Geodesic shooting : gives the optimal deformation of c_0 into c_1 .

- "shoot" from c_0 in a direction w
- measure the gap J(1) to the target curve
- compute the initial speed of the corresponding Jacobi field
- correct the shooting direction *w* using this information

Geodesic shooting : gives the optimal deformation of c_0 into c_1 .

- "shoot" from c_0 in a direction w
- measure the gap J(1) to the target curve
- compute the initial speed of the corresponding Jacobi field
- correct the shooting direction *w* using this information

Geodesic shooting : gives the optimal deformation of c_0 into c_1 .

- "shoot" from c_0 in a direction w
- measure the gap J(1) to the target curve
- compute the initial speed of the corresponding Jacobi field
- correct the shooting direction *w* using this information
- iterate.

Geodesic shooting : gives the optimal deformation of c_0 into c_1 .

- "shoot" from c_0 in a direction w
- measure the gap J(1) to the target curve
- compute the initial speed of the corresponding Jacobi field
- correct the shooting direction *w* using this information
- iterate.

Geodesic shooting : gives the optimal deformation of c_0 into c_1 .

- "shoot" from c_0 in a direction w
- measure the gap J(1) to the target curve
- compute the initial speed of the corresponding Jacobi field
- correct the shooting direction *w* using this information
- iterate.

Geodesic shooting : gives the optimal deformation of c_0 into c_1 .

- "shoot" from c_0 in a direction w
- measure the gap J(1) to the target curve
- compute the initial speed of the corresponding Jacobi field
- correct the shooting direction *w* using this information
- iterate.

Computing a mean curve

Fréchet mean :

4 ロ ト 4 日 ト 4 臣 ト 4 臣 ト 臣 の Q ()
30/62

Computing a mean curve

Fréchet mean :

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

Computing a mean curve

Fréchet mean :

4 ロ ト 4 団 ト 4 臣 ト 4 臣 ト 臣 の 9 0 (62
30/62

Computing a mean curve

Fréchet mean :

4 ロ ト 4 団 ト 4 臣 ト 4 臣 ト 臣 の 9 0 (62
30/62

Computing a mean curve

Fréchet mean :

Computing a mean curve

Fréchet mean :

◆□ ▶ < 団 ▶ < 豆 ▶ < 豆 ▶ Ξ のへで 30/62

Computing a mean curve

Fréchet mean :

Computing a mean curve

Fréchet mean :

Computing a mean curve

Fréchet mean :

4 ロ ト 4 団 ト 4 臣 ト 4 臣 ト 臣 の 9 0 0
30/62

Computing a mean curve

Fréchet mean :

Computing a mean curve

Fréchet mean :

◆□ ▶ < 団 ▶ < 豆 ▶ < 豆 ▶ Ξ のへで 30/62

Computing a mean curve

Fréchet mean :

Computing a mean curve

Fréchet mean :

4 ロ ト 4 団 ト 4 臣 ト 4 臣 ト 臣 の 9 0 0
30/62

Computing a mean curve

Fréchet mean :

ロト
 ・< E>< E>< E
 ③Q(02)
 30/62

Computing a mean curve

Fréchet mean :

◆□ ▶ < 団 ▶ < 豆 ▶ < 豆 ▶ Ξ のへで 30/62

Computing a mean curve

Fréchet mean :

Computing a mean curve

Fréchet mean :

ロト
 ・< E>< E>< E
 ③Q(02)
 30/62

Table of contents

1. Motivation

Information geometry Application to radar signal processing

2. Shape analysis of manifold-valued curves

Introduction Riemannian structure on the space of parameterized curves Riemannian structure on the space of unparameterized curves

3. Discretization and simulations

The discrete mode Simulations

4. Example of application to radar signal processing

Table of contents Motivation Shape analysis of manifold-valued curves Discretization and simulations Example of application to radar signal processing

Riemannian structure on the space of unparameterized curves

Optimal matching between two curves

The geodesics of S are projections of the horizontal geodesics of \mathcal{M} .

Fix c_0 , and search for $c_1 \circ \phi$ that minimizes the distance between the two fibers.

 $(c_0, c_1 \circ \varphi)$ gives an optimal matching between the two shapes $\overline{c_0}$ and $\overline{c_1}$.

Motivation for optimal matching

Several curves with same shape but different parameterizations

Pointwise mean

 \rightarrow it is interesting to **redistribute** the points on the different curves.
Optimal matching algorithm

We decompose any path of curves $s \mapsto c(s) \in \mathcal{M}$ into

 $c(s) = c^{hor}(s) \circ \varphi(s)$

where c^{hor} horizontal path and φ path in Diff⁺([0,1]).

Optimal matching algorithm

Proposition

The horizontal part of a path of curves is at most as long as the path itself

 $L(c^{hor}) \leq L(c).$

Optimal matching algorithm

- compute the geodesic c between c_0 and \hat{c}_1
- compute the horizontal part c^{hor} of c and set $\hat{c}_1 = c^{hor}(1)$.

- compute the geodesic *c* between c_0 and \hat{c}_1
- compute the horizontal part c^{hor} of c and set $\hat{c}_1 = c^{hor}(1)$.

- compute the geodesic *c* between c_0 and \hat{c}_1
- compute the horizontal part c^{hor} of c and set $\hat{c}_1 = c^{hor}(1)$.

- compute the geodesic *c* between c_0 and \hat{c}_1
- compute the horizontal part c^{hor} of c and set $\hat{c}_1 = c^{hor}(1)$.

- compute the geodesic *c* between c_0 and \hat{c}_1
- compute the horizontal part c^{hor} of c and set $\hat{c}_1 = c^{hor}(1)$.

- compute the geodesic *c* between c_0 and \hat{c}_1
- compute the horizontal part c^{hor} of c and set $\hat{c}_1 = c^{hor}(1)$.

- compute the geodesic *c* between c_0 and \hat{c}_1
- compute the horizontal part c^{hor} of c and set $\hat{c}_1 = c^{hor}(1)$.

- compute the geodesic *c* between c_0 and \hat{c}_1
- compute the horizontal part c^{hor} of c and set $\hat{c}_1 = c^{hor}(1)$.

- compute the geodesic *c* between c_0 and \hat{c}_1
- compute the horizontal part c^{hor} of c and set $\hat{c}_1 = c^{hor}(1)$.

- compute the geodesic *c* between c_0 and \hat{c}_1
- compute the horizontal part c^{hor} of c and set $\hat{c}_1 = c^{hor}(1)$.

Optimal matching algorithm

How can we compute the horizontal part of a path?

Horizontal part of a tangent vector

 $\begin{array}{ll} \mbox{Vertical space}: & \mbox{Ver}_c = \{mv = mc'/|c'|, & m \in C^\infty([0,1],\mathbb{R}), \ m(0) = m(1) = 0\}. \\ \mbox{Horizontal space}: & \mbox{Hor}_c = (\mbox{Ver}_c)^{\perp_G}. \end{array}$

Proposition (Horizontal vector and horizontal part of a vector)

A vector $h \in T_c \mathcal{M}$ tangent in $c \in \mathcal{M}$ is horizontal for the elastic metric $G^{a,b}$ iff

$$\begin{array}{l} \left((a/b)^2 - 1\right) \langle \nabla_t h, \nabla_t v \rangle - \langle \nabla_t^2 h, v \rangle + |c'|^{-1} \langle \nabla_t c', v \rangle \langle \nabla_t h, v \rangle = 0. \\ a = 2b = 1: \qquad 3 \langle \nabla_t h, \nabla_t v \rangle - \langle \nabla_t^2 h, v \rangle + |c'|^{-1} \langle \nabla_t c', v \rangle \langle \nabla_t h, v \rangle = 0. \end{array}$$

The vertical and horizontal parts of a vector $w \in T_c \mathcal{M}$ are given by

$$w^{ver} = mv, \qquad w^{hor} = w - mv,$$

where $m \in C^{\infty}([0,1],\mathbb{R})$ is solution of

$$m'' - \langle \nabla_t c' / |c'|, v \rangle m' - 4 |\nabla_t v|^2 m = \langle \nabla_t^2 w, v \rangle - 3 \langle \nabla_t w, \nabla_t v \rangle - \langle \nabla_t c' / |c'|, v \rangle \langle \nabla_t w, v \rangle.$$

$$m(0) = m(1) = 0.$$

Horizontal part of a path of curves

Proposition (Horizontal part of a path of curves)

Let $s \mapsto c(s)$ be a path in \mathcal{M} . Its horizontal part is given by

$$c^{hor}(s,t) = c(s,\phi(s)^{-1}(t)),$$

where $s \mapsto \phi(s)$ is solution of

and where $m(s):[0,1]
ightarrow \mathbb{R}, t \mapsto m(s,t)$ is solution for all s of

$$\begin{cases} m_{tt} - \langle \nabla_t c_t / | c_t |, v \rangle m_t - 4 | \nabla_t v |^2 m = \langle \nabla_t^2 c_s, v \rangle - 3 \langle \nabla_t c_s, \nabla_t v \rangle - \langle \nabla_t c_t / | c_t |, v \rangle \langle \nabla_t c_s, v \rangle \\ m(s,0) = m(s,1) = 0. \end{cases}$$

<ロ> (四) (四) (注) (注) (注) (注)

Example : optimal matching in \mathbb{H}^2

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example : optimal matching in \mathbb{H}^2

4 ロ ト 4 団 ト 4 茎 ト 4 茎 ト 茎 の Q (や 38/62

Example : optimal matching in \mathbb{H}^2

・ロト・西ト・ヨト・ヨー シック

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

(ロ)、(型)、(E)、(E)、(E)、(E)、(O)()

Example : optimal matching in \mathbb{H}^2

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

・ロト・西ト・ヨト・ヨー シック

Example : optimal matching in \mathbb{H}^2

イロト イポト イヨト イヨト

Example : optimal matching in \mathbb{H}^2

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example : optimal matching in \mathbb{H}^2

E √) Q (38/62

イロト イポト イヨト イヨト

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example : optimal matching in \mathbb{H}^2

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

<ロト</p>
4日ト
日
日
日
日
日
日
日
0
0
38/62

Example : optimal matching in \mathbb{H}^2

<ロト</p>
4日ト
日
日
日
日
日
日
日
0
0
38/62

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Example : optimal matching in \mathbb{H}^2

Geodesics between different pairs of parameterizations of two segments of \mathbb{H}^2 (blue) and the corresponding horizontal geodesics (red)

Example : optimal matching in \mathbb{H}^2

Superposition of horizontal geodesics \rightarrow geodesic between the shapes

Common lengths of the horizontal geodesics \rightarrow distance between the shapes ($d \approx 0.56$)

0.6287	0.5611	0.6249	0.5633
0.7161	0.5601	0.7051	0.5601
0.5798	0.5608	0.6106	0.5615
0.6213	0.5601	0.6104	0.5601

Length of the initial geodesics (blue) and the corresponding horizontal geodesics (red)

Back to the first example

Several curves with same shape but different parameterizations

Mean for our metric after optimal matching

< □ > < @ > < E > < E > E の Q (~ 41/62

Table of contents

1. Motivation

Information geometry Application to radar signal processing

2. Shape analysis of manifold-valued curves

Introduction Riemannian structure on the space of parameterized curves Riemannian structure on the space of unparameterized curves

3. Discretization and simulations The discrete model

Simulations

4. Example of application to radar signal processing

The applications

- In practice, the applications give series of points Space of "discrete curves" = Mⁿ⁺¹
- ► Hyp : *M* has constant sectional curvature *K*.

*[Su, Kurtek, Klassen, Srivastava '14] **[Zhang, Su, Klassen, Le, Srivastava '15]

Riemannian structure on M^{n+1}

$$x_{k-1} \xrightarrow{W_{k-1}}$$

$$x_k \xrightarrow{W_k}$$

$$x_{k+1} \longrightarrow w_{k+1}$$

Riemannian structure on M^{n+1}

"Discrete curve"
$$\alpha = (x_0, \dots, x_n) \in M^{n+1},$$
Tangent vector $w = (w_0, \dots, w_n), \quad w_k \in T_{x_k}M.$

Discrete metric on *M*^{*n*+1} :

$$G_{\alpha}^{n}(w,w) = |w_{0}|^{2} + \frac{1}{n}\sum_{k=0}^{n-1} |\nabla_{s}q^{w}(0,\frac{k}{n})|^{2},$$

 $s\mapsto c^w(s,\cdot)$ path of piecewise-geodesic curves and q^w the SRV of c^w .

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

Convergence of the discrete model to the continuous model

Définition

We say that $\alpha = (x_0, ..., x_n) \in M^{n+1}$ is the discretization of size *n* of $c \in \mathcal{M}$ when

$$c(\frac{k}{n}) = x_k$$
 for all $k = 0, \dots, n$.

A path $s \mapsto \alpha(s)$ of discrete curves is *the discretization of size n* of a path of curves $s \mapsto c(s)$ when $\alpha(s)$ is the discretization of c(s) for all s.

We show the convergence of the energies when $n \rightarrow \infty$

$$E^{n}(\alpha) = \frac{1}{2} \int_{0}^{1} \left(|x'_{0}(s)|^{2} + \frac{1}{n} \sum_{k=0}^{n-1} |\nabla_{s}q_{k}(s)|^{2} \right) \mathrm{d}s$$
$$E(c) = \frac{1}{2} \int_{0}^{1} \left(|c_{s}(s,0)|^{2} + \int_{0}^{1} |\nabla_{s}q(s,t)|^{2} \mathrm{d}t \right) \mathrm{d}s$$

Convergence of the discrete model to the continuous model

Theorem (Convergence of the discrete model to the continuous model)

Let $s \mapsto c(s)$ be a C^1 path of C^2 curves whose speed in t never vanishes, identifiable to an element $(s, t) \mapsto c(s, t)$ of $C^{1,2}([0, 1] \times [0, 1], M)$ such that $c_t \neq 0$.

Let $s \mapsto \alpha(s) = (x_0(s), \dots, x_n(s))$ be the discretization of size *n* of *c*.

Then there exists a constant $\lambda > 0$ that does not depend on *c* and such that for *n* big enough,

$$|E(c) - E^{n}(\alpha)| \leq \frac{\lambda}{n} (\inf |c_{t}|)^{-1} |c_{s}|^{2}_{2,\infty} (1 + |c_{t}|_{1,\infty})^{3},$$

with

$$\begin{aligned} |c_t|_{1,\infty} &:= |c_t|_{\infty} + |\nabla_t c_t|_{\infty}, \\ |c_s|_{2,\infty} &:= |c_s|_{\infty} + |\nabla_t c_s|_{\infty} + |\nabla_t^2 c_s|_{\infty}, \end{aligned}$$

and $|w|_{\infty} := \sup_{s,t \in [0,1]} |w(s,t)|.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Discrete geodesic equation

We find the geodesic equation by a method analogous to that of the continuous case. The coefficients depend on the curvature K of M.

Proposition (Discrete geodesic equation)

The path $s \mapsto \alpha(s) = (x_0(s), \dots, x_n(s)) \in M^{n+1}$ is a geodesic for G^n iff its SRV coordinates $s \mapsto (x_0(s), (q_k(s))_k)$ verify

$$\nabla_{s} x_{0}'(s) = -r_{0}(s) + o(1),$$

$$\nabla_{s}^{2} q_{k}(s) = -|q_{k}(s)|(r_{k}(s) + r_{k}(s)^{T}) + o(1), \quad k = 0, \dots, n-1,$$

for all $s \in [0, 1]$, with

$$\begin{split} r_k(s) &:= \frac{1}{n} \sum_{\ell=k+1}^{n-1} P_c^{\frac{l}{n},\frac{k}{n}} \left(\mathcal{R}(q,\nabla_s q) c_s(s,\frac{\ell}{n}) \right) \xrightarrow[n \to \infty]{} r(s,\frac{k}{n}), \quad k = 1, \dots, n-2, \\ r_{n-1}(s) &:= 0. \end{split}$$

Implementation

This allowed us to implement :

3. the optimal matching algorithm

Table of contents

1. Motivation

Information geometry Application to radar signal processing

2. Shape analysis of manifold-valued curves

Introduction Riemannian structure on the space of parameterized curves Riemannian structure on the space of unparameterized curves

3. Discretization and simulations

The discrete mode Simulations

4. Example of application to radar signal processing

Geodesic shooting in \mathbb{H}^2

Geodesics between parameterized curves in \mathbb{H}^2 for metric *G* (blue) and the L^2 metric (green)

Geodesic shooting in \mathbb{R}^2

Geodesics between parameterized curves in \mathbb{R}^2 for metric *G* (blue) and the L^2 metric (green)

Geodesic shooting in \mathbb{S}^2

Geodesics between parameterized curves in \mathbb{S}^2 for metric *G* (blue) and the L^2 metric (green)

Optimal matching in \mathbb{R}^2

Superposition of geodesics between different parameterizations of the same curves (blue) and of the associated horizontal geodesics (red)

Table of contents

1. Motivation

Information geometry Application to radar signal processing

2. Shape analysis of manifold-valued curves

Introduction Riemannian structure on the space of parameterized curves Riemannian structure on the space of unparameterized curves

3. Discretization and simulations

The discrete mode Simulations

4. Example of application to radar signal processing
Data : m vectors X^k = (X^k₁,...,X^k_N) of N radar observations obtained using a simulator of helicopter signatures

- Each observation vector X^k corresponds to a slightly different rotation speed of the blades
- > We want to create a mean signature that takes these variations into account.

For each X^k , we estimate the evolution of the reflection coefficients

$$\left(\mathcal{P}^{k}(t), \mu_{1}^{k}(t), \ldots, \mu_{n-1}^{k}(t) \right) \in \mathbb{R}^{*}_{+} imes \mathbb{D}^{n-1}$$

n = size of the gliding window = size of the stationary portions.

- Since we have a product metric on ℝ⁺₊ × Dⁿ⁻¹, to compare X^k and X^ℓ we simply pairwise compare the curves μ^k_i and μ^ℓ_i for each i = 1,...,n-1.
- They are curves in the Poincaré disk.

$$z = \begin{bmatrix} z_1 \\ \vdots \\ z_i \\ \vdots \\ z_{i+n} \\ \vdots \\ z_N \end{bmatrix} \leftrightarrow (P_0(t), \mu_1(t), \dots, \mu_{n-1}(t))$$

◆□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E のへで 57/62

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

4 ロ ト 4 団 ト 4 茎 ト 4 茎 ト 茎 の 4 で
60/62

What still needs to be done

- These mean curves are computed without optimal matching :
 - interpolate between points (splines in the hyperbolic space),
 - compute the mean between the shapes of the interpolations (with optimal matching).
- Compare the results obtained by considering the signals as locally stationary (curves) to those obtained by considering them as stationary (points).
- In the locally stationary case, compare the efficiency of different metrics between curves for target detection or recognition.
- More generally : exploit the Riemannian setting to perform statistics on sets of curves.

Thank you for your attention !