Entropy and discrete random variables

Oliver Johnson O.Johnson@bristol.ac.uk https://people.maths.bris.ac.uk/~maotj Twitter: BristOliver

School of Mathematics, University of Bristol, UK

CIRM, 28th August 2017

Oliver Johnson 0.Johnson@bristol.ac.uk

0.Johnson@bristol.ac.uk

Entropy and discrete random variables

Oliver Johnson

(ロ) (回) (E) (E)

School of Mathematics, University of Bristol, UK

Gaussian random variables are lovely.

ৰ □ ► ৰ 🗇 ► ৰ ছি ► ৰ ছি ► ছি ∽ २ School of Mathematics, University of Bristol, UK

Oliver Johnson 0.Johnson@bristol.ac.uk

- Gaussian random variables are lovely.
 - 1. They are maximum entropy (under variance condition).

- Gaussian random variables are lovely.
 - 1. They are maximum entropy (under variance condition).
 - 2. They are stable (class closed under addition and scaling).

- Gaussian random variables are lovely.
 - 1. They are maximum entropy (under variance condition).
 - 2. They are stable (class closed under addition and scaling).
 - 3. They are case of equality in EPI (and sharp log-Sobolev type results).

- Gaussian random variables are lovely.
 - 1. They are maximum entropy (under variance condition).
 - 2. They are stable (class closed under addition and scaling).
 - 3. They are case of equality in EPI (and sharp log-Sobolev type results).
 - 4. Nice convexity properties (information geometry).

- Gaussian random variables are lovely.
 - 1. They are maximum entropy (under variance condition).
 - 2. They are stable (class closed under addition and scaling).
 - 3. They are case of equality in EPI (and sharp log-Sobolev type results).
 - 4. Nice convexity properties (information geometry).
- Present some disjointed ideas about how to generalize to discrete random variables: Poisson, geometric, binomial etc.

- Gaussian random variables are lovely.
 - 1. They are maximum entropy (under variance condition).
 - 2. They are stable (class closed under addition and scaling).
 - 3. They are case of equality in EPI (and sharp log-Sobolev type results).
 - 4. Nice convexity properties (information geometry).
- Present some disjointed ideas about how to generalize to discrete random variables: Poisson, geometric, binomial etc.
- Need 'log-concavity plus'?

- Gaussian random variables are lovely.
 - 1. They are maximum entropy (under variance condition).
 - 2. They are stable (class closed under addition and scaling).
 - 3. They are case of equality in EPI (and sharp log-Sobolev type results).
 - 4. Nice convexity properties (information geometry).
- Present some disjointed ideas about how to generalize to discrete random variables: Poisson, geometric, binomial etc.
- Need 'log-concavity plus'?
- Single summary in Johnson O. (2017) Entropy and Thinning of Discrete Random Variables. In: Carlen E., Madiman M., Werner E. (eds) Convexity and Concentration. IMA vol 161.

Outline of talk

Poisson max entropy

Entropy monotonicity

Discrete log-Sobolev

Entropy concavity

School of Mathematics, University of Bristol, UK

Oliver Johnson 0.Johnson@bristol.ac.uk

Discrete log-Sobolev

'Log-concavity plus' - idea 1 (ULC)

School of Mathematics, University of Bristol, UK

Oliver Johnson 0. Johnson@bristol.ac.uk

• Write Π_{λ} for the Poisson(λ) mass function.

Oliver Johnson 0.Johnson@bristol.ac.uk

Entropy and discrete random variables

School of Mathematics, University of Bristol, UK

• Write Π_{λ} for the Poisson(λ) mass function.

Definition (Pemantle, Liggett)

For any λ , define class of ultra-log-concave V with mass function P_V supported on \mathbb{Z}_+ satisfying

 $\mathsf{ULC}(\lambda) = \{ V : \mathbb{E}V = \lambda \text{ and } P_V(v) / \Pi_{\lambda}(v) \text{ is log-concave} \}.$

• Write Π_{λ} for the Poisson(λ) mass function.

Definition (Pemantle, Liggett)

For any λ , define class of ultra-log-concave V with mass function P_V supported on \mathbb{Z}_+ satisfying

ULC
$$(\lambda) = \{V : \mathbb{E}V = \lambda \text{ and } P_V(v)/\Pi_{\lambda}(v) \text{ is log-concave}\}.$$

Class includes Bernoulli sums and Poisson.

• Write Π_{λ} for the Poisson(λ) mass function.

Definition (Pemantle, Liggett)

For any λ , define class of ultra-log-concave V with mass function P_V supported on \mathbb{Z}_+ satisfying

 $\mathsf{ULC}(\lambda) = \{ V : \mathbb{E}V = \lambda \text{ and } P_V(v) / \Pi_{\lambda}(v) \text{ is log-concave} \}.$

- Class includes Bernoulli sums and Poisson.
- Class preserved on summation.

/⊒ > < ∃ >

Maximum entropy and $ULC(\lambda)$

Theorem (OJ: *Stoch. Proc. Appl.* 2007, pp.791-802) If $X \in ULC(\lambda)$ and $Y \sim \Pi_{\lambda}$ then the entropy H satisfies

 $H(X) \leq H(Y),$

with equality if and only if $X \sim \Pi_{\lambda}$.

Maximum entropy and $ULC(\lambda)$

Theorem (OJ: *Stoch. Proc. Appl.* 2007, pp.791-802) If $X \in ULC(\lambda)$ and $Y \sim \Pi_{\lambda}$ then the entropy H satisfies

 $H(X) \leq H(Y),$

with equality if and only if $X \sim \Pi_{\lambda}$.

See also Harremoës, 2001.

Thinning discrete random variables

Definition (Rényi)

Given *Y*, define the α -thinned version of *Y* by

$$T_{\alpha}Y = \sum_{i=1}^{Y} B_i,$$

where $B_1, B_2...$ i.i.d. Bernoulli(α), independent of Y.

Oliver Johnson 0.Johnson@bristol.ac.uk

School of Mathematics, University of Bristol, UK

Thinning discrete random variables

Definition (Rényi)

Given *Y*, define the α -thinned version of *Y* by

$$T_{\alpha}Y = \sum_{i=1}^{Y} B_i,$$

where $B_1, B_2...$ i.i.d. Bernoulli(α), independent of Y.

Thinning operation preserves several parametric families

Thinning discrete random variables

Definition (Rényi)

Given *Y*, define the α -thinned version of *Y* by

$$T_{\alpha}Y = \sum_{i=1}^{Y} B_i,$$

where $B_1, B_2 \dots$ i.i.d. Bernoulli(α), independent of Y.

- Thinning operation preserves several parametric families
- T_{α} is discrete equivalent of scaling by $\sqrt{\alpha}$?

Monotonicity of entropy

Theorem (OJ–Yu, *IEEE Trans. Inform Thy.* 2010) Given positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, and writing $\alpha^{(j)} = 1 - \alpha_j$, then for any independent ULC X_i , $nH\left(\sum_{i=1}^{n+1} T_{\alpha_i}X_i\right) \ge \sum_{j=1}^{n+1} \alpha^{(j)}H\left(\sum_{i\neq j} T_{\alpha_i/\alpha^{(j)}}X_i\right)$.

Monotonicity of entropy

Theorem (OJ–Yu, *IEEE Trans. Inform Thy.* 2010) Given positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, and writing $\alpha^{(j)} = 1 - \alpha_j$, then for any independent ULC X_i , $nH\left(\sum_{i=1}^{n+1} T_{\alpha_i}X_i\right) \ge \sum_{j=1}^{n+1} \alpha^{(j)}H\left(\sum_{i\neq j} T_{\alpha_i/\alpha^{(j)}}X_i\right)$.

Exact analogue of Artstein/Ball/Barthe/Naor result,

$$nh\left(\sum_{i=1}^{n+1}\sqrt{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}h\left(\sum_{i\neq j}\sqrt{\alpha_i/\alpha^{(j)}}X_i\right),$$

replacing scalings by thinnings.

Monotonicity of entropy

Theorem (OJ–Yu, *IEEE Trans. Inform Thy.* 2010) Given positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, and writing $\alpha^{(j)} = 1 - \alpha_j$, then for any independent ULC X_i , $nH\left(\sum_{i=1}^{n+1} T_{\alpha_i}X_i\right) \ge \sum_{j=1}^{n+1} \alpha^{(j)}H\left(\sum_{i\neq j} T_{\alpha_i/\alpha^{(j)}}X_i\right)$.

Exact analogue of Artstein/Ball/Barthe/Naor result,

$$nh\left(\sum_{i=1}^{n+1}\sqrt{\alpha_i}X_i\right)\geq\sum_{j=1}^{n+1}\alpha^{(j)}h\left(\sum_{i\neq j}\sqrt{\alpha_i/\alpha^{(j)}}X_i\right),$$

replacing scalings by thinnings.

Yu implicitly proved corresponding result for relative entropy, no restriction on X_i.

· 《 曰 》 《 템 》 《 문 》 《 문 》 · 문 · *) 역

School of Mathematics, University of Bristol, UK

Oliver Johnson 0.Johnson@bristol.ac.uk

Definition (Caputo et al.?)

Given probability mass function P_V supported on \mathbb{Z}_+ , write

$$\mathcal{E}^{(V)}(x) := \frac{P_V(x)^2 - P_V(x-1)P_V(x+1)}{P_V(x)P_V(x+1)} = \frac{P_V(x)}{P_V(x+1)} - \frac{P_V(x-1)}{P_V(x)}.$$

School of Mathematics, University of Bristol, UK

Oliver Johnson 0.Johnson@bristol.ac.uk

Definition (Caputo et al.?)

Given probability mass function P_V supported on \mathbb{Z}_+ , write

$$\mathcal{E}^{(V)}(x) := \frac{P_V(x)^2 - P_V(x-1)P_V(x+1)}{P_V(x)P_V(x+1)} = \frac{P_V(x)}{P_V(x+1)} - \frac{P_V(x-1)}{P_V(x)}.$$

Condition (c-log-concavity) If $\mathcal{E}^{(V)}(x) \ge c$ for all $x \in Z_+$, we say V is c-log-concave.

Oliver Johnson 0.Johnson@bristol.ac.uk

Definition (Caputo et al.?)

Given probability mass function P_V supported on \mathbb{Z}_+ , write

$$\mathcal{E}^{(V)}(x) := \frac{P_V(x)^2 - P_V(x-1)P_V(x+1)}{P_V(x)P_V(x+1)} = \frac{P_V(x)}{P_V(x+1)} - \frac{P_V(x-1)}{P_V(x)}.$$

Condition (c-log-concavity) If $\mathcal{E}^{(V)}(x) \ge c$ for all $x \in Z_+$, we say V is c-log-concave.

• If
$$V = \Pi_{\lambda}$$
 then $\mathcal{E}^{(V)}(x) \equiv 1/\lambda$.

Definition (Caputo et al.?)

Given probability mass function P_V supported on \mathbb{Z}_+ , write

$$\mathcal{E}^{(V)}(x) := \frac{P_V(x)^2 - P_V(x-1)P_V(x+1)}{P_V(x)P_V(x+1)} = \frac{P_V(x)}{P_V(x+1)} - \frac{P_V(x-1)}{P_V(x)}.$$

Condition (*c*-log-concavity)

If $\mathcal{E}^{(V)}(x) \ge c$ for all $x \in Z_+$, we say V is c-log-concave.

• If
$$V = \prod_{\lambda}$$
 then $\mathcal{E}^{(V)}(x) \equiv 1/\lambda$.

• V ULC \implies c-log-concave with $c = P_V(1)/P_V(0)$.

Discrete LSI (OJ arxiv:1507.06268, pending Ann. IHP)

Theorem

Fix c-log-concave V supported on \mathbb{Z}_+ . For any positive f:

$$\operatorname{Ent}_{V}(f) \leq \frac{1}{c} \sum_{x=0}^{\infty} V(x) f(x+1) \left(\log \left(\frac{f(x+1)}{f(x)} \right) - 1 + \frac{f(x)}{f(x+1)} \right)$$

School of Mathematics, University of Bristol, UK

Discrete LSI (OJ arxiv:1507.06268, pending Ann. IHP)

Theorem

Fix c-log-concave V supported on \mathbb{Z}_+ . For any positive f:

$$\operatorname{Ent}_{V}(f) \leq \frac{1}{c} \sum_{x=0}^{\infty} V(x) f(x+1) \left(\log \left(\frac{f(x+1)}{f(x)} \right) - 1 + \frac{f(x)}{f(x+1)} \right)$$

▶ Is sharp: equality holds for $V = \prod_{\lambda}$, $f(x) = \exp(ax + b)$.

Discrete LSI (OJ arxiv:1507.06268, pending Ann. IHP)

Theorem

Fix c-log-concave V supported on \mathbb{Z}_+ . For any positive f:

$$\operatorname{Ent}_{V}(f) \leq \frac{1}{c} \sum_{x=0}^{\infty} V(x) f(x+1) \left(\log \left(\frac{f(x+1)}{f(x)} \right) - 1 + \frac{f(x)}{f(x+1)} \right)$$

- ► Is sharp: equality holds for $V = \Pi_{\lambda}$, $f(x) = \exp(ax + b)$.
- Proved using Caputo, Dai Pra, Posta's discrete Bakry-Émery theory.

 Strengthens and generalizes previous log-Sobolev inequalities of 1. Wu 2. Caputo et al 3. Bobkov and Ledoux.

School of Mathematics, University of Bristol, UK

Oliver Johnson 0.Johnson@bristol.ac.uk

- Strengthens and generalizes previous log-Sobolev inequalities of 1. Wu 2. Caputo et al 3. Bobkov and Ledoux.
- e.g. linearizing log and taking $V = \Pi_{\lambda}$ recover

$$\operatorname{Ent}_V(f) \leq \lambda \sum_{x=0}^{\infty} V(x) \frac{\Delta f(x)^2}{f(x)}.$$

School of Mathematics, University of Bristol, UK

Oliver Johnson 0.Johnson@bristol.ac.uk

- Strengthens and generalizes previous log-Sobolev inequalities of 1. Wu 2. Caputo et al 3. Bobkov and Ledoux.
- e.g. linearizing log and taking $V = \Pi_{\lambda}$ recover

$$\operatorname{Ent}_V(f) \leq \lambda \sum_{x=0}^{\infty} V(x) \frac{\Delta f(x)^2}{f(x)}.$$

• e.g. Recover the fact that if p has mean λ

$$D(p\|\Pi_{\lambda}) \leq \lambda D(p^{\#}\|p),$$

where $p^{\#}$ is the size-biased version of p.

- Strengthens and generalizes previous log-Sobolev inequalities of 1. Wu 2. Caputo et al 3. Bobkov and Ledoux.
- e.g. linearizing log and taking $V = \Pi_{\lambda}$ recover

$$\operatorname{Ent}_V(f) \leq \lambda \sum_{x=0}^{\infty} V(x) \frac{\Delta f(x)^2}{f(x)}.$$

• e.g. Recover the fact that if p has mean λ

$$D(p\|\Pi_{\lambda}) \leq \lambda D(p^{\#}\|p),$$

where $p^{\#}$ is the size-biased version of p.

 (This is a log-Sobolev inequality of Wu, reproved more directly by Yu).
Entropy concavity

Concavity of entropy: Shepp-Olkin conjecture

School of Mathematics, University of Bristol, UK

Oliver Johnson 0. Johnson@bristol.ac.uk

► Consider *n* independent Bernoulli random variables, with parameters **p** = (*p*₁,...,*p_n*).

- ► Consider *n* independent Bernoulli random variables, with parameters **p** = (*p*₁,...,*p_n*).
- Their sum has mass function $f_{\mathbf{p}}(k)$ for k = 0, 1, ..., n.

- ► Consider *n* independent Bernoulli random variables, with parameters **p** = (*p*₁,...,*p_n*).
- Their sum has mass function $f_{\mathbf{p}}(k)$ for k = 0, 1, ..., n.
- Consider entropy of $f_{\mathbf{p}}$, defined by

$$H(\mathbf{p}) := -\sum_{k=0}^{n} f_{\mathbf{p}}(k) \log f_{\mathbf{p}}(k).$$

School of Mathematics, University of Bristol, UK

- ► Consider *n* independent Bernoulli random variables, with parameters **p** = (*p*₁,...,*p_n*).
- Their sum has mass function $f_{\mathbf{p}}(k)$ for k = 0, 1, ..., n.
- Consider entropy of $f_{\mathbf{p}}$, defined by

$$H(\mathbf{p}) := -\sum_{k=0}^{n} f_{\mathbf{p}}(k) \log f_{\mathbf{p}}(k).$$

Conjecture (Shepp–Olkin (1981)) For any n, the function $\mathbf{p} \mapsto H(\mathbf{p})$ is concave.

- ► Consider *n* independent Bernoulli random variables, with parameters **p** = (*p*₁,...,*p_n*).
- Their sum has mass function $f_{\mathbf{p}}(k)$ for k = 0, 1, ..., n.
- Consider entropy of $f_{\mathbf{p}}$, defined by

$$H(\mathbf{p}) := -\sum_{k=0}^{n} f_{\mathbf{p}}(k) \log f_{\mathbf{p}}(k).$$

Conjecture (Shepp–Olkin (1981))

For any n, the function $\mathbf{p} \mapsto H(\mathbf{p})$ is concave.

▶ Sufficient to consider concavity for affine *t*, i.e. take

$$p_i(t) = p_i(0)(1-t) + p_i(1)t.$$

Oliver Johnson 0.Johnson@bristol.ac.uk

Entropy and discrete random variables

School of Mathematics, University of Bristol, UK

Folklore: n = 1.

< □ ▶ < ⊡ ▶ < ≣ ▶ < ≣ ▶ < ≣ ▶ ⊇
School of Mathematics, University of Bristol, UK

Oliver Johnson 0.Johnson@bristol.ac.uk

- Folklore: n = 1.
- Shepp–Olkin (1981): n = 2,3 (claim with no proof).

- Folklore: n = 1.
- Shepp–Olkin (1981): n = 2,3 (claim with no proof).
- Shepp–Olkin (1981): for all *i*, $p_i(t) = t$ (binomial case).

School of Mathematics, University of Bristol, UK

- Folklore: n = 1.
- Shepp–Olkin (1981): n = 2,3 (claim with no proof).
- Shepp–Olkin (1981): for all *i*, $p_i(t) = t$ (binomial case).
- ▶ Yu–Johnson (2009): for all *i*, either $p_i(0) = 0$ or $p_i(1) = 0$.

- Folklore: n = 1.
- Shepp–Olkin (1981): n = 2,3 (claim with no proof).
- Shepp–Olkin (1981): for all i, $p_i(t) = t$ (binomial case).
- > Yu–Johnson (2009): for all *i*, either $p_i(0) = 0$ or $p_i(1) = 0$.
- ► Hillion (2012): for all i, either p_i(t) = t or p_i(t) constant (binomial translation case).

Discrete log-Sobolev

Entropy concavity

Motivating example: binomial case Example

School of Mathematics, University of Bristol, UK

Oliver Johnson 0. Johnson@bristol.ac.uk

Example

• Write spatial derivative
$$\Delta^* f(k) = f(k) - f(k-1)$$
.

Example

- Write spatial derivative $\Delta^* f(k) = f(k) f(k-1)$.
- For $0 \le p < q \le 1$, define p(t) = p(1 t) + qt.

Example

- Write spatial derivative $\Delta^* f(k) = f(k) f(k-1)$.
- For $0 \le p < q \le 1$, define p(t) = p(1-t) + qt.
- Write $f_t(k) = \binom{n}{k} p(t)^k (1 p(t))^{n-k}$.

Example

- Write spatial derivative $\Delta^* f(k) = f(k) f(k-1)$.
- For $0 \le p < q \le 1$, define p(t) = p(1-t) + qt.
- Write $f_t(k) = \binom{n}{k} p(t)^k (1 p(t))^{n-k}$.
- ► Simple calculation (e.g. Mateev, Shepp–Olkin) shows:

$$\frac{\partial f_t(k)}{\partial t} = \Delta^* \bigg(n(q-p) \operatorname{Bin}_{n-1,p(t)}(k) \bigg).$$

Example

- Write spatial derivative $\Delta^* f(k) = f(k) f(k-1)$.
- For $0 \le p < q \le 1$, define p(t) = p(1-t) + qt.
- Write $f_t(k) = \binom{n}{k} p(t)^k (1 p(t))^{n-k}$.
- ► Simple calculation (e.g. Mateev, Shepp–Olkin) shows:

$$\frac{\partial f_t(k)}{\partial t} = \Delta^* \bigg(n(q-p) \operatorname{Bin}_{n-1,p(t)}(k) \bigg).$$

Rewrite using an idea of Yu ('hypergeometric thinning'):

$$\operatorname{Bin}_{n-1,p}(k) = \frac{(k+1)}{n} \operatorname{Bin}_{n,p}(k+1) + \left(1 - \frac{k}{n}\right) \operatorname{Bin}_{n,p}(k).$$

Oliver Johnson 0.Johnson@bristol.ac.uk

Discrete log-Sobolev

Entropy concavity

Motivating example: binomial case (cont.)

Example

School of Mathematics, University of Bristol, UK

Oliver Johnson 0.Johnson@bristol.ac.uk

Motivating example: binomial case (cont.)

Example

Suggests we introduce mixtures of mass functions:

$$\begin{aligned} \frac{\partial f_t(k)}{\partial t} &= \Delta^* \left(v G_t^{(\alpha)}(k) \right), \\ \text{for} \quad G_t^{(\alpha)}(k) &= \alpha_t(k+1) f_t(k+1) + (1 - \alpha_t(k)) f_t(k). \end{aligned}$$

Motivating example: binomial case (cont.)

Example

Suggests we introduce mixtures of mass functions:

$$\begin{aligned} \frac{\partial f_t(k)}{\partial t} &= \Delta^* \left(v G_t^{(\alpha)}(k) \right), \\ \text{for} \quad G_t^{(\alpha)}(k) &= \alpha_t(k+1) f_t(k+1) + (1 - \alpha_t(k)) f_t(k). \end{aligned}$$

• i.e. for binomial example take $\alpha_t(k) = k/n$ for all k and t and v = n(q - p).

Motivating example: binomial case (cont.)

Example

Suggests we introduce mixtures of mass functions:

$$\begin{aligned} \frac{\partial f_t(k)}{\partial t} &= \Delta^* \left(\nu G_t^{(\alpha)}(k) \right), \\ \text{for} \quad G_t^{(\alpha)}(k) &= \alpha_t(k+1) f_t(k+1) + (1 - \alpha_t(k)) f_t(k). \end{aligned}$$

- ▶ i.e. for binomial example take $\alpha_t(k) = k/n$ for all k and t and v = n(q p).
- Analogue of continuous transport, deduce discrete Benamou–Brenier formula.

Discrete log-Sobolev

Entropy concavity

Discrete Benamou-Brenier formula

Definition

School of Mathematics, University of Bristol, UK

Oliver Johnson 0.Johnson@bristol.ac.uk

Definition

• Write $\mathcal{P}_{\mathbb{Z}}(f_0, f_1)$ for the set of probability mass functions $f_t(k)$, given end constraints $f_t(k)|_{t=0} = f_0(k)$ and $f_t(k)|_{t=1} = f_1(k)$.

School of Mathematics, University of Bristol, UK

Definition

- Write P_ℤ(f₀, f₁) for the set of probability mass functions f_t(k), given end constraints f_t(k)|_{t=0} = f₀(k) and f_t(k)|_{t=1} = f₁(k).
- ▶ Write \mathcal{A} for the set of $\alpha(k)$ with $\alpha_t(0) \equiv 0$, $\alpha_t(n) \equiv 1$ and with $0 \leq \alpha_t(k) \leq 1$ for all k.

Oliver Johnson 0.Johnson@bristol.ac.uk

Oliver Johnson 0.Johnson@bristol.ac.uk

For f_t(k) ∈ P_ℤ(f₀, f₁) and α ∈ A, define probability mass function G^(α)_t(k), velocity field v_{α,t}(k) and distance V_n

Oliver Johnson 0.Johnson@bristol.ac.uk

Entropy and discrete random variables

School of Mathematics, University of Bristol, UK

For f_t(k) ∈ P_Z(f₀, f₁) and α ∈ A, define probability mass function G^(α)_t(k), velocity field v_{α,t}(k) and distance V_n by

Oliver Johnson 0.Johnson@bristol.ac.uk

Entropy and discrete random variables

School of Mathematics, University of Bristol, UK

For f_t(k) ∈ P_Z(f₀, f₁) and α ∈ A, define probability mass function G_t^(α)(k), velocity field v_{α,t}(k) and distance V_n by
G_t^(α)(k) = α_t(k + 1)f_t(k + 1) + (1 − α_t(k))f_t(k),

School of Mathematics, University of Bristol, UK

Oliver Johnson 0. Johnson@bristol.ac.uk

Definition

For f_t(k) ∈ P_Z(f₀, f₁) and α ∈ A, define probability mass function G_t^(α)(k), velocity field v_{α,t}(k) and distance V_n by
G_t^(α)(k) = α_t(k + 1)f_t(k + 1) + (1 − α_t(k))f_t(k),
^{∂f_t}/_{∂t}(k) = −∇₁ (v_{α,t}(k)G_t^(α)(k)),

School of Mathematics, University of Bristol, UK

For f_t(k) ∈ P_Z(f₀, f₁) and α ∈ A, define probability mass function G_t^(α)(k), velocity field v_{α,t}(k) and distance V_n by G_t^(α)(k) = α_t(k + 1)f_t(k + 1) + (1 − α_t(k))f_t(k), ^{∂f_t}/_{∂t}(k) = -∇₁ (v_{α,t}(k)G_t^(α)(k)),

$$V_n(f_0, f_1) = \left(\inf_{\substack{f_t \in \mathcal{P}_{\mathbb{Z}}(f_0, f_1), \\ \alpha_t(k) \in \mathcal{A}}} \int_0^1 \left(\sum_{k=0}^{n-1} G_t^{(\alpha)}(k) v_{\alpha, t}(k)^2\right) dt\right)^{1/2}.$$

Oliver Johnson 0.Johnson@bristol.ac.uk

Entropy and discrete random variables

► For $f_t(k) \in \mathcal{P}_{\mathbb{Z}}(f_0, f_1)$ and $\alpha \in \mathcal{A}$, define probability mass function $G_t^{(\alpha)}(k)$, velocity field $v_{\alpha,t}(k)$ and distance V_n by • $G_t^{(\alpha)}(k) = \alpha_t(k+1)f_t(k+1) + (1 - \alpha_t(k))f_t(k)$, • $\frac{\partial f_t}{\partial t}(k) = -\nabla_1 \left(v_{\alpha,t}(k)G_t^{(\alpha)}(k) \right)$,

$$V_n(f_0, f_1) = \left(\inf_{\substack{f_t \in \mathcal{P}_{\mathbb{Z}}(f_0, f_1), \\ \alpha_t(k) \in \mathcal{A}}} \int_0^1 \left(\sum_{k=0}^{n-1} G_t^{(\alpha)}(k) v_{\alpha, t}(k)^2\right) dt\right)^{1/2}$$

Refer to any path achieving the infimum as a geodesic.

Oliver Johnson 0.Johnson@bristol.ac.uk

Definition

Oliver Johnson 0.Johnson@bristol.ac.uk

Definition

• Example: binomial path is geodesic with $v_{\alpha,t}(k) \equiv n(q-p)$.

Definition

- Example: binomial path is geodesic with $v_{\alpha,t}(k) \equiv n(q-p)$.
- Call path with $v_{\alpha,t}(k)$ fixed in k and t a constant speed path.

Definition

- Example: binomial path is geodesic with $v_{\alpha,t}(k) \equiv n(q-p)$.
- Call path with $v_{\alpha,t}(k)$ fixed in k and t a constant speed path.

Proposition
Definition

- Example: binomial path is geodesic with $v_{\alpha,t}(k) \equiv n(q-p)$.
- Call path with $v_{\alpha,t}(k)$ fixed in k and t a constant speed path.

Proposition

• V_n is a metric for probability measures on $\{0, \ldots n\}$.

Definition

- Example: binomial path is geodesic with $v_{\alpha,t}(k) \equiv n(q-p)$.
- Call path with $v_{\alpha,t}(k)$ fixed in k and t a constant speed path.

Proposition

- V_n is a metric for probability measures on $\{0, \ldots n\}$.
- ► V_n defines a length space: for any geodesic f, distance $V_n(f_s, f_t) = |t s| V_n(f_0, f_1)$.

Definition

- Example: binomial path is geodesic with $v_{\alpha,t}(k) \equiv n(q-p)$.
- Call path with $v_{\alpha,t}(k)$ fixed in k and t a constant speed path.

Proposition

- V_n is a metric for probability measures on $\{0, \ldots n\}$.
- ► V_n defines a length space: for any geodesic f, distance $V_n(f_s, f_t) = |t s| V_n(f_0, f_1)$.
- If there exists a constant speed path then

Definition

- Example: binomial path is geodesic with $v_{\alpha,t}(k) \equiv n(q-p)$.
- Call path with $v_{\alpha,t}(k)$ fixed in k and t a constant speed path.

Proposition

- V_n is a metric for probability measures on $\{0, \ldots n\}$.
- ► V_n defines a length space: for any geodesic f, distance $V_n(f_s, f_t) = |t s| V_n(f_0, f_1)$.
- If there exists a constant speed path then
 - f_0 and f_1 are stochastically ordered.

Definition

- Example: binomial path is geodesic with $v_{\alpha,t}(k) \equiv n(q-p)$.
- Call path with $v_{\alpha,t}(k)$ fixed in k and t a constant speed path.

Proposition

- V_n is a metric for probability measures on $\{0, \ldots n\}$.
- ► V_n defines a length space: for any geodesic f, distance $V_n(f_s, f_t) = |t s| V_n(f_0, f_1)$.
- If there exists a constant speed path then
 - *f*⁰ and *f*¹ are stochastically ordered.
 - ▶ Wasserstein distance W₁ and V_n coincide.

- 《 曰 》 《 템 》 《 본 》 《 본 》 - 본 - 《) ()

Oliver Johnson 0. Johnson@bristol.ac.uk

Entropy and discrete random variables

School of Mathematics, University of Bristol, UK

Want conditions under which entropy is concave.

- Want conditions under which entropy is concave.
- Give conditions in terms of $\alpha_t(k)$ to generalize binomial case.

- Want conditions under which entropy is concave.
- Give conditions in terms of $\alpha_t(k)$ to generalize binomial case.
- Recall that in that case, $\alpha_t(k) \equiv k/n$.

k-monotonicity and *t*-monotonicity conditions

Condition (*k*-MON)

Given t, we say that the $\alpha_t(k)$ are k-monotone at t if

 $\alpha_t(k) \leq \alpha_t(k+1)$ for all $k = 0, \dots, n-1$.

Condition (t-MON)

Given t, we say that the $\alpha_t(k)$ are t-monotone at t if

$$\frac{\partial \alpha_t(k)}{\partial t} \ge 0 \quad \text{for all } k = 0, \dots, n.$$

GLC condition

Condition (GLC)

We say $f_t(k)$ is α -generalized log-concave at t, if for all k = 0, ..., n-2,

$$\begin{aligned} &\alpha_t(k+1)(1-\alpha_t(k+1))f_t(k+1)^2 \\ &\geq &\alpha_t(k+2)(1-\alpha_t(k))f_t(k)f_t(k+2). \end{aligned}$$

Theorem (Hillion–OJ 2016)

Consider constant speed path $f_t(k)$ and associated optimal $\alpha(t)$. If Conditions k-MON, t-MON and GLC hold at given $t = t^*$, the entropy $H(f_t)$ is concave in t at $t = t^*$.

School of Mathematics, University of Bristol, UK

Discrete log-Sobolev

Entropy concavity

Entropy concavity theorem

School of Mathematics, University of Bristol, UK

Oliver Johnson 0. Johnson@bristol.ac.uk

Entropy and discrete random variables

► However, *t*-MON condition fails for some Shepp–Olkin paths.

School of Mathematics, University of Bristol, UK

Oliver Johnson 0.Johnson@bristol.ac.uk

Entropy and discrete random variables

- ► However, *t*-MON condition fails for some Shepp–Olkin paths.
- Entropy remains concave if replace by t-MON by weaker 'Condition 4'.

0.Johnson@bristol.ac.uk School of Mathematics, University of Bristol, UK

Oliver Johnson

- ► However, *t*-MON condition fails for some Shepp–Olkin paths.
- Entropy remains concave if replace by t-MON by weaker 'Condition 4'.
- Condition 4 holds for Shepp–Olkin paths.

- ► However, *t*-MON condition fails for some Shepp–Olkin paths.
- Entropy remains concave if replace by t-MON by weaker 'Condition 4'.
- Condition 4 holds for Shepp–Olkin paths.

Theorem (Shepp–Olkin Theorem)

For any n, the function $\mathbf{p} \mapsto H(\mathbf{p})$ is concave.

O.Johnson@bristol.ac.uk

Oliver Johnson

- ► However, *t*-MON condition fails for some Shepp–Olkin paths.
- Entropy remains concave if replace by t-MON by weaker 'Condition 4'.
- Condition 4 holds for Shepp–Olkin paths.

Theorem (Shepp–Olkin Theorem)

For any n, the function $\mathbf{p} \mapsto H(\mathbf{p})$ is concave.

Proved in recent works by Hillion–OJ

- ► However, *t*-MON condition fails for some Shepp–Olkin paths.
- Entropy remains concave if replace by t-MON by weaker 'Condition 4'.
- Condition 4 holds for Shepp–Olkin paths.

Theorem (Shepp-Olkin Theorem)

For any n, the function $\mathbf{p} \mapsto H(\mathbf{p})$ is concave.

- Proved in recent works by Hillion–OJ
- Case where all p_i have same sign in Ann. Probab. vol 44/1, 2016, pages 276-306

- ► However, *t*-MON condition fails for some Shepp–Olkin paths.
- Entropy remains concave if replace by t-MON by weaker 'Condition 4'.
- Condition 4 holds for Shepp–Olkin paths.

Theorem (Shepp–Olkin Theorem)

For any n, the function $\mathbf{p} \mapsto H(\mathbf{p})$ is concave.

- Proved in recent works by Hillion–OJ
- Case where all p_i have same sign in Ann. Probab. vol 44/1, 2016, pages 276-306
- General case in Bernoulli vol 23/4B, 2017, pages 3638-3649

Conjecture (Generalized Shepp-Olkin conjecture)

Oliver Johnson 0.Johnson@bristol.ac.uk

Entropy and discrete random variables

School of Mathematics, University of Bristol, UK

Conjecture (Generalized Shepp–Olkin conjecture)

1. There is a critical q_R^* such that the q-Rényi entropy of all Bernoulli sums is concave for $q \le q_R^*$, and the entropy of some interpolation is convex for $q > q_R^*$.

School of Mathematics, University of Bristol, UK

Conjecture (Generalized Shepp–Olkin conjecture)

- 1. There is a critical q_R^* such that the q-Rényi entropy of all Bernoulli sums is concave for $q \le q_R^*$, and the entropy of some interpolation is convex for $q > q_R^*$.
- 2. There is a critical q_T^* such that the q-Tsallis entropy of all Bernoulli sums is concave for $q \le q_T^*$, and the entropy of some interpolation is convex for $q > q_T^*$.

Conjecture (Generalized Shepp-Olkin conjecture)

- 1. There is a critical q_R^* such that the q-Rényi entropy of all Bernoulli sums is concave for $q \le q_R^*$, and the entropy of some interpolation is convex for $q > q_R^*$.
- 2. There is a critical q_T^* such that the q-Tsallis entropy of all Bernoulli sums is concave for $q \le q_T^*$, and the entropy of some interpolation is convex for $q > q_T^*$.

Indeed we conjecture that $q_R^* = 2$ and $q_T^* = 3.65986...$, the root of $2 - 4q + 2^q = 0$.