
Poisson max entropy Entropy monotonicity Discrete log-Sobolev Entropy concavity

Entropy and discrete random variables

Oliver Johnson
O.Johnson@bristol.ac.uk

https://people.maths.bris.ac.uk/∼maotj
Twitter: BristOliver

School of Mathematics, University of Bristol, UK

CIRM, 28th August 2017

Oliver Johnson O.Johnson@bristol.ac.uk School of Mathematics, University of Bristol, UK

Entropy and discrete random variables



Poisson max entropy Entropy monotonicity Discrete log-Sobolev Entropy concavity

General plan

I Gaussian random variables are lovely.

1. They are maximum entropy (under variance condition).
2. They are stable (class closed under addition and scaling).
3. They are case of equality in EPI (and sharp log-Sobolev type

results).
4. Nice convexity properties (information geometry).

I Present some disjointed ideas about how to generalize to
discrete random variables: Poisson, geometric, binomial etc.

I Need ‘log-concavity plus’?

I Single summary in Johnson O. (2017) Entropy and Thinning
of Discrete Random Variables. In: Carlen E., Madiman M.,
Werner E. (eds) Convexity and Concentration. IMA vol 161.
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Outline of talk

Poisson max entropy

Entropy monotonicity

Discrete log-Sobolev

Entropy concavity
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‘Log-concavity plus’ - idea 1 (ULC)

I Write Πλ for the Poisson(λ) mass function.

Definition (Pemantle, Liggett)

For any λ, define class of ultra-log-concave V with mass function
PV supported on Z+ satisfying

ULC(λ) = {V : EV = λ and PV (v)/Πλ(v) is log-concave}.

I Class includes Bernoulli sums and Poisson.

I Class preserved on summation.
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Maximum entropy and ULC(λ)

Theorem (OJ: Stoch. Proc. Appl. 2007, pp.791-802)

If X ∈ ULC(λ) and Y ∼ Πλ then the entropy H satisfies

H(X ) ≤ H(Y ),

with equality if and only if X ∼ Πλ.

I See also Harremoës, 2001.
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Oliver Johnson O.Johnson@bristol.ac.uk School of Mathematics, University of Bristol, UK

Entropy and discrete random variables



Poisson max entropy Entropy monotonicity Discrete log-Sobolev Entropy concavity

Thinning discrete random variables

Definition (Rényi)

Given Y , define the α-thinned version of Y by

TαY =
Y∑
i=1

Bi ,

where B1,B2 . . . i.i.d. Bernoulli(α), independent of Y .

I Thinning operation preserves several parametric families

I Tα is discrete equivalent of scaling by
√
α?
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Monotonicity of entropy

Theorem (OJ–Yu, IEEE Trans. Inform Thy. 2010)

Given positive αi such that
∑n+1

i=1 αi = 1, and writing
α(j) = 1− αj , then for any independent ULC Xi ,

nH

(
n+1∑
i=1

TαiXi

)
≥

n+1∑
j=1

α(j)H

∑
i 6=j

Tαi/α(j)Xi

 .

I Exact analogue of Artstein/Ball/Barthe/Naor result,

nh

(
n+1∑
i=1

√
αiXi

)
≥

n+1∑
j=1

α(j)h

∑
i 6=j

√
αi/α(j)Xi

 ,

replacing scalings by thinnings.
I Yu implicitly proved corresponding result for relative entropy,

no restriction on Xi .
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‘Log-concavity plus’ - idea 2 (c-log-concavity)

Definition (Caputo et al.?)

Given probability mass function PV supported on Z+, write

E(V )(x) :=
PV (x)2 − PV (x − 1)PV (x + 1)

PV (x)PV (x + 1)
=

PV (x)

PV (x + 1)
−PV (x − 1)

PV (x)
.

Condition (c-log-concavity)

If E(V )(x) ≥ c for all x ∈ Z+, we say V is c-log-concave.

I If V = Πλ then E(V )(x) ≡ 1/λ.

I V ULC =⇒ c-log-concave with c = PV (1)/PV (0).
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Discrete LSI (OJ arxiv:1507.06268, pending Ann. IHP)

Theorem
Fix c-log-concave V supported on Z+. For any positive f :

EntV (f ) ≤ 1

c

∞∑
x=0

V (x)f (x + 1)

(
log

(
f (x + 1)

f (x)

)
− 1 +

f (x)

f (x + 1)

)

I Is sharp: equality holds for V = Πλ, f (x) = exp(ax + b).

I Proved using Caputo, Dai Pra, Posta’s discrete Bakry-Émery
theory.
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I Strengthens and generalizes previous log-Sobolev inequalities
of 1. Wu 2. Caputo et al 3. Bobkov and Ledoux.

I e.g. linearizing log and taking V = Πλ recover

EntV (f ) ≤ λ
∞∑
x=0

V (x)
∆f (x)2

f (x)
.

I e.g. Recover the fact that if p has mean λ

D(p‖Πλ) ≤ λD(p#‖p),

where p# is the size-biased version of p.

I (This is a log-Sobolev inequality of Wu, reproved more
directly by Yu).
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Concavity of entropy: Shepp–Olkin conjecture

I Consider n independent Bernoulli random variables, with
parameters p = (p1, . . . , pn).

I Their sum has mass function fp(k) for k = 0, 1, . . . , n.

I Consider entropy of fp, defined by

H(p) := −
n∑

k=0

fp(k) log fp(k).

Conjecture (Shepp–Olkin (1981))

For any n, the function p 7→ H(p) is concave.

I Sufficient to consider concavity for affine t, i.e. take

pi (t) = pi (0)(1− t) + pi (1)t.

Oliver Johnson O.Johnson@bristol.ac.uk School of Mathematics, University of Bristol, UK
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I Their sum has mass function fp(k) for k = 0, 1, . . . , n.

I Consider entropy of fp, defined by

H(p) := −
n∑

k=0

fp(k) log fp(k).

Conjecture (Shepp–Olkin (1981))

For any n, the function p 7→ H(p) is concave.

I Sufficient to consider concavity for affine t, i.e. take

pi (t) = pi (0)(1− t) + pi (1)t.
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Known cases

I Folklore: n = 1.

I Shepp–Olkin (1981): n = 2, 3 (claim with no proof).

I Shepp–Olkin (1981): for all i , pi (t) = t (binomial case).

I Yu–Johnson (2009): for all i , either pi (0) = 0 or pi (1) = 0.

I Hillion (2012): for all i , either pi (t) = t or pi (t) constant
(binomial translation case).
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Motivating example: binomial case

Example

I Write spatial derivative ∆∗f (k) = f (k)− f (k − 1).

I For 0 ≤ p < q ≤ 1, define p(t) = p(1− t) + qt.

I Write ft(k) =
(n
k

)
p(t)k(1− p(t))n−k .

I Simple calculation (e.g. Mateev, Shepp–Olkin) shows:

∂ft(k)

∂t
= ∆∗

(
n(q − p)Binn−1,p(t)(k)

)
.

I Rewrite using an idea of Yu (’hypergeometric thinning’):

Binn−1,p(k) =
(k + 1)

n
Binn,p(k + 1) +

(
1− k

n

)
Binn,p(k).
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Motivating example: binomial case (cont.)

Example

I Suggests we introduce mixtures of mass functions:

∂ft(k)

∂t
= ∆∗

(
vG

(α)
t (k)

)
,

for G
(α)
t (k) = αt(k + 1)ft(k + 1) + (1− αt(k))ft(k).

I i.e. for binomial example take αt(k) = k/n for all k and t and
v = n(q − p).

I Analogue of continuous transport, deduce discrete
Benamou–Brenier formula.
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Discrete Benamou–Brenier formula

Definition

I Write PZ(f0, f1) for the set of probability mass functions ft(k),
given end constraints ft(k)|t=0 = f0(k) and ft(k)|t=1 = f1(k).

I Write A for the set of α(k) with αt(0) ≡ 0, αt(n) ≡ 1 and
with 0 ≤ αt(k) ≤ 1 for all k .
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Discrete Benamou–Brenier formula

Definition

I For ft(k) ∈ PZ(f0, f1) and α ∈ A, define probability mass

function G
(α)
t (k), velocity field vα,t(k) and distance Vn by

I G
(α)
t (k) = αt(k + 1)ft(k + 1) + (1− αt(k))ft(k),

I

∂ft
∂t

(k) = −∇1

(
vα,t(k)G

(α)
t (k)

)
,

I

Vn(f0, f1) =

 inf
ft∈PZ(f0,f1),
αt(k)∈A

∫ 1

0

(
n−1∑
k=0

G
(α)
t (k)vα,t(k)2

)
dt


1/2

.

I Refer to any path achieving the infimum as a geodesic.
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Discrete Benamou–Brenier formula

Definition

I Example: binomial path is geodesic with vα,t(k) ≡ n(q − p).

I Call path with vα,t(k) fixed in k and t a constant speed path.

Proposition

I Vn is a metric for probability measures on {0, . . . n}.
I Vn defines a length space: for any geodesic f , distance

Vn(fs , ft) = |t − s|Vn(f0, f1).
I If there exists a constant speed path then

I f0 and f1 are stochastically ordered.
I Wasserstein distance W1 and Vn coincide.
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Framework for concavity of entropy

I Want conditions under which entropy is concave.

I Give conditions in terms of αt(k) to generalize binomial case.

I Recall that in that case, αt(k) ≡ k/n.
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k-monotonicity and t-monotonicity conditions

Condition (k-MON)

Given t, we say that the αt(k) are k-monotone at t if

αt(k) ≤ αt(k + 1) for all k = 0, . . . , n − 1.

Condition (t-MON)

Given t, we say that the αt(k) are t-monotone at t if

∂αt(k)

∂t
≥ 0 for all k = 0, . . . , n.
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GLC condition

Condition (GLC)

We say ft(k) is α-generalized log-concave at t, if for all
k = 0, . . . , n − 2,

αt(k + 1)(1− αt(k + 1))ft(k + 1)2

≥ αt(k + 2)(1− αt(k))ft(k)ft(k + 2).
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Theorem (Hillion–OJ 2016)

Consider constant speed path ft(k) and associated optimal α(t).
If Conditions k-MON, t-MON and GLC hold at given t = t∗, the
entropy H(ft) is concave in t at t = t∗.
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Entropy concavity theorem

I However, t-MON condition fails for some Shepp–Olkin paths.

I Entropy remains concave if replace by t-MON by weaker
‘Condition 4’.

I Condition 4 holds for Shepp–Olkin paths.

Theorem (Shepp–Olkin Theorem)

For any n, the function p 7→ H(p) is concave.

I Proved in recent works by Hillion–OJ

I Case where all p′i have same sign in
Ann. Probab. vol 44/1, 2016, pages 276-306

I General case in
Bernoulli vol 23/4B, 2017, pages 3638-3649
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Open problem

Conjecture (Generalized Shepp–Olkin conjecture)

1. There is a critical q∗R such that the q-Rényi entropy of all
Bernoulli sums is concave for q ≤ q∗R , and the entropy of
some interpolation is convex for q > q∗R .

2. There is a critical q∗T such that the q-Tsallis entropy of all
Bernoulli sums is concave for q ≤ q∗T , and the entropy of
some interpolation is convex for q > q∗T .

Indeed we conjecture that q∗R = 2 and q∗T = 3.65986 . . ., the root
of 2− 4q + 2q = 0.

Oliver Johnson O.Johnson@bristol.ac.uk School of Mathematics, University of Bristol, UK

Entropy and discrete random variables



Poisson max entropy Entropy monotonicity Discrete log-Sobolev Entropy concavity

Open problem

Conjecture (Generalized Shepp–Olkin conjecture)

1. There is a critical q∗R such that the q-Rényi entropy of all
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