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Content of this talk

Information theory, Entropy and Polylogarithms,
Algebraic interpretation of the entropy function,
Cohomological interpretation of formal entropy functions,
Finite multiple polylogarithms, applications and open problems.
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Information theory, Entropy and Polylogarithms (1/8)
A general definition of entropy for information theory has been
given by Rényi (1960) : Let S = {s1, . . . , sn} be a set of discrete
events for which the probabilities are given by pi = P(s = si ) for
i = 1, . . . , n. The Rényi entropy S is then defined for α > 0 and
α 6= 1 as

Hα(S) =
1

1− α
log

(
n∑

i=1

pαi

)
.

The Shannon entropy (1948) can be recovered from the one of
Rényi when α→ 1. We also often use the minimal entropy which is
related to the probability of the most predictable event (while the
Shannon entropy gives an averaged measure) :

Hmin(S) = lim
α→∞

Hα(S) = − log( max
i=1,...,n

(pi )) .

Those different entropies are related by the following inequalities

Hmin(S) 6 · · · 6 H2(S) 6 H1(S) 6 log(card(S)) = lim
α→0

Hα(S) .
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Information theory, Entropy and Polylogarithms (2/8)

The Shannon entropy can be characterised in the framework of
information theory, assuming that the propagation of information
follows a Markovian model (Shannon, 1948).
If H is the Shannon entropy, it fulfills the equation, often called the
Fundamental Equation of Information Theory (FEITH)

H(x) + (1− x)H
(

y
1− x

)
− H(y)− (1− y)H

(
x

1− y

)
= 0 .

(FEITH)

It is known (Aczel and Dhombres, 1989), that if g is a real function
locally integrable on ]0, 1[ and if, moreover, g fulfills FEITH, then
there exists c ∈ R such that g = cH (we can also restrict the
hypothesis to Lebesgue measurable).
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Information theory, Entropy and Polylogarithms (3/8)

Then enter the polylogarithms...
We define Lim(z) =

∑∞
n=1

zn

nm , |z | < 1, the m-logarithm. We
set

D2(z) = i Im
(
Li2(z) + log(1− z) log |z |

)
,

Then D2 satisfies the following 5-term equation

D2 (a) − D2 (b) + D2

(
b
a

)
− D2

(
1− b
1− a

)
+ D2

(
1− b−1

1− a−1

)
= 0,

whenever such an expression makes sense. The relation is the
famous five term equation for the dilogarithm (first stated by Abel).
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Information theory, Entropy and Polylogarithms (4/8)
It turns out that FEITH can be derived from the 5-term equation.
Cathelineau (1996) found that an appropriate derivative of the
Bloch–Wigner dilogarithm coincides with the classical entropy
function, and that the five term relation satisfied by the former
implies the four term relation of the latter.
This construction has been extended to higher functional equations
of polylogarithms (Elbaz-Vincent and Gangl, 2002).

D2 (a) − D2 (b) + D2

(
b
a

)
− D2

(
1− b
1− a

)
+ D2

(
1− b−1

1− a−1

)
= 0 .

⇓ (∂)

dD2(x) + (1− x)dD2

(
y

1− x

)
− dD2(y)− (1− y)dD2

(
x

1− y

)
= 0 .

6 / 17



Information theory, Entropy and Polylogarithms (5/8)

Kontsevich (1995) discovered that the truncated finite logarithm
over a finite field Fp, with p prime, defined by

£1(x) =
p−1∑
k=1

xk

k
,

satisfies FEITH.
In our previous work, we showed how one can expand this
relationship for “higher analogues" in order to produce and prove
similar functional identities for finite polylogarithms from those for
classical polylogarithms (using mod p reduction of p-adic
polylogarithms and their infinitesimal version). It was also shown
that functional equations for finite polylogarithms often hold even
as polynomial identities over finite fields.
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Information theory, Entropy and Polylogarithms (6/8)

Using the recent works of Kaneko, Zagier, Sakugawa and Seki, we
can give a global version of the finite polylogarithms. Consider the
Q-algebra A defined as

A =

(∏
p

Fp

)
/

(⊕
p

Fp

)
.

Then we can define £A,1(x) = (£1(x))p (x can be either an
indeterminate or a ”Z-value“, in the former we have to consider
Fp[x ] instead of Fp). Using such framework, we can extend the
FEITH to a new setting (which also involve multiple zeta values
and periods).
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Information theory, Entropy and Polylogarithms (7/8)

+ Entropy and FEITH arise from the infinitesimal picture (for
both archimedean and non-archimedean structure) and their finite
analogs associated to the dilogarithm.
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Information theory, Entropy and Polylogarithms (8/8)

The previous picture does rise several ”mystical“ questions :
Do their exist higher analogues of the Shannon entropy
associated to m-logarithms ?
What is their interpretations in terms of information theory ?

+ It could be connected to the higher degrees of the information
cohomology space of Baudot and Bennequin (Entropy 2015).
Notice that the polylogarithms are already of cohomological
nature...
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Algebraic interpretation of the entropy function (1/2)
Let R be a (commutative) ring and let D be a map from R to R .
We will say that D is a unitary derivation over R if the following
axioms hold :

1 “Leibniz’s rule” : for all x , y ∈ R , we have
D(xy) = xD(y) + yD(x).

2 “Additivity on partitions of unity” : for all x ∈ R , we have
D(x) + D(1− x) = 0.

We will denote by Deru(R) the set of unitary derivations over R .
We will say that a map f : R → R is an abstract symmetric
information function of degree 1 if the two following conditions
hold : for all x , y ∈ R such that x , y , 1− x , 1− y ∈ R×, the
functional equation FEITH holds and for all x ∈ R , we have
f (x) = f (1− x). Denote by IF1(R) the set of abstract symmetric
information functions of degree 1 over R . Then IF1(R) is an
R-module. Let Leib(R) be the set of Leibniz functions over R (i.e.
which fulfill the “Leibniz rule”).
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Algebraic interpretation of the entropy function (2/2)

Proposition : We have a morphism of R-modules
h : Leib(R)→ IF1(R), defined by h(ϕ) = ϕ+ ϕ ◦ τ , with
τ(x) = 1− x . Furthermore, Ker(h) = Deru(R).
+ Hence, if h is onto, abstract information function are naturally
associated to formal derivations. Nevertheless, h can be also 0.
Indeed, if R = Fq, is a finite field, then Leib(Fq) = 0, but
IF1(Fq) 6= 0 (it is generated by £1).
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Cohomological interpretation of formal entropy functions

The following results are classical in origin (Cathelineau, 1988 and
Kontsevich, 1995)
Proposition : Let F be a finite prime field and H : F → F a
function which fulfills the following conditions : H(x) = H(1− x),
the functional equation (FEITH) holds for H and H(0) = 0. Then
the function ϕ : F × F → F defined by ϕ(x , y) = (x + y)H( x

x+y ) if
x + y 6= 0 and 0 otherwise, is a non-trivial 2-cocycle.
sketch of proof : Suppose that ϕ is a 2-coboundary. Then, there exists a map
Q : F → F , such that ϕ(x , y) = Q(x + y)− Q(x)− Q(y). The function
ψλ(x) = Q(λx)− λQ(x) is an additive morphism F → F , hence entirely
determined by ψλ(1). The map ψλ(1) fulfills the Leibniz chain rule on F×. We
deduce from it that ϕ = 0 (which is not possible, so it is not a coboundary !)

+ We deduce that £1 is unique (up to a constant). In the real or
complex we use other type of cohomological arguments (see also
the relationship with Baudot and Bennequin, 2015).
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Finite multiple polylogarithms (1/3)

While classical polylogarithms play an important role in the theory
of mixed Tate motives over a field, it turns out that it is often
preferable to also consider the larger class of multiple
polylogarithms (cf. Goncharov’s work). In a similar way it is useful
to investigate their finite analogues. We are mainly concerned with
finite double polylogarithms which are given as functions
Z/p × Z/p → Z/p by

£a,b(x , y) =
∑

0<m<n<p

xm

ma
yn

nb .

14 / 17



Finite multiple polylogarithms (2/3)
The finite (1, 1)-logarithm £1,1(x , y) can be expressed in terms of
£2. More precisely, we have

y£1,1(x ,
1
y
) = £2

(
− yp

[x
y

]
− (1− y)p

[1− x
1− y

]
+ [1− x ] + [1− y ]

)
.

Define [x , y ]s = £1,1(x , y) + £1,1(y , x) and consider the following
linear combination

K(x , y) =[x , y ]s + xp
[ 1
x
, y

]
s
− (1− y)p

[
1− x ,

y
y − 1

]
s
+ (1− y)p

[
1− x ,

1
1− y

]
s

− xp(1− y)p
[
1− 1

x
,

y
y − 1

]
s
+ xp(1− y)p

[
1− 1

x
,

1
1− y

]
s
.

Then the following functional equation (purely in £1,1 ) holds :

I (x , y ; z ,w)− I (x , z ; y ,w) = 0 ,

where

I (x , y ; z ,w) = (1+ z) (1+ w)K (x , y) + (1+ x) (1+ y)K (z ,w) .
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Finite multiple polylogarithms (3/3)

We have the following “equation” for which no analogue is known
for the classical case
Let n > 0 be divisible by 3, and put ω = n/3− 1. Then

ω∑
j=0

(
ω
j

)(2ω
j

)£n−(j+1),j+1

(
[a, b]−[1

a
, a b]−apbp[b,

1
a b

]+bp[a b,
1
b
]
)
= 0.

+ New mystical question : what is the interpretation in term
of information theory (even geometrical or topological) for the
multiple polylogs ?
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Finite polylogarithms and Fermat’s last theorem
Several classical criteria used by Kummer, Mirimanoff and
Wieferich to prove certain cases of Fermat’s Last Theorem can be
rephrased in terms of functional equations and evaluations of finite
(multiple) polylogarithms. For example, Mirimanoff was led to the
study of (nowadays called) Mirimanoff polynomials (cf. Ribenboim
book on FLT) ϕj(T ) =

∑p−1
j=1 k j−1T k , which are nothing else but

finite polylogarithms...
The Mirimanoff congruences (op.cit) can be reformulated as
follows : for any solution (x , y , z) of xp + yp + zp = 0 in pairwise
prime integers not divisible by p (i.e. a Fermat triple) and for
t = − x

y we have

£1(t) = 0 , £j(t)£p−j(t) = 0 (j = 2, . . . ,
p − 1
2

) .

One can prove these congruences using an identity expressing
£p−j−1,j+1(1,T ) in terms of £n(T ).

17 / 17


