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"When you use the word information, you should rather use the

word form" R.Thom
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Introduction

—* Neuroscience - Cognition

Cognition: Loglc-Probablhty Perception:

"It is impossible for any one to believe the same thing to be and not to be" Aristotle

(Consistency Axiom)
Suzuki et al, 2002
George
Booleg Adaptation
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Introduction

—° Neuroscience - Cognition

Cognition: Neural Network - Machine Learning:

Hopfield
Hinton
Sejnowski
(Boltzmann -
Helmholtz
machines )

min Energy

Critical point
Basin of attraction

States

Hopfield Network, 1982
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Introduction

—* Neuroscience - Cognition

"Understanding is compressing” Chaitin. Efficient coding (Attneave,
1952): the goal of sensory perception is to extract the redundancies and to
find the most compressed representation of the environment. Any kind of
symmetry and invariance are information redundancies and Gestalt
principles of perception can be defined on information theoretic terms.

Gestalt - P~ —ves
Barlow . .:. :.: : .
Attneave M o*® ... . o
Laughlin T R ...

Linsker * A @ Perceptual binding
Atick . ° —_— e

Nadal ® — —

Attneave's cat, 1954 Similarity ~Continuity Closure
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Introduction

Waddi
Thom
Wieschaus

ngton

Knowledge
seems to be
energy, and
there should
be enough

ene rgy i n Part of an Epigenetic landrm::c'l"u;i ;ad\ followed by the ball, as _T‘he complex system of irfmal::(::::d:llyiﬂx the epigenetic landscape.
this room to C.H. Waddingfon, 1957

make nice
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Introduction

— |nformation functions

generalized by Hu Kuo Ting and Yeung, (using k = —1/In2, bit):
o The entropy of a single variable:

= H(Xj; Px) =k Y_ p(x)Inp(x)
x€[N;]

where [N;] = {1, ..., N;} denotes the alphabet of X;.
o The joint entropy:

Ny X...x N
Hik = H( X1, ..., Xk; Pxy...x) = k Z p(Xq..e..xk) In p(xXq...c.Xk)

X1,yee Xk E[Ng X ... X N ]
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Introduction

— |nformation functions

kS p(x1)p(x2)
b =1(X1; X2; Px,.x;) = k E p(x1.x0) In ————==
p(X]_.Xg)
X1,%2 €[Ny X Na]

o generalized to k-mutual-information :

n

Ho(Xe, o X P) =D (-2 3" (X P)

i=1 IC[n];card(l)=i
Ex: I3 = H(1) + H(2) + H(3) — H(1,2) — H(1,3) — H(2,3) + H(1,2,3),
giving:
Ny X...x N
I = (X1} .o Xei P) = k > p(x1..exi) In Licpupearat)=ii odd P!

IC[K];card(l)=i;i even pi
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Introduction

Information functions

Itional entropy-intormation:

Ny *No
Xo.Hh = HX X2 P)=k Y plxaxe)Inpe(x)

X1 ,Xz€[N1 X Nz]

o The conditional mutual information:

Ny X Nax N3
X3./2 = /(Xl;X2|X3;P) =k Z p(Xl.Xz.X3)|nM
X1,X2,x3 E[Ng X N2 X N3] Pxs (Xl’ X2)
Conditional mutual information generates the preceding information
functions as subcases (Yeung). We have the theorem : if X3 = Q then it
gives the mutual information, if X, = Xj it gives conditional entropy, and if

Information Topology
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Introduction

Chain rules of information

o
Hi1 — He = (X, - Xi)-H(Xs1) (1)
o
ey — e = Xi-le 1 ()
o by recurrence :
k
Hie = H(X1, ... Xi; P) = > (X1, ..., Xio1).H(X;; P)
i=1

e = 1(Xa; o Xi; P) = 1(Xy) — Zx,-./(xl; i Xiz1)

Information Topolo
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Information Cohomology

Information structures

X5 Q = Q0,1 Partltlon lattice |Q|= 4
x©0=0  General structures
X3(01)=1 —

X5(10)=1
X3(11)=0

o The random variables are partitions of the
atomic probabilities of (2, B, P) (equivalence
classes).

@ The Joint-Variable (Xi, X) is the less fine
partition that is finer than Xj and X, (gcd).

19pIO [eied

Fine

o The (general) information structure is the triple

X K L. Atomic probabilities |Q|=4
(2,1, P) where I is the lattice of all partitions. 2 binary variables - simplicial structures

(X1,X5)

o Information functions, F(Xy, ..., Xk; P) is the real
module of all measurable functions defined on
the whole lattice of partitions. (X, ..., Xk; P) is

Information Topology

12 / 61



Information Cohomology

£

Probability Simplex

implementing geometrically Kolmogorov axiomatic:

o > ;. P(Aj) =1 the geometry is
affine

o P(A;) > 0 convex

o Theorem of total probability:
barycentric coordinate P(X) =
2 P(Ai.X) = 32, P(A).Pa,(X)

o Conditioning is a projection on
subsimplex.

o Complex of probability given by set

Pa(X)

®
P(““’P(A‘:’,) =0V P(4)=0
L

3-Simplex A;
g,.,(X) 3

Py, (X)

Lattice of F = Ba

2-Complex C2
P (X)

Conditioning: projection

OP(X)
P m(X)=Pr; (X)) =Pr;(5(X))

3-Simplex A, with
prior P(A;)=a, (=1/3)
=2-simplex A,
QP (X)
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Information Cohomology

—=° Actions and coboundaries

Conditioning-expectation by Y, Y.F(Xi,..., Xk; P), is the left action of
Y on the functional module, Y.F(X;P) =", P(Y = y;)F(X; Py—y,).
The action of conditioning is associative, we have

X.(Y.F(Z;P)) = (X, Y).F(Z; P).

Complexes of random variables are X% = (X1, ..., Xi; P), and we consider
cochain complexes (XK, 9%):

BO al 32 _ ak—l
0— X0 xt 2y x2 &, xk-1 2 xk

Information Topology
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Information Cohomology

—=° Actions and coboundaries

associative and ring structures):

o The left action coboundary (Galois cohomology):

(0F)F(X1; Xai oo; Xiyr: P) = X1.F(Xzi i Xer1s P)

k
) (1) F(Xas Xai oooi (X, Xiga)i oo Xy P) + (1) THF(Xy; s Xes P)
i=1

Information Topology
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Information Cohomology

—=° Actions and coboundaries

associative and ring structures):

o The left action coboundary (Galois cohomology):

(0F)F(X1; Xai oo; Xiyr: P) = X1.F(Xzi i Xer1s P)

k
) (1) F(Xas Xai oooi (X, Xiga)i oo Xy P) + (1) THF(Xy; s Xes P)
i=1

o The "topological-trivial" coboundary and cohomology (trivial left action
Xl.F(Xz; cens Xk+1) = F(Xz; ceey Xk+1)) :

(0F)F(X1; Xai oo Xiy1; P) = F(Xzi i Xi1; P)
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Information Cohomology

—=° Actions and coboundaries

associative and ring structures):
o The left action coboundary (Galois cohomology):

(Bk)F(Xl-XQ; i Xiey1; P) = X1.F(Xa; oo Xiy1; P)
+ Z F(Xy; X oo (Xi, Xig1); oo Xiew1; P) 4+ (DK F(Xq; s Xi; P)

o The symmetric Hochschild-information coboundary (Gerstenhaber and
Shack, symmetric left and right action of conditioning
X1.F(X2; cens Xk+1) = F(XQ; ceey Xk+1).X1)Z

k
(OF)F (Xui Xoi oo Xics1s P) = X F (Xai o Xicsas P) + ) _(=1)'

Information Topolo,
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Information Cohomology

— Cohomology in the first degree

o The left 1-co-boundary is (01)F(X1; X2) = X1.F(X2) — F(X1, X2) + F(X1).
The 1-cocycle condition (9Y)F(X1; X2) = 0 gives
F(X1,X2) = F(X1) + X1.F(X2) which is the chain rule of information. Then
following Kendall and Lee (1964), it is possible to recover the functional
equation of information and to characterize uniquely, up to the arbitrary
multiplicative constant k, the entropy as the first class of cohomology.

Main theorem [?]

The information co-homology space of degree one is one-dimensional and gen-
erated by entropy.

Information Topology
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Information Cohomology
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Information Cohomology

Cohomology in the first degree

o The left 1-co-boundary is (01)F(X1; X2) = X1.F(X2) — F(X1, X2) + F(X1).
The 1-cocycle condition (9Y)F(X1; X2) = 0 gives
F(X1,X2) = F(X1) + X1.F(X2) which is the chain rule of information. Then
following Kendall and Lee (1964), it is possible to recover the functional
equation of information and to characterize uniquely, up to the arbitrary
multiplicative constant k, the entropy as the first class of cohomology.

Main theorem [?]

The information co-homology space of degree one is one-dimensional and gen-
erated by entropy.

o Symmetric 1-coboundary:

Information Topology
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Information Cohomology

Cohomology in the second degree

o The left 2-co-boundary 9?F(Xy; Xa; X3) =
X1.F(X2; X3) — F((Xl,Xz); X3) =4F F(Xl; (XQ,X3)) — F(Xl; X2) is minus the
3-mutual information 9% F(Xy; Xo; X3) =
X1./(X2; X3)— /((Xl, Xz); X3)+/(X1; (X2, X3)) — /(Xl; Xz) = —/(Xl; Xz; X3)

o The topological 2-coboundary is (92)F(X1; X2; X3) =
F(Xz; X3) — F((Xl,Xz); X3) —+ F(Xl; (XQ,X3)) — F(Xl; Xg), iS
8?F(X1, XQ; X3) =
I(XQ; X3) — I((Xl,Xz);X3) + I(Xl; (X27X3)) — /(Xl; X2) = 0

o The symmetric 2-coboundary is (02)F(X1; Xa; X3) =
Xl.F(Xz; X3) — F((Xl,Xg); X3) =+ F(Xl; (X2,X3)) — X3.F(X1;X2) iS
65F(X1;X2;X3) =

Information Topolo,
POOY 19/ 61



Information Cohomology

—* Cohomology in the third degree

o The left 3- co—boundary

O3F(X1; Xo; X3; Xa) = X1.F(Xa; X3; Xa) — F((X1, X2); X3; Xa) +
F(X0; (Xa, Xs): Xa) — F(Xl,Xz (Xs, Xa)) + F(X1: Xo: Xs) is
O3 (X; Xo; Xa; Xa) = Xo.1(Xe; Xa; Xa) — 1(( X1, Xa); Xa: Xa) +

1(X1; (X2, X3); Xa) — I(X1 Xo; (X3, X4)) + 1(Xy; X2, X3) = 0.
o The topological 3-coboundary

8EF(X1;X2;X3;X4) = F(Xz;X3;X4) - F((Xl,Xz):X3;X4) +

F(X1; (X2, X3); Xa) — F(X1; X2; (X3, Xa)) + F(X1; Xa; X3) is

OFF(Xy; Xa; X3; Xa) = 1(Xa; X33 Xa) — 1((X1, X2); X3; Xa) +

[(X1; (X2, X3); Xa) — 1(X1; Xo; (X3, Xa)) + (X105 Xo; X3) = [(X1; Xa; X35 Xa).
o The symmetric 3-coboundary

(O2)F(X1; Xa; X3; Xa) = X1.F(Xa; X3; Xa) — F((X1, X2); X3; Xa) +

Information Topolo,
POOY 20/ 61



Information Cohomology

—° Cohomology in the higher degrees

is possible to generalize to arbitrary degrees by remarking that we have:

o For even degrees 2k: we have Ly = —0:hx_1 and then by = 0;00;...00:H
with 2k — 1 boundary terms.

o For odd degrees 2k + 1: by = —0hy_1 and then byi1 = —00:0...00:H
with 2k boundary terms.

Theorem [7]
Let X" be an information structure, then:

o For even degrees 2k: 0% = —Iy 1 and 0% = —9%k =0

o For odd degrees 2k + 1: 9%~ =0 and 9271 = —92k = — ;.

Information Topology
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Information Cohomology

—° Information double complex

(Hodge decomposition of Hochschild cohomology) by constructing a double
complex X**, the triplet (X**,0,0,) = (Xk/’k”,(?k"k",af ok ). We have
K0k + k9K = 0. The total complex is defined by

Xk = @k/+k"=kX¢0’tk , with coboundary 9%, = 9 + (—1)k0k and then
the coboundary of the total complex of information is 9K, = (—1)**1/,,;

Xk,O Xk’l Xk,2 k,3 . Xk’k

8!(,0 8k’1 ak,2 ak,3 ak,k—l
Tak—l,o Tak—l,l Tak—l,Z Tak—lﬁ Tak—l,k

Information Topology
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Information Cohomology

— k-independence cocycle

Theorem 2-independence < 9} = 0 (Li, 1990)
Xi, Xy are statistically independent if and only if /, = (X1, X2; P) =0

cov(X1,X2)
OX10Xy

Moreover, I(X1,X2) =0 = px; x, =0, px;.x =

Definition k-independence

Xi, ..., Xk are k-independent if [, =0

Theorem mutual-independence

Xi, ..., Xn are mutually independent if and only if Vk < n, I, = 0.

Information Topology
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Information Cohomology

—= Simplicial information substructures

Tapia-Pacheco et al., Information topology of gene expression profile in
dopaminergic neurons, bioRxiv 168740 (2017).

o Computational problem: complexity of the estimation of information
functions: Bell's combinatoric O(exp(exp(N"))) for n N-ary variables. At
each degree k, the number of Hy and /x to evaluate is given by Stirling
numbers S(N", k) with By» = ZQ’;O S(N™ k). Ex: 16 variables, 8 values

48
each: |M|~ e® !> 2200 elements to compute.

o Computational solution: Data analysis is developed on the simplest
sub-case of the general information structure, the simplicial information
structure and the simplicial information cohomology with complexity in
O(2") and () elements for each k with 2" = 3"/, (7).

o Consequence: some possible statistical dependences cannot be detected.

Information Topology
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Information Cohomology

— Simplicial information substructures

o A simplicial information structure is the triple (2, A", P) where A" is the
Boolean lattice of all subsets (2" elements and (}) = #lk,) elements at

each degree k in one to one correspondence with the k-faces of the
n-simplex of random variables.

o Joint (X1, X2) and meet (Xi; X) of variables are the usual joint and meet
of Boolean algebra and define two opposite-dual monoids (X, .., X,, V)
(X1, .., Xn, A), generating freely the semi-lattice of all subsets and its dual.

Information Topology
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Information Cohomology

— Simplicial information substructures

Theorem simplicial information

A simplicial information structure is a substructure of information struc-
ture.

Proof: using theorem of Pudlak (1980): any finite lattice is a sub-lattice of
the partition lattice.

o A simplicial complex of random variables X* = (X1, ..., Xi; P) is any
subcomplex of the simplex A" with k < n, and any simplicial complex can
be realized as a subcomplex of a simplex (Steenrod, 1947).

o The simplicial information homology is a (usual simplicial) subcase of
information homology and defined as previously (cochain complexes

(X, 01))

Information Topology
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Information landscape and paths and Information topology of Gene expression

H, and /, Landscapes

o Information landscapes:
represent the lattice of
information structures with He)
in abscissa the degrees k \ P =
and in ordinate the values of] X4 X3 \
Hk and Ik-
Entropy landscape n=4 Information landscape n=4
o Hk and Ik (real Continuous Simplicial information structure / Lattice Simplicial information structure / Lattice
max(H)
. . _ max(l) 112)
functions): ranking of the |™*" 05,8 9
. H(1234) 12) |223;
|attices at each k. | e iz 123)
2| ) oz 2 ) {130
o Hg quantify = o HO A G
)
. .y H(23) LB
variability-randomness, [ Ha int)
o B [ =-log,(N)
quantify statistical oo
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Information landscape and paths and Information topology of Gene expression

—= Special cases of H, and /, Landscapes

Independent identically distributed rvs Totally dependent rvs

n — 0o, De Moivre-Laplace theorem - CLT

H
mox —
=log,N [ Count

N | Count Count Count Count Count Count Count ‘Count ‘Count Count  Count
n 1 C(n,n/2) N C2) 03 CoA) Cns) C0s) CaT conz  con2 n 1
Count mm———

- —— - - O R
o Coun Count Count Count Count o oG G
C02) CY) S COS) COE Clon) o) cond) n 1
1 C(n,n/2)
Count m——
0 2 4 6 n/2 n-2 n 0 2 4 6 n/2 n-2 n

Markov chain 1-->2-->3-->4

Theorem (Hu Kuo Tin, 1962):

(1-->...-->n)Markov chain <=> I,(1,n)=I(1,...,n)
Positivity: (1-->...-->n)Markov chain => 0<l,(1,n)<ly
Data Processing ineq: l13<h; , l13<lz3, 124<34, 124<l23,
114124, 11413, 11240234, 11241123

I, (bits)

Information Topology
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Information landscape and paths and Information topology of Gene expression

I, extrema and negativity - Special cases

Theorem (Hu Kuo
Ting, 1962)

For k > 3 I, can be
negative.

o Schrédinger
"what is life?":
living system feed
upon negentropy
(free-energy)

o Synergy (Brenner

Four maxima of 15(X,; X;; Xy; P)=log,(2)=1 bit Two minima of Iy(X;; X, Xs; P)=-log,(2)=-1 bit
Subsimplex of the probability 7-simplex Subsimplex of the probability 7-simplex

Poyy
=144,

Representation in 2-variable subspaces Representation in 2-variable subspaces
XX Xy Xy XX,

mmmm | ]

Information landscapes 2-simplex of X;, Xy, X3

. Maxima of I Minima of I, Maxima of I Minima of I
max

=logz(N) |
=1

Count  Coumt  Count

CBMEI CB2FI CaEt

Information Topology
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Information landscape and paths and Information topology of Gene expression

s

midbrain nucleus (nDA)

Gene expression measures

o mRNA expression levels for n = 41 genes in m = 111 DA and m = 37 nDA

DA neurons
(n=111)

Midbrain microdissection
Collected material

W

TaqMan assays
Dissociated midbrain neurons

Targeted reverse transcription

and preamplification e

Fluorescence imaging I ] I J

Pipette harvesting

nDA neurons

0 5 10150 5 10 15

I
|
!
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Information landscape and paths and Information topology of Gene expression

—* Probability estimation

ap: atrix D w

xj €R, ie{l.m}, je{l..n}

o Graining: the intervals [min x;, max x;| for each variable X; is divided into
N; = 8 giving Ny.Ns...N, = 8" boxes in n-dimensions.

o Estimation of the atomic probabilities: usual counting, defined as:
P (bminy < X; < bmaxy, bminy < X5 < bmaxa, ..., bmin, < X, < bmax,)

B i é 5 — 0, ifbminy > x;1 or x;1 > bmaxy ...or bmin, > x;, or x;, > br
— m 1, ifbmin; < x;; < bmax; and...and bmin, < x;, < bmax,

o Marginalization (projection on lower dimensions, on subsets of

variables): Conditioning Px(Y) = %%2 and in general the theorem of

Information Topolo,
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Information landscape and paths and Information topology of Gene expression

—Q

Probability estimation

o P(Th) Raw heatmap
0/ 1

o111l _==EI:L - 111 DA neurons

-
2
©
O
x
w

o

=)
s)
4

Resampled heatmap
111 DA neurons

Log,Ex Th
P(Th,Calb1)
3 [— |
= px=POOPX(Y) o111 22111
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Information landscape and paths and Information topology of Gene expression

— Information topology of genetic expression

DA neurons nDA neurons

21 “relevant” genes(Flgure 2)

o Computational 0 E

restriction to n = 21 2
(22 ~ 2.100
elements)

I (bits)

o Positive, negative Iy

and k_independence 20 other “non-relevant” genes
I, = 0 even for high k

Information Topology

Iy (bits)

\? [
TS
—
2233
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Information landscape and paths and Information topology of Gene expression

— Maximum and minimum /, "modules"

DA neurons / nDA neurons

DA neurons nDA neurons Ty (entropy)

o b qualitatively e o O e
similar to px,y e e o :
(Reshef, 2011). 8 * - 2

o Combinatorial N-amolxmu » Positve i Is Nw"'lkxmﬂ2 k Po-m.n:( NAf 5 -
complexity of * . . ”‘ . :
interactions: 2y .‘ N SN, . et 5,
diversity and o g ‘
impressively ’ k ." ‘ 3
numerous! . " 5[ -

o [i are nontheless " * ‘ Lk
specific to a given o gl [
cell type: cell ’ ‘ " o

I /1, 1o/l I/
1ot —o0sbis
© 2bits = 1bit
@bt =15t | | @3t [-tsoes B 15 bs

Information Topology
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Information landscape and paths and Information topology of Gene expression

Maximum and minimum /, "modules"

o Negative /g
detects clusters

o Positive I detects
covariations

2 minimaof i,

12 3 6 9

Nefm %

14=-064 14
1" q 12
€y ;’\ o 10

s o oo gé

o p =}

s 30

2 maxima of iy

Th

6 8 10 12 14

14=0.25

SR

Kend3_2

Drd2 Sembee® e 1, = -0.29 Drd2 St
14
12 %‘2’
10 ui 2
o 8 d -
62 o 83
P 40 o 67
2 o PEsi
3 ° .. 2
= 12 L) 0
2
6% 10 B 54
1013 (R ke 1071516141210 8
N 14161574 Oy Cng: 18
example of negative |, C6a3 718 4 & 3 3 Sic6a3
with positive and negative 15 Drd2 eS8 Drd2 et 6 8
— 0
4, 13 _
bl = -0»21# A 12| =023
11
10|
8 3. ~,10
2 Qo
8 X I L
4 g, o
2 6 N
0 o e axm 5 .
4

4 6 8 1012 14 16 18

4 6 8 1012 14 16 18
Slc6a3
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Information landscape and paths and Information topology of Gene expression

— Mean H, and I,

ZTC[n];card(T):i Hk(XT; P)

(¥)

2 Tcncard(T)=i (XT3 P)
9 <Ik> = (n)
k

Van Der Walls n-body interactions

(Hi) =

Xi et al, Tensor Renormaiization of Quantum Many-Body

M ean Systems Using Projected Entangled Simplex States, 2014
information
DA neurons nDA neurons oz o
correspond to
H i 0430
ideal z
h = 5 g435] L L L
omogeneous|z T
o] g ¢
= =
StI’UCtu re 345 6 7 8 9 10111213 Gazwith anracﬁ\\fe”ﬂody interaction
n - h 'Van Der Walls isotherms of the colloidal
X Ivarin Wlt Gaz-liquid transition (Nguyen et al, 2012). 10

NS

homogeneous

A lot of small interactions
makes important interaction

Information Topology
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Information landscape and paths and Information topology of Gene expression

— Free information energy n-body interaction

o for k=1, Iy and (h) are a self-interaction /(X;) = H(X;). We call the first
degree mutual information component /(X;) = H(X;) the self information
or kinetic information energy, in analogy to thermodynamic (Density
Functional Theory, Kohn-Hohenberg). Here self-interaction does not
diverge: no regularization or renormalization corrections.

o for k > 1 I and (lc) quantifies the contribution of the k-body interaction.
We call Ix and (lk) the k-free-information-energy. Each /; terms is as a
free energy correction accounting for the k-body interactions.

Defining self information energy by T(Xi, ..., Xn; Pn) = > 11 h(Xi; Pn)
and free-information-energy by .

G(Xl, . ¢ PN) = Z,{]:g(_l)l_l Z/C[n];|l|=i Ii(X[; PN) we recover the
usual isotherm thermodynamic relation:
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Information landscape and paths and Information topology of Gene expression

— Finite size effect - sampling problem

(Strong 1998,Nemenman 2004)): when Nj...N, are such that only one
data point falls in a box then p =1/m and H, = log, m.

o Add a combinatorial number | [ Jo
of 0 values to I landscape : N -
! |

o Equivalent to adding a : e .
deterministic variable 0 since | ¢ N N T
the probability remains ’ ‘ 2| .7

unchanged (1/m)

Mean Entropy <Hic> (bits) &

o Degree k, for which more
than 10% of the Hj are in fo—= ' | "
log, m—0.05 < Hx < log, m. | . 243

™ Entropy (bits)

ku=55 ky=6 10
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Information landscape and paths and Information topology of Gene expression

Dependence on graining N

Dependence on N. Study of iso-graining landscapes and apparition o
critical points in the same way as isotherms does in usual thermodynamic.

Mean |,

o For N = 2 the mean
(I¢) is monotinicaly
decreasing. This
N = 2 iso-graining
is analog to the non
condensed
disordered phase.

<I.> (Bits)

o All the other mean
(lk) paths have a
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Information landscape and paths and Information topology of Gene expression

—° Information paths

then a path of degree k in AX is a sequence of edges of the lattice that
begins at the leastest element of the lattice (the identity-constant 0),
travels along edges from vertex to vertex of increasing degree of the lattice
and ends at the greatest element of the lattice of degree k.

Information paths are defined dually on joint and meet-mutual information
semi-lattice. The set of all information paths are noted HP, paths for
entropy paths and IP; for mutual-information paths.

HP(k) path n=4
-->1-->4-->7- >3

IP(k) path n=4
0-->1-->4-->3-->2
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Information landscape and paths and Information topology of Gene expression

— Information paths - Symmetric group

Theorem information path symmetric group

The set of all information paths HP) and Py in AK are both in bijection
with the symmetric group Si. Notably, there are k! paths in Ay.

A path in Ay, noted IP; = (0 — X, — X1 — X4 — X3) can be identified
with a permutation or a total order:

/P,' =0— (0, Xg) — (0, Xl, Xg) — (0, Xl, Xz, X4) — (0, Xl, X2, X3, X4)
can be noted o : (01234) % (02143). Paths are seen as automorphism of
{1,2.....k} = [k] and HPy and [Py paths can be endowed with the
structure of two opposite symmetric group Sk.

HP(K) path n=4 TP(K) path n=4
ORI 0->1--54->3-

H(124

]

i) @

8 Hidxa

I(]W

pmation Topolo,
& 41761



Information landscape and paths and Information topology of Gene expression

—= Derivatives of information paths

o First derivative of entropy path HP;(k) is conditional entropy:
dHP;(k)/dk = Hi — Hx_1 = (X1, ..., Xe_1).H(Xc; P)

o First derivative of mutual information path /P;(k) is minus conditional
information (coface map): dIP;(k)/dk = Iy — lk—1 = =Xk 1(X1, ..., Xk—1; P)

HP(k) path n=4
0-->1-->4-->2-->3
;o-H12340 IP(k) path n=4
0-->1-->4-->3-->2

Ii(bits)

- .Ik 1
QMmN 10X, Xy)

=maxH

S k+1

H,(bits)

Hilbits)

Information Topology

42 / 61



Information landscape and paths and Information topology of Gene expression

Derivatives Bounds, Information inequali-

ties
Derivatives bounds given by information inequalities and define cones

(Yeung).
For entropy path we have:
determinism 0 < (X1, ..., Xk—1).H(Xk) < H(Xk) independence.

HP(k) path n=4
0--51--54--572--53

H(1234)® IP(k) path n=4
0-->1-->4-->3-->2

k>2,
MiInXi Xy Xpa)
=mi

Ii(bits)

v Pl
Omax|(Xs.. Xes)
T =maxH

k+1

H,(bits)

Hi(bits)
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Information landscape and paths and Information topology of Gene expression

Derivatives Bounds, Information inequali-

)

ties
The bounds of mutual-information path are richer:
o For k=2, Xi.I(X;) = Xi.H(X;) and 0 < X;.1(X;) < I(X;).
o For k = 3 the conditional mutual-information
0 < Xi.I(Xj; Xn) < min (X;.H(X;), Xi.H(Xs)) with right equality iff X; and
Xp are conditionally independent given X;.

HP(k) path n=4
0-->1-->4-->2-->3

H(1234)® IP(k) path n=4
0-->1-->4-->3-->2
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Information landscape and paths and Information topology of Gene expression

Derivatives Bounds, Information inequali-
ties

)

For k > 3, Xk.I(Xy;..; Xk—1) can be negative: Xi.I(X1;..; Xk—1) < 0 iff

Ik < lk+1 (Matsuda). "Shannonian" inequalities: the set of inequalities that
are obtained from conditional information positivity X;./(Xj; Xp) > 0 by
linear combination, a convex "positive" cone after closure. Negativity gives
"non-Shannonian" inequalities and cone (Yeung, Matus...).

min /(X]_; .. Xk_]_)(?) < Xk./(Xl; . Xk—l) < min,-e[k,ll (XkH(X,)) with
right equality given by the configurations for which the variable Xi, .., Xk_1
are equivalent Xy ~ ... ~ X,_1 when X is given.

HP(k) path n=4
o,,>1,,>4——>2——>)3 H(12340

IP(k) path n=4
0-->1-->4-->3-->2




Information landscape and paths and Information topology of Gene expression

—° Local minima and critical dimension

Lemma local minima of information paths

if Xi.1(X1;..; Xk—1) < 0 then all paths from 0 to /x_; have at least one
critical point. The first critical point if it exists is a local minima. In
order for an information path to have a critical point it is necessary that
k > 3, the smallest possible degree of critical point being k = 3.

o The first informational critical dimension of the information path IP;,
noted k;, is the degree k of the first local minima of an information path.

o Positive information path is an information path from 0 to a given /x
corresponding to a given k-tuple of variable such that /x < lx_1 < ... < ;.

o Maximal Positive information path is a Positive information path of
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Information landscape and paths and Information topology of Gene expression

—°  Minimum free energy complex

Theorem Minimum free energy complex

The set of all positive informations paths forms a simplicial complex,
that we call the minimum free energy complex, noted X1, A necessary
condition for this complex not to be a simplex is that its dimension d > 4.

maximal Ik paths Positive information
facets of the positive information complex complex X**

33

1-face (1-simplex)
o1 2-face (2-simplex)

ex)
1->2->3->4

4 5
dim=ky55.53.54= 4 k
Critical exponent of facet 3->4->5: k3 .4.55=3
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Information landscape and paths and Information topology of Gene expression

—°  Minimum free energy complex

o Positive information path and maximal positive information path coincide
with chain (face) and maximal chains (facet). The maximal faces encode all
the structure of minimum free energy complex.

o The dimension of the minimum free energy complex is the maximum of
the first informational critical dimension k;, if it exists or the dimension of
the whole simplicial structure n.

o The set of first critical points of information paths would give a good
description of the landscape, and of the complexity of the measured system.
This complex is nothing but the formalization of the minimum free energy
principle in a degenerate case.
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Information landscape and paths and Information topology of Gene expression

—°  Minimum free energy complex

characteristic as:
H+k(X+k; P) _ Z(_l)i—l Z Ii(Xl; P)
i=1 ICX*;card(l)=i

o Analog to paths sum: it sums over all paths until they diverge; the
divergence being the negativity of conditional mutual information.

o HTK(XTK) = S22 1(X) = 2" 10X X))+ 0" 1(Xi; X Xn)—1(Xa; Xo; Xa; X4)

maximal I paths Positive information
facets of the positive information complex complex X**

AL 1Hace (giplex)
S oy

2face (2:simplex)
o f1>2>4
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Information landscape and paths and Information topology of Gene expression

— Second law information topology

. cl t, c C O @, a 910
variables on the same probability space (2, F, P) and T is a totally ordered
set.

Lemma stochastic processes - information paths:

Let (Q, AX, P) be a simplicial information structure, then the set of paths
HPy and [Py are in one to one correspondence with the set of stochastic
process {X¢, t € T,|T| = k}

Theorem second Law (information topology)

Let (Q, A%, P) be a simplicial information structure, then the entropy of
a stochastic process can only increase with time.
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Information landscape and paths and Information topology of Gene expression

—> Second law information topology

Theorem second Law (information topology)

Let (Q, A%, P) be a simplicial information structure, then the entropy of
a stochastic process can only increase with time.
"You can’t have something for nothing, not even an observation" Gabor.

o The statement is equivalent to H(X1,...Xx) > H(X1,...Xk—1) which is a

direct consequence of conditional entropy positivity and the chain rule of
information with k = —In 2.

o Improves the result of Cover (1991) that assumes stationary Markov
condition.

o Paths are automorphisms of {1,2.., k} = [k], initial minimal low entropy
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Information landscape and paths and Information topology of Gene expression

Computation of the Minimum free energy
complex

)

o Computational problem: finding a global functional extrema or all the first
critical dimension is NP-hard class (O(n!)).

o Computational solution: At each element of the lattice, we start at one of
the /i and at each element of the paths we explore only the two paths with
lowest and highest positive values of Xi;1./(X1;..; Xk) (local), and iterate
until it stops at the minima (whenever the conditional mutual information
starts to be negative) and then rank the paths as a function of their length.
It finds the maximal positive information paths that have highest and lowest
I values at each element of a path. Computational complexity in O(n) but
only give a partial estimation of the minimum free energy complex (can
be richer and greater dimensionality).
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Information landscape and paths and Information topology of Gene expression

s

DA Minimum free energy complex

maximunm Iy paths minimum I paths

DA neurons

o Identifies functional module |
up to k; = 6. :
o Maximum path detect the | — [3u=
metabolic chain of Tt e =
. . dendrite
Dopamine, genes having e
common transcription " Mm
regulators and unravel N ——
. . . N IRK2 TH)|(VMAT (D2R)|[(GIRK2)| (Kv4.3) | (SK3)
eIectrophy.5|o|og.|ca| ?nd et o ey e prai
neuromediator identity
coup“ng_ i B =i e ) VTA SNe e 60
o Minimum path detect e @G%D g 8
heterogenity, suclasses and = ) Q? saa

o VTA and She

Targor Type curor donsty 1 GB- SN col
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Neuronal Minimum free energy complex

41 RNA expression (8 values resampling)

I landscape , , 1p 9 e
Count e

o Transpose
matrix (egoist

Max Iy

genes).
m = 41 genes,
n = 20 cells

o Preidentified
10 DA and
nDA neurons.
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Conclusion

— Information theory

o Landscape represents and implements all classical information functions,
chain rules and inequalities: easy tool.

o Non-shannonian inequalities (cone) are related to the existence of critical
point in information path.

o New methods for topological and statistical data analysis, with totally
opensource tools (the python program allowing all quantifications and
representations is available on Github)
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Conclusion

— Information theory

c : ODd D ure. O d O O U d O O V Pd d V d O
by pairwise exchange of information, formalized by a communication
channel, that is a 1-simplex between two variables, the emitter and the
receiver. By considering n emitters/receivers and defining k-communication
channels as the k-face of a simplicial structure, with respective capacity
max(/lx), the present topological formalism gives very preliminary basement
for such a generalized communication theory. Moreover, it suggests refined
data compression algorithm.

Shannon Simplex
to
n emitter-receiver
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Conclusion

—= Statistical physic

At |east in genetic expression, but we propose that it is a generic feature o
biological structures, high order than pairwise statistical interaction exist,
can be non negligible, and moreover can be combinatorially numerous.

Clustering of data points analog to matter condensation, a simple picture.

Topological and informational formalization of the Potts model, negativity
signature of frustration, multiplicity of local minima.

mean information path is analog to DFT treatment of the n-body problem,
but the formalism here is different, it is finite and discrete, it computes the
cohomology group of measurable function, do not assume any metric (like an
interaction distance r), nor Hamiltonian or Lagrangian structure, symplectic
or contact structure, configuration or phase space (etc.). The main
difference with classical statistical physic determinations of free energy and
entropy is the absence of predefined metric and the finiteness-discreteness of
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Conclusion

—= Statistical physic

@ Our theorem applied to 3n dimensions of a configuration space (like in DFT)
implies that whereas the minimum free information energy complex of an
elementary body can only be a simplex, the configuration space of n
elementary body can be a complex with quite arbitrary topology (possible
heterogeneity at large "scales").

o What should be done next: discrete analog of Noether theorem.
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Conclusion

— Ecology - Biology - Complex systems

o Ecology is the scientific analysis and study of interactions among organisms
and their environment...

o Biology and ecology: the main interest of the present formalism is to
capture and identify diversity, while yet allowing selectivity. It gives a
quantitative framework the cellular identity and its differentiation.

o From complex network to ... complex.
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Conclusion

Thank youl! Thank Jean-marc, Mon-
— ica, Daniel ... UNIS1072 inserm, ERC
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Conclusion

—° Questions
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Conclusion

—°  First appendix
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Conclusion

—* Second appendix
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