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"When you use the word information, you should rather use the

word form" R.Thom
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Introduction

Neuroscience - Cognition

"It’s old like the world, this, the novelty!" J.Prévert.
Cognition: Logic - Probability - Perception:

Aristotle
Leibniz
Boole :
Idempotence
X .(1− X ) = 0

3 / 61
Information Topology

N



Introduction

Neuroscience - Cognition

Cognition: Neural Network - Machine Learning:

Hopfield
Hinton
Sejnowski
(Boltzmann -
Helmholtz
machines )
...
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Introduction

Neuroscience - Cognition
Neuroscience: Learning - Adaptation - Information sensory processing.
"Understanding is compressing" Chaitin. Efficient coding (Attneave,
1952): the goal of sensory perception is to extract the redundancies and to
find the most compressed representation of the environment. Any kind of
symmetry and invariance are information redundancies and Gestalt
principles of perception can be defined on information theoretic terms.
Gestalt
Barlow
Attneave
Laughlin
Linsker
Atick
Nadal
Sejnowski
Bialek...
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Introduction

Biology

Biology: Development - Evolution - Morphogenesis:
Waddington
Thom
Wieschaus
...
Knowledge
seems to be
energy, and
there should
be enough
energy in
this room to
make nice
things.

7 / 61
Information Topology

N



Introduction

Information functions
The information functions used here are defined by Shannon and
generalized by Hu Kuo Ting and Yeung, (using k = −1/ ln 2, bit):

The entropy of a single variable:

H1 = H(Xj ;PXj ) = k
∑
x∈[Nj ]

p(x) ln p(x)

where [Nj ] = {1, ...,Nj} denotes the alphabet of Xj .

The joint entropy:

Hk = H(X1, ...,Xk ;PX1,...,Xk
) = k

N1×...×Nk∑
x1,...,xk∈[N1×...×Nk ]

p(x1.....xk) ln p(x1.....xk)

where [N1 × ...× Nk ] = {1, ...,Nj × ...× Nk} denotes the alphabet of
(X1, ...,Xk) and P(X1,...,Xk ) the joint probability joint-distribution.
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Introduction

Information functions

The 2-mutual information

I2 = I (X1;X2;PX1,X2) = k
N1×N2∑

x1,x2∈[N1×N2]

p(x1.x2) ln
p(x1)p(x2)

p(x1.x2)

generalized to k-mutual-information :

Hn(X1, ...,Xn;P) =
n∑

i=1

(−1)i−1
∑

I⊂[n];card(I )=i

Ii (XI ;P)

Ex: I3 = H(1) + H(2) + H(3)− H(1, 2)− H(1, 3)− H(2, 3) + H(1, 2, 3),
giving:

Ik = I (X1; ...;Xk ;P) = k

N1×...×Nk∑
x1,...,xk∈[N1×...×Nk ]

p(x1.....xk) ln

∏
I⊂[k];card(I )=i ;i odd pI∏
I⊂[k];card(I )=i ;i even pI

Ex: I3 = k
∑N1×N2×N3

x1,x2,x3∈[N1×N2×N3]
p(x1.x2.x3) ln p(x1)p(x2)p(x3)p(x1.x2.x3)

p(x1.x2)p(x1.x3)p(x2.x3)
. For

k ≥ 3, Ik can be negative.
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Introduction

Information functions

Conditional entropy-information:

X2.H1 = H(X1|X2;P) = k
N1∗N2∑

x1,x2∈[N1×N2]

p(x1.x2) ln px2(x1)

The conditional mutual information:

X3.I2 = I (X1;X2|X3;P) = k
N1×N2×N3∑

x1,x2,x3∈[N1×N2×N3]

p(x1.x2.x3) ln
px3(x1)px3(x2)

px3(x1, x2)

Conditional mutual information generates the preceding information
functions as subcases (Yeung). We have the theorem : if X3 = Ω then it
gives the mutual information, if X2 = X1 it gives conditional entropy, and if
both conditions are satisfied, it gives entropy. Notably, we have I1 = H1.
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Introduction

Chain rules of information

Hk+1 − Hk = (X1, ...Xk).H(Xk+1) (1)

Ik−1 − Ik = Xk .Ik−1 (2)

by recurrence :

Hk = H(X1, ...,Xk ;P) =
k∑

i=1

(X1, ...,Xi−1).H(Xi ;P)

Ik = I (X1; ...;Xk ;P) = I (X1)−
k∑

i=2

Xi .I (X1; ...;Xi−1)
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Information Cohomology

Information structures
Baudot and Bennequin, The Homological nature of entropy, Entropy, 2015.

The random variables are partitions of the
atomic probabilities of (Ω,B,P) (equivalence
classes).

The Joint-Variable (X1,X2) is the less fine
partition that is finer than X1 and X2 (gcd).

The (general) information structure is the triple
(Ω,Π,P) where Π is the lattice of all partitions.

Information functions, F (X1, ...,Xk ;P) is the real
module of all measurable functions defined on
the whole lattice of partitions. (X1, ...,Xk ;P) is
the image law of P by (X1, ...,Xk).
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Information Cohomology

Probability Simplex
The probability space (Ω,B), |Ω| = N is a (N − 1)-simplex of probability,
implementing geometrically Kolmogorov axiomatic:∑

i P(Ai ) = 1 the geometry is
affine

P(Ai ) ≥ 0 convex

Theorem of total probability:
barycentric coordinate P(X ) =∑

i P(Ai .X ) =
∑

i P(Ai ).PAi (X )

Conditioning is a projection on
subsimplex.

Complex of probability given by set
of constraints of the form
P(A0) = 0 ∨ P(A1) = 0
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Information Cohomology

Actions and coboundaries

Conditioning-expectation by Y , Y .F (X1, ...,Xk ;P), is the left action of
Y on the functional module, Y .F (X ;P) =

∑
i P(Y = yi )F (X ;PY=yi ).

The action of conditioning is associative, we have
X .(Y .F (Z ;P)) = (X ,Y ).F (Z ;P).
Complexes of random variables are X k = (X1, ...,Xk ;P), and we consider
cochain complexes (X k , ∂k):

0 −→ X 0 ∂0
−→ X 1 ∂1

−→ X 2 ∂2
−→ ...X k−1 ∂k−1

−−−→ X k
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Information Cohomology

Actions and coboundaries
3 coboundaries with left, trivial and symmetric action (Hochschild 1945, for
associative and ring structures):

The left action coboundary (Galois cohomology):

(∂k)F (X1;X2; ...;Xk+1;P) = X1.F (X2; ...;Xk+1;P)

+
k∑

i=1

(−1)iF (X1;X2; ...; (Xi ,Xi+1); ...;Xk+1;P) + (−1)k+1F (X1; ...;Xk ;P)

The "topological-trivial" coboundary and cohomology (trivial left action
X1.F (X2; ...;Xk+1) = F (X2; ...;Xk+1)) :

(∂kt )F (X1;X2; ...;Xk+1;P) = F (X2; ...;Xk+1;P)

+
k∑

i=1

(−1)iF (X1;X2; ...; (Xi ,Xi+1); ...;Xk+1;P) + (−1)k+1F (X1; ...;Xk ;P)
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Information Cohomology

Actions and coboundaries
3 coboundaries with left, trivial and symmetric action (Hochschild 1945, for
associative and ring structures):

The left action coboundary (Galois cohomology):

(∂k)F (X1;X2; ...;Xk+1;P) = X1.F (X2; ...;Xk+1;P)

+
k∑

i=1

(−1)iF (X1;X2; ...; (Xi ,Xi+1); ...;Xk+1;P) + (−1)k+1F (X1; ...;Xk ;P)

The "topological-trivial" coboundary and cohomology (trivial left action
X1.F (X2; ...;Xk+1) = F (X2; ...;Xk+1)) :

(∂kt )F (X1;X2; ...;Xk+1;P) = F (X2; ...;Xk+1;P)

+
k∑

i=1

(−1)iF (X1;X2; ...; (Xi ,Xi+1); ...;Xk+1;P) + (−1)k+1F (X1; ...;Xk ;P)

15 / 61
Information Topology

N



Information Cohomology

Actions and coboundaries
3 coboundaries with left, trivial and symmetric action (Hochschild 1945, for
associative and ring structures):

The left action coboundary (Galois cohomology):

(∂k)F (X1;X2; ...;Xk+1;P) = X1.F (X2; ...;Xk+1;P)

+
k∑

i=1

(−1)iF (X1;X2; ...; (Xi ,Xi+1); ...;Xk+1;P) + (−1)k+1F (X1; ...;Xk ;P)

The symmetric Hochschild-information coboundary (Gerstenhaber and
Shack, symmetric left and right action of conditioning
X1.F (X2; ...;Xk+1) = F (X2; ...;Xk+1).X1):

(∂k∗ )F (X1;X2; ...;Xk+1;P) = X1.F (X2; ...;Xk+1;P) +
k∑

i=1

(−1)i

F (X1;X2; ...; (Xi ,Xi+1); ...;Xk+1;P) + (−1)k+1Xk+1.F (X1; ...;Xk ;P)
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Information Cohomology

Cohomology in the first degree
For the first degree k = 1, we have the following results:

The left 1-co-boundary is (∂1)F (X1;X2) = X1.F (X2)− F (X1,X2) + F (X1).
The 1-cocycle condition (∂1)F (X1;X2) = 0 gives
F (X1,X2) = F (X1) + X1.F (X2) which is the chain rule of information. Then
following Kendall and Lee (1964), it is possible to recover the functional
equation of information and to characterize uniquely, up to the arbitrary
multiplicative constant k , the entropy as the first class of cohomology.

Main theorem [?]
The information co-homology space of degree one is one-dimensional and gen-
erated by entropy.

Topological 1-coboundary (∂1
t )F (X1;X2) = F (X2)− F (X1,X2) + F (X1)

gives I2: (∂1
t )F (X1;X2) = H(X1) + H(X2)− H(X1,X2) = I (X1;X2)
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Information Cohomology

Cohomology in the first degree
For the first degree k = 1, we have the following results:

The left 1-co-boundary is (∂1)F (X1;X2) = X1.F (X2)− F (X1,X2) + F (X1).
The 1-cocycle condition (∂1)F (X1;X2) = 0 gives
F (X1,X2) = F (X1) + X1.F (X2) which is the chain rule of information. Then
following Kendall and Lee (1964), it is possible to recover the functional
equation of information and to characterize uniquely, up to the arbitrary
multiplicative constant k , the entropy as the first class of cohomology.

Main theorem [?]
The information co-homology space of degree one is one-dimensional and gen-
erated by entropy.

Symmetric 1-coboundary:
(∂1
∗)F (X1;X2) = X1.F (X2)− F (X1,X2) + X2.F (X1) is the negative of I2

(∂1
∗)F (X1;X2) = X2.H(X1)− H(X1,X2) + X1.H(X2) = −I (X1;X2).
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Information Cohomology

Cohomology in the second degree

For the second degree k = 2, we have the following results:

The left 2-co-boundary ∂2F (X1;X2;X3) =
X1.F (X2;X3)− F ((X1,X2);X3) + F (X1; (X2,X3))− F (X1;X2) is minus the
3-mutual information ∂2F (X1;X2;X3) =
X1.I (X2;X3)− I ((X1,X2);X3)+ I (X1; (X2,X3))− I (X1;X2) = −I (X1;X2;X3).

The topological 2-coboundary is (∂2
t )F (X1;X2;X3) =

F (X2;X3)− F ((X1,X2);X3) + F (X1; (X2,X3))− F (X1;X2), is
∂2
t F (X1;X2;X3) =

I (X2;X3)− I ((X1,X2);X3) + I (X1; (X2,X3))− I (X1;X2) = 0.

The symmetric 2-coboundary is (∂2
∗)F (X1;X2;X3) =

X1.F (X2;X3)− F ((X1,X2);X3) + F (X1; (X2,X3))− X3.F (X1;X2) is
∂2
∗F (X1;X2;X3) =

X1.I (X2;X3)− I ((X1,X2);X3) + I (X1; (X2,X3))− X3.I (X1;X2) = 0.
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Information Cohomology

Cohomology in the third degree
For the second degree k = 3, we have the following results:

The left 3-co-boundary
∂3F (X1;X2;X3;X4) = X1.F (X2;X3;X4)− F ((X1,X2);X3;X4) +
F (X1; (X2,X3);X4)− F (X1;X2; (X3,X4)) + F (X1;X2;X3) is
∂3F (X1;X2;X3;X4) = X1.I (X2;X3;X4)− I ((X1,X2);X3;X4) +
I (X1; (X2,X3);X4)− I (X1;X2; (X3,X4)) + I (X1;X2;X3) = 0.

The topological 3-coboundary
∂3
t F (X1;X2;X3;X4) = F (X2;X3;X4)− F ((X1,X2);X3;X4) +

F (X1; (X2,X3);X4)− F (X1;X2; (X3,X4)) + F (X1;X2;X3) is
∂3
t F (X1;X2;X3;X4) = I (X2;X3;X4)− I ((X1,X2);X3;X4) +

I (X1; (X2,X3);X4)− I (X1;X2; (X3,X4)) + I (X1;X2;X3) = I (X1;X2;X3;X4).

The symmetric 3-coboundary
(∂3
∗)F (X1;X2;X3;X4) = X1.F (X2;X3;X4)− F ((X1,X2);X3;X4) +

F (X1; (X2,X3);X4)− F (X1;X2; (X3,X4)) + X4.F (X1;X2;X3) is
∂3
∗F (X1;X2;X3;X4) = X1.I (X2;X3;X4)− I ((X1,X2);X3;X4) +

I (X1; (X2,X3);X4)− I (X1;X2; (X3,X4)) + X4.I (X1;X2;X3) =
−I (X1;X2;X3;X4). 20 / 61
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Information Cohomology

Cohomology in the higher degrees

It is possible to generalize to arbitrary degrees by remarking that we have:

For even degrees 2k : we have I2k = −∂t I2k−1 and then I2k = ∂t∂∂t ...∂∂tH
with 2k − 1 boundary terms.

For odd degrees 2k + 1: I2k+1 = −∂I2k−1 and then I2k+1 = −∂∂t∂...∂∂tH
with 2k boundary terms.

Theorem [?]

Let X n be an information structure, then:

For even degrees 2k : ∂2k = −I2k+1 and ∂2k
∗ = −∂2k

t = 0

For odd degrees 2k + 1: ∂2k−1 = 0 and ∂2k−1
∗ = −∂2k

t = −I2k .
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Information Cohomology

Information double complex
Attempt to make a single cohomology following Gerstenhaber and Shack
(Hodge decomposition of Hochschild cohomology) by constructing a double
complex X •,•, the triplet (X •,•, ∂, ∂∗) = (X k ′,k ′′ , ∂k

′,k ′′ , ∂k
′,k ′′
∗ ). We have

∂k∂k∗ + ∂k∗∂
k = 0. The total complex is defined by

X k
Tot = ⊕k ′+k ′′=kX

k ′,k ′′

Tot , with coboundary ∂ktot = ∂k + (−1)k∂k∗ and then
the coboundary of the total complex of information is ∂ktot = (−1)k+1Ik+1

X k,0
∂k,0
// X k,1

∂k,1
// X k,2

∂k,2
// X k,3

∂k,3
// · · ·

∂k,k−1
// X k,k

:

∂k−1,0
∗

OO

:

∂k−1,1
∗

OO

:

∂k−1,2
∗

OO

:

∂k−1,3
∗

OO

:

∂k−1,k
∗

OO

X 2,0

∂2,0
∗

OO

∂2,0
// X 2,1

∂2,1
∗

OO

∂2,1
// X 2,2

∂2,2
∗

OO

∂2,2
// X 2,3

∂2,3
∗

OO

∂2,3
// · · ·

∂2,k−1
// X 2,k

∂2,k
∗

OO

X 1,0

∂1,0
∗

OO

∂1,0
// X 1,1

∂1,1
∗

OO

∂1,1
// X 1,2

∂1,2
∗

OO

∂1,2
// X 1,3

∂1,3
∗

OO

∂1,3
// · · ·

∂1,k−1
// X 1,k

∂1,k
∗

OO

X 0,0

∂0,0
∗

OO

∂0,0
// X 0,1

∂0,1
∗

OO

∂0,1
// X 0,2

∂0,2
∗

OO

∂0,2
// X 0,3

∂0,3
∗

OO

∂0,3
// · · ·

∂0,k−1
// X 0,k

∂0,k
∗

OO
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Information Cohomology

k-independence cocycle

Theorem 2-independence ⇔ ∂1
∗ = 0 (Li, 1990)

X1,X2 are statistically independent if and only if I2 = I (X1,X2;P) = 0

Moreover, I (X1,X2) = 0⇒ ρX1,X2 = 0, ρX1,X2 = cov(X1,X2)
σX1σX2

.

Definition k-independence

X1, ...,Xk are k-independent if Ik = 0

Theorem mutual-independence

X1, ...,Xn are mutually independent if and only if ∀k ≤ n, Ik = 0.

As a probabilistic interpretation, information cohomology quantifies
statistical dependences at all degrees, the obstruction to factorization:
k-independence coincides with cocycles.
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Information Cohomology

Simplicial information substructures

Tapia-Pacheco et al., Information topology of gene expression profile in
dopaminergic neurons, bioRxiv 168740 (2017).

Computational problem: complexity of the estimation of information
functions: Bell’s combinatoric O(exp(exp(Nn))) for n N-ary variables. At
each degree k , the number of Hk and Ik to evaluate is given by Stirling
numbers S(Nn, k) with BNn =

∑Nn

k=0 S(Nn, k). Ex: 16 variables, 8 values

each: |Π| ≈ ee
248
−1 > 2200 elements to compute.

Computational solution: Data analysis is developed on the simplest
sub-case of the general information structure, the simplicial information
structure and the simplicial information cohomology with complexity in
O(2n) and

(
n
k

)
elements for each k with 2n =

∑n
k=1

(
n
k

)
.

Consequence: some possible statistical dependences cannot be detected.
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Information Cohomology

Simplicial information substructures

A simplicial information structure is the triple (Ω,∆n,P) where ∆n is the
Boolean lattice of all subsets (2n elements and

(
n
k

)
= n!

k!(n−k!) elements at
each degree k in one to one correspondence with the k-faces of the
n-simplex of random variables.

Joint (X1,X2) and meet (X1;X2) of variables are the usual joint and meet
of Boolean algebra and define two opposite-dual monoids (X1, ..,Xn,∨)
(X1, ..,Xn,∧), generating freely the semi-lattice of all subsets and its dual.
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Information Cohomology

Simplicial information substructures

Theorem simplicial information

A simplicial information structure is a substructure of information struc-
ture.

Proof: using theorem of Pudlak (1980): any finite lattice is a sub-lattice of
the partition lattice.

A simplicial complex of random variables X k = (X1, ...,Xk ;P) is any
subcomplex of the simplex ∆n with k ≤ n, and any simplicial complex can
be realized as a subcomplex of a simplex (Steenrod, 1947).

The simplicial information homology is a (usual simplicial) subcase of
information homology and defined as previously (cochain complexes
(X k , ∂k))

In this ordinary homological structure, the degree obviously coincide with the
dimension of the data space.
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Information landscape and paths and Information topology of Gene expression

Hk and Ik Landscapes

Information landscapes:
represent the lattice of
information structures with
in abscissa the degrees k
and in ordinate the values of
Hk and Ik .

Hk and Ik (real continuous
functions): ranking of the
lattices at each k .

Hk quantify
variability-randomness, Ik
quantify statistical
dependences.
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Information landscape and paths and Information topology of Gene expression

Special cases of Hk and Ik Landscapes
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Information landscape and paths and Information topology of Gene expression

Ik extrema and negativity - Special cases

Theorem (Hu Kuo
Ting, 1962)

For k ≥ 3 Ik can be
negative.

Schrödinger
"what is life?":
living system feed
upon negentropy
(free-energy)

Synergy (Brenner
et al.)

Frustrated spin
glasses (Matsuda)
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Information landscape and paths and Information topology of Gene expression

Gene expression measures

Quantitative PCR of single neurons in SNc (dopaminergic) and other
midbrain nucleus (nDA)

mRNA expression levels for n = 41 genes in m = 111 DA and m = 37 nDA
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Information landscape and paths and Information topology of Gene expression

Probability estimation

heatmap: (m, n) matrix D with real/rational coefficients
xij ∈ R, i ∈ {1..m}, j ∈ {1...n}
Graining: the intervals [min xj ,max xj ] for each variable Xj is divided into
Nj = 8 giving N1.N2...Nn = 8n boxes in n-dimensions.

Estimation of the atomic probabilities: usual counting, defined as:

P (bmin1 ≤ X1 ≤ bmax1, bmin2 ≤ X2 ≤ bmax2, ..., bminn ≤ Xn ≤ bmaxn)

=
m∑
i=1

δi
m
, δi =

{
0, if bmin1 > xi1 or xi1 > bmax1 ...or bminn > xin or xin > bmaxn
1, if bmin1 ≤ xi1 ≤ bmax1 and...and bminn ≤ xin ≤ bmaxn

(3)

Marginalization (projection on lower dimensions, on subsets of
variables): Conditioning PX (Y ) = P(X .Y )

P(X ) and in general the theorem of

total probability (P(X ) =
∑N

i=0 P(Ai .X ) =
∑N

i=0 P(Ai ).PAi (X )).
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Information landscape and paths and Information topology of Gene expression

Probability estimation
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Information topology of genetic expression

Computational
restriction to n = 21
(221 ≈ 2.106

elements)

Positive, negative Ik
and k-independence
Ik = 0 even for high k
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Maximum and minimum Ik "modules"

I2 qualitatively
similar to ρX ,Y

(Reshef, 2011).

Combinatorial
complexity of
interactions:
diversity and
impressively
numerous!

Ik are nontheless
specific to a given
cell type: cell
identity
signature.
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Information landscape and paths and Information topology of Gene expression

Maximum and minimum Ik "modules"

Negative Ik
detects clusters

Positive Ik detects
covariations
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Information landscape and paths and Information topology of Gene expression

Mean Hk and Ik
Mean behavior of the information structure defined the mean Hk and Ik :

〈Hk〉 =

∑
T⊂[n];card(T )=i Hk(XT ;P)(n

k

) , 〈Ik〉 =

∑
T⊂[n];card(T )=i Ik(XT ;P)(n

k

)
Mean
information
correspond to
ideal
homogeneous
structure
X n
hom with

homogeneous
k-body
interactions.
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Free information energy n-body interaction
Two different components in information structures:

for k = 1, I1 and 〈I1〉 are a self-interaction I (Xi ) = H(Xi ). We call the first
degree mutual information component I (Xi ) = H(Xi ) the self information
or kinetic information energy, in analogy to thermodynamic (Density
Functional Theory, Kohn-Hohenberg). Here self-interaction does not
diverge: no regularization or renormalization corrections.

for k > 1 Ik and 〈Ik〉 quantifies the contribution of the k-body interaction.
We call Ik and 〈Ik〉 the k-free-information-energy. Each Ik terms is as a
free energy correction accounting for the k-body interactions.

Defining self information energy by T (X1, ...,Xn;PN) =
∑n

i=1 I1(Xi ;PN)
and free-information-energy by
G (X1, ...,Xn;PN) =

∑n
i=2(−1)i−1∑

I⊂[n];|I |=i Ii (XI ;PN) we recover the
usual isotherm thermodynamic relation:

Hn(X1, ...,Xn;PN) = T (X1, ...,Xn;PN)− G (X1, ...,Xn;PN)
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Information landscape and paths and Information topology of Gene expression

Finite size effect - sampling problem
Dependence on m. Undersampling (curse of dimension/sampling problem
(Strong 1998,Nemenman 2004)): when N1...Nn are such that only one
data point falls in a box then p = 1/m and Hn = log2 m.

Add a combinatorial number
of 0 values to Ik landscape

Equivalent to adding a
deterministic variable 0 since
the probability remains
unchanged (1/m)

Degree ku for which more
than 10% of the Hk are in
log2 m−0.05 ≤ Hk ≤ log2 m.

Analysis holds well bellow
usual undersampling regime.
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Dependence on graining N

Dependence on N. Study of iso-graining landscapes and apparition of
critical points in the same way as isotherms does in usual thermodynamic.

For N = 2 the mean
〈Ik〉 is monotinicaly
decreasing. This
N = 2 iso-graining
is analog to the non
condensed
disordered phase.

All the other mean
〈Ik〉 paths have a
critical point.
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Information landscape and paths and Information topology of Gene expression

Information paths
Information path: Let (Ω,∆k ,P) be a simplicial information structure,
then a path of degree k in ∆k is a sequence of edges of the lattice that
begins at the leastest element of the lattice (the identity-constant 0),
travels along edges from vertex to vertex of increasing degree of the lattice
and ends at the greatest element of the lattice of degree k .
Information paths are defined dually on joint and meet-mutual information
semi-lattice. The set of all information paths are noted HPk paths for
entropy paths and IPk for mutual-information paths.
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Information landscape and paths and Information topology of Gene expression

Information paths - Symmetric group

Theorem information path symmetric group

The set of all information paths HPk and IPk in ∆k are both in bijection
with the symmetric group Sk . Notably, there are k! paths in ∆k .

A path in ∆4, noted IPi = (0→ X2 → X1 → X4 → X3) can be identified
with a permutation or a total order:
IPi = 0→ (0,X2)→ (0,X1,X2)→ (0,X1,X2,X4)→ (0,X1,X2,X3,X4)
can be noted σ : (01234)

σ−→ (02143). Paths are seen as automorphism of
{1, 2.....k} = [k] and HPk and IPk paths can be endowed with the
structure of two opposite symmetric group Sk .
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Information landscape and paths and Information topology of Gene expression

Derivatives of information paths
The paths HPi and IPi as piecewise linear functions, IPi (k) = Ik .

First derivative of entropy path HPi (k) is conditional entropy:
dHPi (k)/dk = Hk − Hk−1 = (X1, ...,Xk−1).H(Xk ;P)

First derivative of mutual information path IPi (k) is minus conditional
information (coface map): dIPi (k)/dk = Ik − Ik−1 = −Xk .I (X1, ...,Xk−1;P)
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Information landscape and paths and Information topology of Gene expression

Derivatives Bounds, Information inequali-
ties

Derivatives bounds given by information inequalities and define cones
(Yeung).
For entropy path we have:
determinism 0 ≤ (X1, ...,Xk−1).H(Xk) ≤ H(Xk) independence.
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Derivatives Bounds, Information inequali-
ties

The bounds of mutual-information path are richer:
For k = 2, Xi .I (Xj) = Xi .H(Xj) and 0 ≤ Xi .I (Xj) ≤ I (Xj).

For k = 3 the conditional mutual-information
0 ≤ Xi .I (Xj ;Xh) ≤ min (Xi .H(Xj),Xi .H(Xh)) with right equality iff Xj and
Xh are conditionally independent given Xi .
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Derivatives Bounds, Information inequali-
ties

For k > 3, Xk .I (X1; ..;Xk−1) can be negative: Xk .I (X1; ..;Xk−1) < 0 iff
Ik < Ik+1 (Matsuda). "Shannonian" inequalities: the set of inequalities that
are obtained from conditional information positivity Xi .I (Xj ;Xh) ≥ 0 by
linear combination, a convex "positive" cone after closure. Negativity gives
"non-Shannonian" inequalities and cone (Yeung, Matus...).
min I (X1; ..;Xk−1)(?) ≤ Xk .I (X1; ..;Xk−1) ≤ mini∈[k−1] (Xk .H(Xi )) with
right equality given by the configurations for which the variable X1, ..,Xk−1
are equivalent X1 ∼ ... ∼ Xk−1 when Xk is given.
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Local minima and critical dimension

Lemma local minima of information paths

if Xk .I (X1; ..;Xk−1) < 0 then all paths from 0 to Ik−1 have at least one
critical point. The first critical point if it exists is a local minima. In
order for an information path to have a critical point it is necessary that
k > 3, the smallest possible degree of critical point being k = 3.

The first informational critical dimension of the information path IPi ,
noted ki1 is the degree k of the first local minima of an information path.

Positive information path is an information path from 0 to a given Ik
corresponding to a given k-tuple of variable such that Ik < Ik−1 < ... < I1.

Maximal Positive information path is a Positive information path of
maximal length. More formally, a maximal positive information path is a
positive information path that is not a proper subset of positive information
path.
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Minimum free energy complex

Theorem Minimum free energy complex

The set of all positive informations paths forms a simplicial complex,
that we call the minimum free energy complex, noted X+ki1 . A necessary
condition for this complex not to be a simplex is that its dimension d ≥ 4.
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Minimum free energy complex

Positive information path and maximal positive information path coincide
with chain (face) and maximal chains (facet). The maximal faces encode all
the structure of minimum free energy complex.

The dimension of the minimum free energy complex is the maximum of
the first informational critical dimension ki1 if it exists or the dimension of
the whole simplicial structure n.

The set of first critical points of information paths would give a good
description of the landscape, and of the complexity of the measured system.
This complex is nothing but the formalization of the minimum free energy
principle in a degenerate case.
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Minimum free energy complex

Without proof of its peculiar interest, we define the minimum free energy
characteristic as:

H+k(X+k ;P) =
k∑

i=1

(−1)i−1
∑

I⊂X+;card(I )=i

Ii (XI ;P)

Analog to paths sum: it sums over all paths until they diverge; the
divergence being the negativity of conditional mutual information.

H+k(X+k) =
∑5 I (Xi )−

∑10 I (Xi ;Xj)+
∑10 I (Xi ;Xj ;Xh)−I (X1;X2;X3;X4)

49 / 61
Information Topology

N



Information landscape and paths and Information topology of Gene expression

Second law information topology
Random-stochastic process {Xt , t ∈ T} is a collection of random
variables on the same probability space (Ω,F ,P) and T is a totally ordered
set.

Lemma stochastic processes - information paths:

Let (Ω,∆k ,P) be a simplicial information structure, then the set of paths
HPk and IPk are in one to one correspondence with the set of stochastic
process {Xt , t ∈ T , |T | = k}

Theorem second Law (information topology)

Let (Ω,∆k ,P) be a simplicial information structure, then the entropy of
a stochastic process can only increase with time.

"You can’t have something for nothing, not even an observation" Gabor.
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Second law information topology

Theorem second Law (information topology)

Let (Ω,∆k ,P) be a simplicial information structure, then the entropy of
a stochastic process can only increase with time.

"You can’t have something for nothing, not even an observation" Gabor.

The statement is equivalent to H(X1, ...Xk) ≥ H(X1, ...Xk−1) which is a
direct consequence of conditional entropy positivity and the chain rule of
information with k = − ln 2.

Improves the result of Cover (1991) that assumes stationary Markov
condition.

Paths are automorphisms of {1, 2.., k} = [k], initial minimal low entropy
state H(0) = 0. No stationarity or ergodicity assumptions.
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Computation of the Minimum free energy
complex

Computational problem: finding a global functional extrema or all the first
critical dimension is NP-hard class (O(n!)).

Computational solution: At each element of the lattice, we start at one of
the I1 and at each element of the paths we explore only the two paths with
lowest and highest positive values of Xk+1.I (X1; ..;Xk) (local), and iterate
until it stops at the minima (whenever the conditional mutual information
starts to be negative) and then rank the paths as a function of their length.
It finds the maximal positive information paths that have highest and lowest
Ik values at each element of a path. Computational complexity in O(n) but
only give a partial estimation of the minimum free energy complex (can
be richer and greater dimensionality).
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DA Minimum free energy complex

Identifies functional module
up to ki = 6.

Maximum path detect the
metabolic chain of
Dopamine, genes having
common transcription
regulators and unravel
electrophysiological and
neuromediator identity
coupling.

Minimum path detect
heterogenity, suclasses and
spatial differential
expressions.
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Neuronal Minimum free energy complex

Transpose
matrix (egoist
genes).
m = 41 genes,
n = 20 cells

Preidentified
10 DA and
nDA neurons.
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Conclusion

Information theory

Landscape represents and implements all classical information functions,
chain rules and inequalities: easy tool.

Non-shannonian inequalities (cone) are related to the existence of critical
point in information path.

New methods for topological and statistical data analysis, with totally
opensource tools (the python program allowing all quantifications and
representations is available on Github)
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Conclusion

Information theory

The global picture: information communication is only partially accounted
by pairwise exchange of information, formalized by a communication
channel, that is a 1-simplex between two variables, the emitter and the
receiver. By considering n emitters/receivers and defining k-communication
channels as the k-face of a simplicial structure, with respective capacity
max(Ik), the present topological formalism gives very preliminary basement
for such a generalized communication theory. Moreover, it suggests refined
data compression algorithm.
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Conclusion

Statistical physic

At least in genetic expression, but we propose that it is a generic feature of
biological structures, high order than pairwise statistical interaction exist,
can be non negligible, and moreover can be combinatorially numerous.

Clustering of data points analog to matter condensation, a simple picture.

Topological and informational formalization of the Potts model, negativity
signature of frustration, multiplicity of local minima.

mean information path is analog to DFT treatment of the n-body problem,
but the formalism here is different, it is finite and discrete, it computes the
cohomology group of measurable function, do not assume any metric (like an
interaction distance r), nor Hamiltonian or Lagrangian structure, symplectic
or contact structure, configuration or phase space (etc.). The main
difference with classical statistical physic determinations of free energy and
entropy is the absence of predefined metric and the finiteness-discreteness of
the formalism (no assymptotic limit, no Stirling approximation).
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Conclusion

Statistical physic

Our theorem applied to 3n dimensions of a configuration space (like in DFT)
implies that whereas the minimum free information energy complex of an
elementary body can only be a simplex, the configuration space of n
elementary body can be a complex with quite arbitrary topology (possible
heterogeneity at large "scales").

What should be done next: discrete analog of Noether theorem.
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Conclusion

Ecology - Biology - Complex systems

Ecology is the scientific analysis and study of interactions among organisms
and their environment...

Biology and ecology: the main interest of the present formalism is to
capture and identify diversity, while yet allowing selectivity. It gives a
quantitative framework the cellular identity and its differentiation.

From complex network to ... complex.
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Thank you! Thank Jean-marc, Mon-
ica, Daniel ... UNIS1072 inserm, ERC
Chanelomics
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Conclusion

Questions

61 / 61
Information Topology

N



Appendices



Conclusion

First appendix
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Second appendix
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