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The super Jordan plane is the algebra

A=k(x,y)/ (x* y’x — xy* — xyx)
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The super Jordan plane is the algebra
A=k(x,y)/ (x*,y*x = xy* = xyx) ,
where k is an algebraically closed field and char(k) = 0.

Our results

@ We computed explicit bases of the Hochschild cohomology and
homology spaces.

@ We described completely the cup product in cohomology and the
Yoneda algebra.

o We described the Lie structure of H'(A, A).
@ We described the Lie module structure of H"(A, A) for n > 1.

@ We computed the Yoneda algebra structure of the bosonization of
the super Jordan plane and proved that it is finitely generated.
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Some well-known results

e Finite group algebras (Golod '59, Venkov '59, Evens '61).

e Finite dimensional cocommutative Hopf algebras (Friedlander-Suslin
'97).

@ Finite dimensional small quantum groups (over C), satisfying some

hypotheses (Ginzburg-Kumar '93, Bendel-Nakano-Parshall-Pillen
'07).
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Conjecture (Etingof-Ostrik '04)

If H is a finite dimensional Hopf algebra, then H®*(H, k) is finitely
generated.
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Theorem (Mastnak-Pevtsova-Schauenburg-Witherspoon '10)

If H is a pointed finite dimensional Hopf algebra verifying some
hypotheses, then H®*(H, k) is finitely generated.

The proof is reduced to the case
gr(H) 2 B(V)#kG

Recall that if H is a Hopf algebra with bijective antipode, then H*(H, k)
is a direct summand of H*(H, H).



Nichols algebras

Definition

Let H be a Hopf algebra and let V be a k-vector space. The space V is a
left Yetter-Drinfeld module over H if V is a left H-module and
H-comodule satisfying a compatibility condition.

The category of left Yetter-Drinfeld modules over H is usually denoted by
H
uYD.
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Nichols algebras

Definition

Let H be a Hopf algebra and let V be a k-vector space. The space V is a
left Yetter-Drinfeld module over H if V is a left H-module and
H-comodule satisfying a compatibility condition.

The category of left Yetter-Drinfeld modules over H is usually denoted by
"yD.
e If V and W belong to ﬂyD, then the same is true for V @ W.
scyw:VaW-=WwWeV.
These remarks lead to the definition of braided Hopf algebra.
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Definition
The Nichols algebra B(V) is the quotient T(V)/J(V).




Definition
The Nichols algebra B(V) is the quotient T(V)/J(V).

@ The symmetric algebra.

@ The exterior algebra.




Definition
The Nichols algebra B(V) is the quotient T(V)/J(V).

@ The symmetric algebra.
@ The exterior algebra.

Problem

Describe explicitely the coideal J(V).
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From now on we will consider the case H = kG, where k is an
algebraically closed field, char(k) = 0 and G is an abelian group.

Problem
When is the Gelfand-Kirillov dimension of B(V) finite?

The classification of pointed Hopf algebras with finite Gelfand-Kirillov
dimension, abelian group of group-like elements and diagonal braiding is
known if H is a domain.

Theorem (Andruskiewitsch-Angiono-Heckenberger)

The Gelfand-Kirillov dimension of B (V(e, /)) is finite if and only if / =2
y € = £1 (and in this case the GK-dimension is 2). Moreover,

e if e =1, then

B (V(1,2)) =k(x,y | yx — xy + x> = 0) (Jordan plane).
o If e = —1, then

B(V(-1,2)) =k(x,y | x? =0,y’x — xy? — xyx = 0)

(super Jordan plane).




The super Jordan plane

Going back to the algebra

A=k(x,y)/ (xz,yQX — xy? — xyx) .

o lts Gelfand-Kirillov dimension is 2.
o The set {x?(yx)by°:a€ {0,1},b,c € Ny} is a PBW basis.
o It is graded with |x| = |y| = 1.



The super Jordan plane

Going back to the algebra

A=k(x,y)/ (xz,yQX — xy? — xyx) .

o lts Gelfand-Kirillov dimension is 2.

o The set {x?(yx)by°:a€ {0,1},b,c € Ny} is a PBW basis.
o It is graded with |x| = |y| = 1.

First objective
Compute its Hochschild homology and cohomology.
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A projective resolution

Using the methods of Chouhy-S., "15.

Rewriting system

The ideal of relations is (x?, y2x — xy? — xyx).

x? =0,

y2X = xy2 + Xxyx.

| \

Ambiguities

°X3

o y2x?




The projective resolution of A as A-bimodule that we use for the
computations is the following. It is in fact minimal and free.

dni1

dn_
T AQKA, A" s ARKkA, @A

P Aok {x Y2 @ AL AGk{xy}® AL AR A—0

where A, = {x"*1,y2x"}, for n > 1; the differentials are defined as
follows:



The projective resolution of A as A-bimodule that we use for the
computations is the following. It is in fact minimal and free.

dni1

dn_
T AQKA, A" s ARKkA, @A

P Aok {x Y2 @ AL AGk{xy}® AL AR A—0

where A, = {x"*1, y2x"}, for n > 1; the differentials are defined as
follows:
dlevel)=vel-1Rv,
d(lex*el)=x2x®@1+1®x X,
dlRy’x01)=y’2xR1+yR@yx+10y® yx
—(xyRyR1+xQyQy+12x2y?)
—(xy@x01+x0y®@x+1®x yx),



d(lox"e1)=x2x"01+(-1)"" e x"® x,
d,-,(]. ®y2Xn ® 1) — y2 ®X” ® 1 4 (_1)n+1 ®y2Xn71 ®X

—(x®yzx"fl®1+xy®x"®1+1®x”®y2+1®x”®yx)

for all n > 2.



d(lox"e1)=x2x"01+(-1)"" e x"® x,
dn(]. ®y2Xn ® 1) — y2 ®X” ® 1 4 (_1)n+1 ®y2Xn71 ®X

—(X®yzx"fl®1+Xy®x"®1+1®x”®y2+1®x”®yx)

for all n > 2.

Example
dp : A®k{x3,y2xz}®A—>A®k{x2,yzx}®A.

h(10yx*1)=y’0x°01 - 10 y’x ® x
—x@yx1—-xyx’°®1-13x2®y> —1® x* Q yx.




The double complex

0 9
A k{x*} ® A9  Aw k{y*x*} ® A
) 5

Ak{x3} 9 A<—2  Axk{y’x}} ® A

3] 9
Ak{x )@ A<—2  Ak{y’x’}® A
6 5/

ARA<—L Ak{xy}® A~ Axk{y’x} ® A



Hochschild cohomology

The complex computing the Hochschild cohomology of A is
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HO(A, A) =k,

HY(A, A) = (c,s, | n > 0),
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Hochschild cohomology

The complex computing the Hochschild cohomology of A is

'-~<£HomAe(A®k{x"+1,y2x”}®A,A)<L--'

Using this complex, we obtained the description of the Hochschild
cohomology spaces:

HO(A, A) =k,

HY(A, A) = (c,s, | n > 0),

H*(A, A) 2 (t2P, u?P | n > 0),
H>*TH(A, A) = (V2P w2Ptl | n > 0).

Note that cohomology is periodic of period 2.



Description of H*(A, A) as a graded algebra

Problem
Our aim: to describe the product in H*(A, A).




Description of H*(A, A) as a graded algebra

Problem
Our aim: to describe the product in H*(A, A).

One possible way is using the bar resolution. For this, we constructed
comparison maps between this resolution and ours, using again the
rewriting rules.



Description of H*(A, A) as a graded algebra

Problem
Our aim: to describe the product in H*(A, A).

One possible way is using the bar resolution. For this, we constructed
comparison maps between this resolution and ours, using again the
rewriting rules.

dn+1

— > Ak {x"*, y2x"} ®Ai>A®]k{X",y2X”*1} ®A£>

fot1 \LTgnJrl fa iTgn
b

bn ' n—
+1 A®A®"+1®A—>A®A®n®A—l>



e forn=1,

i AQk{x,y} A= ARARA,
Alevel)=1vel forallvek{x,y},

e for n > 2,

fo AQK{X"y’x" T} A= AR A®" @ A,
LHlex"®l)=1x®"® 1,

LIy X" 1) =yeyex®"1el+l10y e x® 21
—xQyRyax®" 221 -19x0y?@x®"2x1

—x@yx¥1l1el-1x0xx®"?e1
e,



We do not have an explicit expression for the maps

g ARAY R A= ARk {x",y’x" '} ® A



We do not have an explicit expression for the maps

g ARAY R A= ARk {x",y’x" '} ® A

2 ARAZRA - Ak {x? y’x} ® A

21ldx?x®1)=x0y’x1+13x*Qy?>+1Q x*® yx.
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Proposition

The algebra H*(A, A) is not finitely generated.

Recall that H°(A, A) =2 k. Given A € H%(A, A) and ¢ € H*(A, A),

P— A=A — =N

Recalling the notation

H'(A,A) = (c,s, | n>0),
H> (A, A) 2 (t2P,u?P | n > 0),

H?PHH (A A) = (VP w2Pt | n > 0).

\




Table of products of the generators

c— p=0forall ¢ € H*(A, A)

Sn t,%q uﬁq v,f‘”'l W3q+1
2 2q+1 2p+2 2p+2
Sm 4(” - m)tn+m+1 0 2Vn-%—m-%—l2 1 —(2!7 + 1)tn+m 2tn+m+1
+
+(2n+ Wik
toP 0 0 top 2 0 0
m m-+n
2p 2p+1 2p+2q 2p+2q 2p+2q+1 2p+2q+1
Um 2 nerJrl2 1 tn+m m+n Votm Whim
+(2n + )w,
2p+2 2pF+2q+T 2p+2q+2
var L | (@nt 160, 0 Ve 0 AR
2p+1 2p+2 2p+2q+1 2p+2q+2
Wm _2tn+m+1 0 m+n _tm+n 0

H®(A, A) is generated as an algebra by the elements 1, c, t2, s,, u2y v3

with n > 0.




Description of H!(A, A) as a Lie algebra

Recall that H!(A, A) = Dery,(A, A)/ Inng (A, A). The structure of Lie
algebra is given by
[f,h] =foh—hof

for all ,h € H'(A, A).



Description of H!(A, A) as a Lie algebra

Recall that H!(A, A) = Dery,(A, A)/ Inng (A, A). The structure of Lie
algebra is given by

for all ,h € H'(A, A).

Brackets of generators

@ [c,5,]=0
@ [sm,Sn] =2(n— m)syim.




Virasoro algebra

The Virasoro algebra, denoted by Vir, is the Lie algebra with basis
{Ln, c| n € Z} defined as follows: for all n,m € Z,

m3—m

LmaLn: - Lmn m—n"_ 1~
(Lo L] = (M= W)L 00

[Lm,c] =0.

o



Virasoro algebra

The Virasoro algebra, denoted by Vir, is the Lie algebra with basis
{Ln, c| n € Z} defined as follows: for all n,m € Z,

m3—m

Lm,L,-,: - Lmn m,—n
[Lms Lol = (m = 1)L+

[Lm,c] =0.

C7
The triangular decomposition of the Virasoro algebra is:

Vir 2 Virt @h @ Vir~ .

where

Virt = @kLn h = ke @ kLo Vir™ = @kL_n.
n=1 n=1



In order to identify Hl(A, A) with a Lie subalgebra of the Virasoro
algebra, we set

1 —m—1
L,=2"""" sy,

for all m > 0. The bracket is thus

(L), L] =(m—n)L,. ,and [L,, c]=0.

m’ =n m+n



In order to identify Hl(A, A) with a Lie subalgebra of the Virasoro
algebra, we set

1 —m—1
L,=2"""" sy,

for all m > 0. The bracket is thus

(L), L] =(m—n)L,. ,and [L,, c]=0.

m’ =n m+n

There exists a Lie algebra isomorphism

H(A, A) =@ Vir'.
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Remarks and questions

Localizations? Drinfeld doubles?

Any representation M of our Nichols algebra provides by induction
of representations, a module over U(Vir).

Given n € N, the vector space H"(A, A) is a representation of
H(A, A).
Which family of representations do we obtain in this way?

@ Which Lie algebras appear as H'(A, A) for other Nichols algebras of
finite Gelfand-Kirillov dimension?



Action of H'(A, A) on H"(A, A)

@ The action of ¢ on all the generators is trivial.

[5m, t2P] = 2(n— 2p—1)m— p) s

[Sm, u2P] = ( n—2pm — p)urt,, + pm(2m + l)tr%im)

[smy v221] = (n—(2p+1)m—(1+p) ) v22n! —4m(2m+ 1)w2PEL .
[

2p+1
Sm, WPt = (n—2pm p) Wl

The proof uses Susrez-Alvarez method to compute the brackets.
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2p+1
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The proof uses Susrez-Alvarez method to compute the brackets.

Looking at an intermediate series module V, , as a module over Virt @& h
-that we denote V:b— and rescaling, we can see that the space generated
by (for example) the t2P's for a fixed p is isomorphic to a submodule of
the intermediate series module V* Cop—1),—



Action of H'(A, A) on H"(A, A)

@ The action of ¢ on all the generators is trivial.

° [sm, - ] = 2(n— 2p—1)m— p) s

o [sms 0] = 2((n—2pm — )it + pm(2m + 1)£2,,).

o [sm v2P1] = (n—(2p+1)m—(1+p) ) viZ — 4m(2m+1)wliL
[

2p+1
o [smwir] = (n = 2pm — p) w23

The proof uses Susrez-Alvarez method to compute the brackets.

Looking at an intermediate series module V, , as a module over Virt @& h
-that we denote V:b— and rescaling, we can see that the space generated
by (for example) the t2P's for a fixed p is isomorphic to a submodule of
the intermediate series module V™, Cop—1),—

These modules are indecomposable.



The Yoneda algebra

@ The space H%(A, k) is isomorphic to k with basis {e:1® 1 — 1}.
o H'(A, k) is 2-dimensional with basis {n',w!} defined by

nlexel)=1, 7'(1ley®1)=0,
W(1lex®1)=0, J'(loy®l)=1

@ For all n > 2, the space H"(A, k) is 2-dimensional with basis
{n",w"} defined by:

"1ex"®1)=1, 7"1xy*x"1®1)=0,
Ww(lex"®@1l)=0, w'(l1eyx"'®l)=1.




The Yoneda algebra

@ The space H%(A, k) is isomorphic to k with basis {e:1® 1 — 1}.
o H'(A, k) is 2-dimensional with basis {n',w!} defined by

nlexel)=1, 7'(1ley®1)=0,
W(1lex®1)=0, J'(loy®l)=1

@ For all n > 2, the space H"(A, k) is 2-dimensional with basis
{n",w"} defined by:

"1ex"®1)=1, 7"1xy*x"1®1)=0,
Ww(lex"®@1l)=0, w'(l1eyx"'®l)=1.

The Hilbert series of ®;>o H'(A,k) is h(t) =1+ 23005 = 4t

t
1—-t°



The algebra H®(A, k) is generated by {e,nl,wl,wQ}. Moreover, H®(A, k)
is isomorphic to the graded algebra

k<n1,w1,w2>/((wl)z,(w2)2,wlwz,wzwl,wlnl,nlwl,wznl+771w2




The algebra H®(A, k) is generated by {e,nl,wl,w2}. Moreover, H®(A, k)
is isomorphic to the graded algebra
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Notice that (H*(A,k),—) is not a graded commutative algebra and in
particular, (H*(A, k), —) is not a subalgebra of (H*(A, A), —).



The algebra H®(A, k) is generated by {e,nl,wl,w2}. Moreover, H®(A, k)
is isomorphic to the graded algebra

k<n17w1’w2>/((w1)27(w2)27w1w2,w2w17w1n17nlwl,w2n1 +7710J2

Notice that (H*(A,k),—) is not a graded commutative algebra and in
particular, (H*(A, k), —) is not a subalgebra of (H*(A, A), —).

The algebra A is not N-Koszul. This can be deduced from the minimal
projective resolution of k as A-module. There is a generalization of the
notion of N-Koszul algebra: the notion of K,-algebra. The algebra A is
K.



The Yoneda algebra of A#kZ

Ais a kZ-module algebra, where the action of kZ on A corresponds to
the braiding ¢ of V(—1,2).

Using Grothendieck's spectral sequence for the derived functors of the
composition of two functors , we get:

EP9 = HP (Z,H(A,k)) = HPTI(A#KZ, k).
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The Yoneda algebra of A#kZ

Ais a kZ-module algebra, where the action of kZ on A corresponds to
the braiding ¢ of V(—1,2).

Using Grothendieck's spectral sequence for the derived functors of the
composition of two functors , we get:

EP9 = HP (Z,H(A,k)) = HPTI(A#KZ, k).

We have a first quadrant spectral sequence with only two non trivial
rows, and the differential dy : EP"? — EP~192 can only be non trivial
when p = 1. Moreover, there is a five term exact sequence

d

0 —— EJ' — = HY(A#KZ, k) E}° EX? H?(A#KZ, k)

Due to the shape of the spectral sequence, it will collapse at E;"°.
Moreover, E20’1 is 0, and since both E21’O and E20’2 are one dimensional, d>

is either zero or an isomorphism, and this will depend on whether
H'(A#KZ, k) is zero or not.
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The Yoneda algebra of A#kZ

This last space is isomorphic to Exti\#kz(k, k), that is, the space of
classes of isomorphisms of 1-extensions of k by k.
We found nontrivial extensions, so

HY(A#KZ, k) = k.

Since the map Hl(A#kZ,]k) — E21’0 is a monomorphism, we conclude
that dy : E;° — EP? is zero.

The spectral sequence being multiplicative and the description of Ezl’j,
for j > 2, allow to conclude that

=) 0,j+2
d2 : E2 — E2

H H e e
is zero for all j, hence E;° = E3:°.






Theorem

The Yoneda algebra E(A#kZ) = ®;>0 H'(A#kZ, k) is the k-algebra
generated by & 72, w3, where deg(e) = 1, deg(n?) = 2, deg(w?) = 3. It is
graded commutative, summarizing

E(A#KZ) = k [1%] ® AN(w?, ©).

In particular, it is finitely generated.




