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The super Jordan plane is the algebra

A = k〈x , y〉/
(
x2, y2x − xy2 − xyx

)
,

where k is an algebraically closed field and char(k) = 0.

Our results

We computed explicit bases of the Hochschild cohomology and
homology spaces.

We described completely the cup product in cohomology and the
Yoneda algebra.

We described the Lie structure of H1(A,A).

We described the Lie module structure of Hn(A,A) for n > 1.

We computed the Yoneda algebra structure of the bosonization of
the super Jordan plane and proved that it is finitely generated.
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Some motivation

Given a Hopf algebra H, the associated cohomology is

H•(H,k) = Ext•H(k,k).

H•(H,k) is endowed with an associative and graded commutative algebra
structure via the cup product.

Problem

When is H•(H,k) a finitely generated algebra?
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Some well-known results

Finite group algebras (Golod ’59, Venkov ’59, Evens ’61).

Finite dimensional cocommutative Hopf algebras (Friedlander-Suslin
’97).

Finite dimensional small quantum groups (over C), satisfying some
hypotheses (Ginzburg-Kumar ’93, Bendel-Nakano-Parshall-Pillen
’07).

Conjecture (Etingof-Ostrik ’04)

If H is a finite dimensional Hopf algebra, then H•(H,k) is finitely
generated.
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Theorem (Mastnak-Pevtsova-Schauenburg-Witherspoon ’10)

If H is a pointed finite dimensional Hopf algebra verifying some
hypotheses, then H•(H,k) is finitely generated.

The proof is reduced to the case

gr(H) ∼= B(V )#kG

Recall that if H is a Hopf algebra with bijective antipode, then H•(H,k)
is a direct summand of H•(H,H).
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Nichols algebras

Definition

Let H be a Hopf algebra and let V be a k-vector space. The space V is a
left Yetter-Drinfeld module over H if V is a left H-module and
H-comodule satisfying a compatibility condition.

The category of left Yetter-Drinfeld modules over H is usually denoted by
H
HYD.

If V and W belong to H
HYD, then the same is true for V ⊗W .

cV ,W : V ⊗W →W ⊗ V .

These remarks lead to the definition of braided Hopf algebra.
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Example

Let H be a Hopf algebra and V ∈ H
HYD. The tensor algebra

T (V ) = ⊕n≥0V
⊗n is a braided Hopf algebra in H

HYD with
comultiplication and counit determined by

∆(v) = v ⊗ 1 + 1⊗ v , ε(v) = 0 for all v ∈ V .

There is a unique maximal coideal J(V ) amongst the coideals of T (V )
contained in ⊕n≥2V

⊗n.

Definition

The Nichols algebra B(V ) is the quotient T (V )/J(V ).
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From now on we will consider the case H = kG , where k is an
algebraically closed field, char(k) = 0 and G is an abelian group.

Problem

When is the Gelfand-Kirillov dimension of B(V ) finite?

The classification of pointed Hopf algebras with finite Gelfand-Kirillov
dimension, abelian group of group-like elements and diagonal braiding is
known if H is a domain.

Theorem (Andruskiewitsch-Angiono-Heckenberger)

The Gelfand-Kirillov dimension of B (V(ε, l)) is finite if and only if l = 2
y ε = ±1 (and in this case the GK-dimension is 2). Moreover,

if ε = 1, then

B (V(1, 2)) = k
〈
x , y | yx − xy + 1

2x
2 = 0

〉
(Jordan plane).

If ε = −1, then

B (V(−1, 2)) = k
〈
x , y | x2 = 0, y2x − xy2 − xyx = 0

〉
(super Jordan plane).



From now on we will consider the case H = kG , where k is an
algebraically closed field, char(k) = 0 and G is an abelian group.

Problem

When is the Gelfand-Kirillov dimension of B(V ) finite?

The classification of pointed Hopf algebras with finite Gelfand-Kirillov
dimension, abelian group of group-like elements and diagonal braiding is
known if H is a domain.

Theorem (Andruskiewitsch-Angiono-Heckenberger)

The Gelfand-Kirillov dimension of B (V(ε, l)) is finite if and only if l = 2
y ε = ±1 (and in this case the GK-dimension is 2). Moreover,

if ε = 1, then

B (V(1, 2)) = k
〈
x , y | yx − xy + 1

2x
2 = 0

〉
(Jordan plane).

If ε = −1, then

B (V(−1, 2)) = k
〈
x , y | x2 = 0, y2x − xy2 − xyx = 0

〉
(super Jordan plane).



From now on we will consider the case H = kG , where k is an
algebraically closed field, char(k) = 0 and G is an abelian group.

Problem

When is the Gelfand-Kirillov dimension of B(V ) finite?

The classification of pointed Hopf algebras with finite Gelfand-Kirillov
dimension, abelian group of group-like elements and diagonal braiding is
known if H is a domain.

Theorem (Andruskiewitsch-Angiono-Heckenberger)

The Gelfand-Kirillov dimension of B (V(ε, l)) is finite if and only if l = 2
y ε = ±1 (and in this case the GK-dimension is 2). Moreover,

if ε = 1, then

B (V(1, 2)) = k
〈
x , y | yx − xy + 1

2x
2 = 0

〉
(Jordan plane).

If ε = −1, then

B (V(−1, 2)) = k
〈
x , y | x2 = 0, y2x − xy2 − xyx = 0

〉
(super Jordan plane).



From now on we will consider the case H = kG , where k is an
algebraically closed field, char(k) = 0 and G is an abelian group.

Problem

When is the Gelfand-Kirillov dimension of B(V ) finite?

The classification of pointed Hopf algebras with finite Gelfand-Kirillov
dimension, abelian group of group-like elements and diagonal braiding is
known if H is a domain.

Theorem (Andruskiewitsch-Angiono-Heckenberger)

The Gelfand-Kirillov dimension of B (V(ε, l)) is finite if and only if l = 2
y ε = ±1 (and in this case the GK-dimension is 2). Moreover,

if ε = 1, then

B (V(1, 2)) = k
〈
x , y | yx − xy + 1

2x
2 = 0

〉
(Jordan plane).

If ε = −1, then

B (V(−1, 2)) = k
〈
x , y | x2 = 0, y2x − xy2 − xyx = 0

〉
(super Jordan plane).



The super Jordan plane

Going back to the algebra

A = k〈x , y〉/
(
x2, y2x − xy2 − xyx

)
.

Its Gelfand-Kirillov dimension is 2.

The set {xa(yx)by c : a ∈ {0, 1}, b, c ∈ N0} is a PBW basis.

It is graded with |x | = |y | = 1.

First objective

Compute its Hochschild homology and cohomology.
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A projective resolution

Using the methods of Chouhy–S., ’15.

Rewriting system

The ideal of relations is
(
x2, y2x − xy2 − xyx

)
.

x2 = 0,

y2x = xy2 + xyx .

Ambiguities

x3

y2x2
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The projective resolution of A as A-bimodule that we use for the
computations is the following. It is in fact minimal and free.

· · ·
dn+1 // A⊗ kAn ⊗ A

dn // A⊗ kAn−1 ⊗ A
dn−1 // · · ·

· · · d2 // A⊗ k
{
x2, y2x

}
⊗ A

d1 // A⊗ k {x , y} ⊗ A
d0 // A⊗ A // 0

where An = {xn+1, y2xn}, for n ≥ 1; the differentials are defined as
follows:

d0(1⊗ v ⊗ 1) = v ⊗ 1− 1⊗ v ,

d1(1⊗ x2 ⊗ 1) = x ⊗ x ⊗ 1 + 1⊗ x ⊗ x ,

d1(1⊗ y2x ⊗ 1) = y2 ⊗ x ⊗ 1 + y ⊗ y ⊗ x + 1⊗ y ⊗ yx

− (xy ⊗ y ⊗ 1 + x ⊗ y ⊗ y + 1⊗ x ⊗ y2)

− (xy ⊗ x ⊗ 1 + x ⊗ y ⊗ x + 1⊗ x ⊗ yx),
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The double complex

∂ �� ∂′ ��
A⊗ k{x4} ⊗ A

δ
��

A⊗ k{y2x4} ⊗ A
doo

δ′

��
A⊗ k{x3} ⊗ A

∂
��

A⊗ k{y2x3} ⊗ A
doo

∂′

��
A⊗ k{x2} ⊗ A

δ
��

A⊗ k{y2x2} ⊗ A
doo

δ′

��
A⊗ A A⊗ k{x , y} ⊗ A

d0oo A⊗ k{y2x} ⊗ A
d1oo



Hochschild cohomology

The complex computing the Hochschild cohomology of A is

· · · HomAe (A⊗ k
{
xn+1, y2xn

}
⊗ A,A)

dn+1
oo · · ·dn

oo

Using this complex, we obtained the description of the Hochschild
cohomology spaces:

H0(A,A) ∼= k,
H1(A,A) ∼= 〈c , sn | n ≥ 0〉 ,
H2p(A,A) ∼=

〈
t2pn , u2pn | n ≥ 0

〉
,

H2p+1(A,A) ∼=
〈
v2p+1
n ,w2p+1

n | n ≥ 0
〉
.

Note that cohomology is periodic of period 2.
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Description of H•(A,A) as a graded algebra

Problem

Our aim: to describe the product in H•(A,A).

One possible way is using the bar resolution. For this, we constructed
comparison maps between this resolution and ours, using again the
rewriting rules.

dn+1 // A⊗ k
{
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}
⊗ A

dn //

fn+1
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{
xn, y2xn−1
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gn+1
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bn−1 //

gn

OO



Description of H•(A,A) as a graded algebra

Problem

Our aim: to describe the product in H•(A,A).

One possible way is using the bar resolution. For this, we constructed
comparison maps between this resolution and ours, using again the
rewriting rules.

dn+1 // A⊗ k
{
xn+1, y2xn

}
⊗ A

dn //

fn+1

��

A⊗ k
{
xn, y2xn−1

}
⊗ A

dn−1 //

fn

��
bn+1 // A⊗ A⊗n+1 ⊗ A

bn //

gn+1

OO

A⊗ A⊗n ⊗ A
bn−1 //

gn

OO



Description of H•(A,A) as a graded algebra

Problem

Our aim: to describe the product in H•(A,A).

One possible way is using the bar resolution. For this, we constructed
comparison maps between this resolution and ours, using again the
rewriting rules.

dn+1 // A⊗ k
{
xn+1, y2xn

}
⊗ A

dn //

fn+1

��

A⊗ k
{
xn, y2xn−1

}
⊗ A

dn−1 //

fn

��
bn+1 // A⊗ A⊗n+1 ⊗ A

bn //

gn+1

OO

A⊗ A⊗n ⊗ A
bn−1 //

gn

OO



for n = 1,

f1 : A⊗ k {x , y} ⊗ A→ A⊗ A⊗ A,

f1(1⊗ v ⊗ 1) = 1⊗ v ⊗ 1 for all v ∈ k {x , y} ,

for n ≥ 2,

fn : A⊗ k
{
xn, y2xn−1

}
⊗ A→ A⊗ A⊗n ⊗ A,

fn(1⊗ xn ⊗ 1) = 1⊗ x⊗n ⊗ 1,

fn(1⊗ y2xn−1 ⊗ 1) = y ⊗ y ⊗ x⊗n−1 ⊗ 1 + 1⊗ y ⊗ yx ⊗ x⊗n−2 ⊗ 1

− x ⊗ y ⊗ y ⊗ x⊗n−2 ⊗ 1− 1⊗ x ⊗ y2 ⊗ x⊗n−2 ⊗ 1

− x ⊗ y ⊗ x⊗n−1 ⊗ 1− 1⊗ x ⊗ yx ⊗ x⊗n−2 ⊗ 1

+ · · · .



We do not have an explicit expression for the maps

gn : A⊗ A⊗n ⊗ A→ A⊗ k
{
xn, y2xn−1

}
⊗ A.

Example

g2 : A⊗ A⊗2 ⊗ A→ A⊗ k
{
x2, y2x

}
⊗ A

g2(1⊗ xy2 ⊗ x ⊗ 1) = x ⊗ y2x ⊗ 1 + 1⊗ x2 ⊗ y2 + 1⊗ x2 ⊗ yx .
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Proposition

The algebra H•(A,A) is not finitely generated.

Recall that H0(A,A) ∼= k. Given λ ∈ H0(A,A) and ϕ ∈ H•(A,A),

ϕ ^ λ = λ ^ ϕ = λϕ.

Recalling the notation

H1(A,A) ∼= 〈c , sn | n ≥ 0〉 ,
H2p(A,A) ∼=

〈
t2pn , u2pn | n ≥ 0

〉
,

H2p+1(A,A) ∼=
〈
v2p+1
n ,w2p+1

n | n ≥ 0
〉
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Table of products of the generators

c ^ ϕ = 0 for all ϕ ∈ H•(A,A)

sn t2qn u2q
n v 2q+1

n w 2q+1
n

sm 4(n −m)t2n+m+1 0 2v 2q+1
n+m+1 −(2n + 1)t2p+2

n+m 2t2p+2
n+m+1

+(2n + 1)w 2q+1
n+m

t2pm 0 0 t2p+2q
m+n 0 0

u2p
m 2v 2p+1

n+m+1 t2p+2q
n+m u2p+2q

m+n v 2p+2q+1
n+m w 2p+2q+1

n+m

+(2n + 1)w 2p+1
n+m

v 2p+1
m (2n + 1)t2p+2

n+m 0 v 2p+2q+1
m+n 0 t2p+2q+2

m+n

w 2p+1
m −2t2p+2

n+m+1 0 w 2p+2q+1
m+n −t2p+2q+2

m+n 0

H•(A,A) is generated as an algebra by the elements 1, c , t20 , sn, u2n y v3
n

with n ≥ 0.



Description of H1(A,A) as a Lie algebra

Recall that H1(A,A) ∼= Derk(A,A)/ Innk(A,A). The structure of Lie
algebra is given by[

f , h
]

= f ◦ h − h ◦ f

for all f , h ∈ H1(A,A).

Brackets of generators

[c , sn] = 0

[sm, sn] = 2(n −m)sn+m.
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Virasoro algebra

The Virasoro algebra, denoted by Vir, is the Lie algebra with basis
{Ln, c | n ∈ Z} defined as follows: for all n,m ∈ Z,

[Lm, Ln] = (m − n)Lm+n + δm,−n
m3 −m

12
c ,

[Lm, c] = 0.

The triangular decomposition of the Virasoro algebra is:

Vir ∼= Vir+⊕h⊕ Vir− .

where

Vir+ =
∞⊕
n=1

kLn h = kc ⊕ kL0 Vir− =
∞⊕
n=1

kL−n.
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In order to identify H1(A,A) with a Lie subalgebra of the Virasoro
algebra, we set

L′m = 2−m−1sm

for all m ≥ 0. The bracket is thus

[L′m, L
′
n] = (m − n)L′m+n and [L′m, c] = 0.

Theorem

There exists a Lie algebra isomorphism

H1(A,A) ∼= h⊕ Vir+ .
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Remarks and questions

Localizations? Drinfeld doubles?

Any representation M of our Nichols algebra provides by induction
of representations, a module over U(Vir).

Given n ∈ N, the vector space Hn(A,A) is a representation of
H1(A,A).

Which family of representations do we obtain in this way?

Which Lie algebras appear as H1(A,A) for other Nichols algebras of
finite Gelfand-Kirillov dimension?
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Action of H1(A,A) on Hn(A,A)

Theorem

The action of c on all the generators is trivial.[
sm, t

2p
n

]
= 2
(
n − (2p − 1)m − p

)
t2pn+m,[

sm, u
2p
n

]
= 2
(

(n − 2pm − p)u2pn+m + pm(2m + 1)t2pn+m

)
.[

sm, v
2p+1
n

]
=
(
n− (2p+ 1)m− (1 +p)

)
v2p+1
n+m −4m(2m+ 1)w2p+1

n+m−1,[
sm,w

2p+1
n

]
=
(
n − 2pm − p

)
w2p+1
n+m .

The proof uses Suárez-Álvarez method to compute the brackets.
Looking at an intermediate series module Va,b as a module over Vir+ ⊕ h
-that we denote V+

a,b- and rescaling, we can see that the space generated

by (for example) the t2pn ’s for a fixed p is isomorphic to a submodule of
the intermediate series module V+

−(2p−1),−p.

These modules are indecomposable.
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The Yoneda algebra

Proposition

The space H0(A,k) is isomorphic to k with basis {e : 1⊗ 1→ 1}.
H1(A,k) is 2-dimensional with basis

{
η1, ω1

}
defined by

η1(1⊗ x ⊗ 1) = 1, η1(1⊗ y ⊗ 1) = 0,

ω1(1⊗ x ⊗ 1) = 0, ω1(1⊗ y ⊗ 1) = 1.

For all n ≥ 2, the space Hn(A,k) is 2-dimensional with basis
{ηn, ωn} defined by:

ηn(1⊗ xn ⊗ 1) = 1, ηn(1⊗ y2xn−1 ⊗ 1) = 0,

ωn(1⊗ xn ⊗ 1) = 0, ωn(1⊗ y2xn−1 ⊗ 1) = 1.

The Hilbert series of ⊕i≥0 Hi (A,k) is h(t) = 1 + 2
∑

i≥1 t
i = 1+t

1−t .
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Theorem

The algebra H•(A,k) is generated by
{
e, η1, ω1, ω2

}
. Moreover, H•(A,k)

is isomorphic to the graded algebra

k
〈
η1, ω1, ω2

〉/((
ω1
)2
,
(
ω2
)2
, ω1ω2, ω2ω1, ω1η1, η1ω1, ω2η1 + η1ω2

)
Notice that (H•(A,k),^) is not a graded commutative algebra and in
particular, (H•(A,k),^) is not a subalgebra of (H•(A,A),^).
The algebra A is not N-Koszul. This can be deduced from the minimal
projective resolution of k as A-module. There is a generalization of the
notion of N-Koszul algebra: the notion of K2-algebra. The algebra A is
K2.
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The Yoneda algebra of A#kZ

A is a kZ-module algebra, where the action of kZ on A corresponds to
the braiding c of V (−1, 2).
Using Grothendieck’s spectral sequence for the derived functors of the
composition of two functors , we get:

E p,q
2 = Hp (Z,Hq(A,k))⇒ Hp+q(A#kZ,k).

We have a first quadrant spectral sequence with only two non trivial
rows, and the differential d2 : E p,q

2 → E p−1,q+2
2 can only be non trivial

when p = 1. Moreover, there is a five term exact sequence

0 // E 0,1
2

// H1(A#kZ, k) // E 1,0
2

d2 // E 0,2
2

// H2(A#kZ, k)

Due to the shape of the spectral sequence, it will collapse at E•,•3 .

Moreover, E 0,1
2 is 0, and since both E 1,0

2 and E 0,2
2 are one dimensional, d2

is either zero or an isomorphism, and this will depend on whether
H1(A#kZ,k) is zero or not.
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The Yoneda algebra of A#kZ

This last space is isomorphic to Ext1A#kZ(k,k), that is, the space of
classes of isomorphisms of 1-extensions of k by k.
We found nontrivial extensions, so

H1(A#kZ,k) ∼= k.

Since the map H1(A#kZ,k)→ E 1,0
2 is a monomorphism, we conclude

that d2 : E 1,0
2 → E 0,2

2 is zero.

The spectral sequence being multiplicative and the description of E 1,j
2 ,

for j ≥ 2, allow to conclude that

d2 : E 1,j
2 → E 0,j+2

2

is zero for all j , hence E•,•2 = E•,•∞ .



The Yoneda algebra of A#kZ

This last space is isomorphic to Ext1A#kZ(k,k), that is, the space of
classes of isomorphisms of 1-extensions of k by k.
We found nontrivial extensions, so

H1(A#kZ,k) ∼= k.

Since the map H1(A#kZ,k)→ E 1,0
2 is a monomorphism, we conclude

that d2 : E 1,0
2 → E 0,2

2 is zero.

The spectral sequence being multiplicative and the description of E 1,j
2 ,

for j ≥ 2, allow to conclude that

d2 : E 1,j
2 → E 0,j+2

2

is zero for all j , hence E•,•2 = E•,•∞ .



The Yoneda algebra of A#kZ

This last space is isomorphic to Ext1A#kZ(k,k), that is, the space of
classes of isomorphisms of 1-extensions of k by k.
We found nontrivial extensions, so

H1(A#kZ,k) ∼= k.

Since the map H1(A#kZ,k)→ E 1,0
2 is a monomorphism, we conclude

that d2 : E 1,0
2 → E 0,2

2 is zero.

The spectral sequence being multiplicative and the description of E 1,j
2 ,

for j ≥ 2, allow to conclude that

d2 : E 1,j
2 → E 0,j+2

2

is zero for all j , hence E•,•2 = E•,•∞ .



The Yoneda algebra of A#kZ

This last space is isomorphic to Ext1A#kZ(k,k), that is, the space of
classes of isomorphisms of 1-extensions of k by k.
We found nontrivial extensions, so

H1(A#kZ,k) ∼= k.

Since the map H1(A#kZ,k)→ E 1,0
2 is a monomorphism, we conclude

that d2 : E 1,0
2 → E 0,2

2 is zero.

The spectral sequence being multiplicative and the description of E 1,j
2 ,

for j ≥ 2, allow to conclude that

d2 : E 1,j
2 → E 0,j+2

2

is zero for all j , hence E•,•2 = E•,•∞ .



Theorem

The Yoneda algebra E(A#kZ) = ⊕i≥0 Hi (A#kZ,k) is the k-algebra
generated by e, η2, ω3, where deg(e) = 1, deg(η2) = 2, deg(ω3) = 3. It is
graded commutative, summarizing

E(A#kZ) ∼= k
[
η2
]
⊗ Λ(ω3, e).

In particular, it is finitely generated.
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