????

Manuel Saorín Departamento de Matemáticas Universidad de Murcia, Aptdo. 4021 30100 Espinardo, Murcia SPAIN msaorinc@um.es

Jan Stovicek Institut for Matematiske Fag, NTNU N-7491 Trondheim NORWAY stovicek@math.ntnu.no

Abstract

*

SILTING THEORY REVISITED

Manuel Saorín (joint with Alexandra Zvonareva)

CONFERENCE ON 'ADVANCES IN REPRESENTATION THEORY OF ALGEBRAS: GEOMETRY AND HOMOLOGY'

Centre International de Rencontres Mathématiques Luminy, Marseille (FRANCE) September 6, 2017 In this talk all triangulated categories that appear are K-categories with split idempotents, for some commutative ring K, and all subcategories are full subcategories.

DEFINITION.- If \mathcal{D} is a triangulated category, a pair of subcategories $(\mathcal{U}, \mathcal{V})$ is called a *torsion pair* when \mathcal{U} and \mathcal{V} are closed under direct summands and extensions and $\mathcal{D} = \mathcal{U} \star \mathcal{V}$ (i.e. each object $M \in \mathcal{D}$ appears in a triangle $U \longrightarrow M \longrightarrow V \xrightarrow{+}$, where $U \in \mathcal{U}$ and $V \in \mathcal{V}$). This torsion pair is called:

- 1. A *t-s:tructure*, when $\mathcal{U}[1] \subseteq \mathcal{U}$ (equivalently, when $\mathcal{V}[-1] \subseteq \mathcal{V}$). In this case $\mathcal{H} = \mathcal{U} \cap \mathcal{V}[1]$ is called the *heart* of the t-structure.
- 2. A co-t-structure (or weight structure) when $\mathcal{U}[-1] \subseteq \mathcal{U}$ (equivalently, when $\mathcal{V}[1] \subseteq \mathcal{V}$). In this case $\mathcal{C} := \mathcal{U}[1] \cap \mathcal{V}$ is called the *co-heart* of the co-t-structure.

The torsion pair is called *left (resp. right) bounded* when $\mathcal{D} = \bigcup_{n \in \mathbb{Z}} \mathcal{U}[n]$ (resp. $\mathcal{D} = \bigcup_{n \in \mathbb{Z}} \mathcal{V}[n]$). It is called *bounded* when it is left and right bounded. DEFINITION.- A set of objects $\mathcal{T} \subset \mathcal{D}$ is called a *silting set* when the following two conditions hold:

- a) \mathcal{T} is *nonpositive* (i.e. $\operatorname{Hom}_{\mathcal{D}}(T, T'[k]) = 0$, for all $T, T' \in \mathcal{T}$ and all integers k > 0);
- b) thick_{\mathcal{D}}(\mathcal{T}) = \mathcal{D} .

Two nonpositive sets \mathcal{T} and \mathcal{T}' are said to be *equivalent* when $\operatorname{add}(\mathcal{T}) = \operatorname{add}(\mathcal{T}')$. A *silting object* of \mathcal{D} is any object T such that $\{T\}$ is a silting set.

DEFINITION.- A subcategory $\mathcal{X} \subseteq \mathcal{D}$ is called *suspended* (resp. *co-suspended*) when it is closed under extensions, $\mathcal{X}[1] \subseteq \mathcal{X}$ (resp. $\mathcal{X}[-1] \subseteq \mathcal{X}$) and, during this talk, we will assume also that it is closed under taking direct summands. If \mathcal{S} is any set, then $\operatorname{susp}_{\mathcal{D}}(\mathcal{S})$ (resp. $\operatorname{cosusp}_{\mathcal{D}}(\mathcal{S})$) will denote the smallest suspended (resp. co-suspended) subcategory of \mathcal{D} which contains \mathcal{S} .

THEOREM (König-Yang 2014, Keller-Nicolás).- Let Λ be a finite dimensional algebra over a field. There is a bijection between:

- 1. Equivalence classes of silting objects of $\mathcal{D}(\Lambda)^c \cong \mathcal{K}^b(\mathbf{proj} \Lambda)$.
- **2.** Bounded co-t-structures in $\mathcal{K}^b(\mathbf{proj} \Lambda)$.
- 3. Bounded t-structures in $\mathcal{D}^b(\Lambda \text{mod})$ whose heart is the category of finite dimensional modules over a finite dimensional algebra.
- 4. Simple-minded collections in $\mathcal{D}^b(\mathbf{mod} \Lambda)$.

DEFINITION.- A set of objects S is said to be *weakly* preenveloping in D when the following two conditions hold:

- 1. For each object $M \in \mathcal{D}$, one has $\operatorname{Hom}_{\mathcal{D}}(M, ?[k])_{|\mathcal{S}} = 0$ for $k \gg 0$;
- 2. If $\mathbb{N}_M := \{k \in \mathbb{N}: \operatorname{Hom}_{\mathcal{D}}(M, ?[k])_{|\mathcal{S}} \neq 0\}$ is nonempty and $m = \max(\mathbb{N}_M)$, then M has an $\operatorname{add}(\mathcal{S})[m]$ -preenvelope (= left $\operatorname{add}(\mathcal{S})[m]$ -approximation).

REMARK.- One clearly has the dual concept of weakly precovering set in \mathcal{D} .

EXAMPLE.- If \mathcal{D} is Hom-finite (over some commutative ring K) and S is a finite set, then the following two conditions are equivalent:

- 1. S is weakly preenveloping (resp. weakly precovering);
- 2. For each object M of D, one has $\operatorname{Hom}_{\mathcal{D}}(M, ?[k])_{|\mathcal{S}} = 0$ (resp. $\operatorname{Hom}_{\mathcal{D}}(?[-k], M)_{|\mathcal{S}} = 0$) for $k \gg 0$.

In particular, if Λ is an Artin algebra the following assertions are equivalent for a <u>finite</u> nonpositive set \mathcal{T} in $\mathcal{D}^b(\operatorname{mod} - \Lambda)$:

- a) \mathcal{T} is weakly preenveloping (resp. weakly precovering) in $\mathcal{D}^b(\mathbf{mod} - \Lambda)$;
- b) (Up to quasi-isomorphism) $\mathcal{T} \subseteq \mathcal{K}^b(\operatorname{inj} \Lambda)$ (resp. $\mathcal{T} \subseteq \mathcal{K}^b(\operatorname{proj} \Lambda)$).

THEOREM (S.-Zvonareva).- Let \mathcal{D} be a skeletally small triangulated category. The assignment $\mathcal{T} \rightsquigarrow (^{\perp_{\geq 0}}\mathcal{T}, \operatorname{susp}_{\mathcal{D}}(\mathcal{T}))$ (resp. $\mathcal{T} \rightsquigarrow (\operatorname{cosusp}_{\mathcal{D}}(\mathcal{T})[-1], \mathcal{T}^{\perp_{>0}}))$ defines a bijection between the set of equivalence classes of weakly preenveloping (resp. weakly precovering) nonpositive sets and the set of left (resp right) bounded co-t-structures in \mathcal{D} . Its inverse takes $\rho = (\mathcal{U}, \mathcal{V})$ to (the equivalence class of) a set of representatives of the objects in the co-heart $\mathcal{C}_{\rho} = \mathcal{U}[1] \cap \mathcal{V}$.

Moreover, this bijection restricts to a bijection between the set of (equivalence classes of) silting sets and the set of bounded co-t-structures in \mathcal{D} . QUESTION.- Let Λ be an Artin algebra. Does there exist (weakly precovering) <u>infinite</u> nonpositive sets in $\mathcal{K}^b(\mathbf{proj} - \Lambda)$?

COROLLARY.- Let Λ be an Artin algebra and consider the sets \mathcal{X}_i (i=1,2,3) whose elements are, respectively:

- 1. The equivalence classes of nonpositive objects in $\mathcal{K}^{b}(inj \Lambda)$ (resp. $\mathcal{K}^{b}(proj \Lambda)$);
- 2. The left (resp. right) bounded co-t-structures in $\mathcal{K}^{b}(inj \Lambda)$ (resp. $\mathcal{K}^{b}(proj \Lambda)$);
- 3. The left (resp. right) bounded co-t-structures in $\mathcal{D}^b(\mathbf{mod} \Lambda)$.

There is a bijection $\mathcal{X}_2 \longleftrightarrow \mathcal{X}_3$ and an injection $\mathcal{X}_1 \to \mathcal{X}_2$. If the answer to the previous question is 'No' for all Artin algebras, this latter map is also bijective. In any case, the latter map induces a bijection between the equivalences classes of silting objects and the bounded co-t-structures in $\mathcal{K}^b(\operatorname{inj} - \Lambda)$ (resp. $\mathcal{K}^b(\operatorname{proj} - \Lambda)$). DEFINITION.- Let \mathcal{T} be a set of objects in \mathcal{D} . We say that \mathcal{T} is *partial silting* when the following two conditions hold:

1. $(\mathcal{U}_{\mathcal{T}}, \mathcal{V}_{\mathcal{T}}) := (^{\perp}(\mathcal{T}^{\perp_{\leq 0}}), \mathcal{T}^{\perp_{\leq 0}})$ is a t-structure in \mathcal{D} ;

2. Hom_{\mathcal{D}}(T, ?[1]) vanishes on $\mathcal{U}_{\mathcal{T}}$, for each $T \in \mathcal{T}$.

If, in addition, \mathcal{T} generates \mathcal{D} (i.e. $\mathcal{T}^{\perp_{i \in \mathbb{Z}}} = 0$), we will say that \mathcal{T} is *partial silting generating* set in \mathcal{D} .

REMARK.- Any partial silting set is nonpositive since $\bigcup_{k\geq 0} \mathcal{T}[k] \subset \mathcal{U}_{\mathcal{T}}$. Furthermore, when \mathcal{D} has (set-indexed) coproducts it is even *strongly nonpositive*, i.e. $\operatorname{Hom}_{\mathcal{D}}(T, ?[k])$ vanishes in $\operatorname{Add}(\mathcal{T})$, for each $T \in \mathcal{T}$ and each integer k > 0. EXAMPLES.-

- 1. If \mathcal{D} has coproducts, then any nonpositive set of compact objects is a partial silting set. Such a set is generating if, and only if, \mathcal{T} is a silting set in \mathcal{D}^c .
- 2. If A is any algebra, then a semi-tilting complex ([Wei-2013]) is a bounded complex of projectives P^{\bullet} such that $\operatorname{Hom}_{\mathcal{D}(A)}(P^{\bullet}, P^{\bullet(I)}[k]) = 0$, for all sets I and integers k > 0, and such that $A \in \operatorname{thick}_{\mathcal{D}(A)}(\operatorname{Add}(P^{\bullet}))$. Such a complex is a partial silting generating object of $\mathcal{D}(A)$. In particular, any big (n-)tilting A-module is a partial silting generating object of $\mathcal{D}(A)$.
- 3. Suppose that \mathcal{D} is a thick subcategory of a triangulated category \mathcal{E} and that $\mathcal{T} \subset \operatorname{Ob}(\mathcal{D})$ is a set which is partial silting in \mathcal{E} . If the associated t-structure in \mathcal{E} restricts to \mathcal{D} , then T is partial silting in \mathcal{D} .
- 4. If A is a finite dimensional algebra (or even a homologically finite dimensional homologically nonpositive dg algebra) over a field K, then any silting object of $\mathcal{D}^c(A)$ is a partial silting generating object of $\mathcal{D}^b(\mathbf{mod} - A)$.

PROPOSITION.- Let \mathcal{T} be a precovering partial silting set in \mathcal{D} and let $(\mathcal{U}_{\mathcal{T}}, \mathcal{V}_{\mathcal{T}}) := (^{\perp}(\mathcal{T}^{\perp \leq 0}), \mathcal{T}^{\perp \leq 0})$ be the associated t-structure. The heart $\mathcal{H}_{\mathcal{T}} = \mathcal{U}_{\mathcal{T}} \cap \mathcal{V}_{\mathcal{T}}[1]$ is equivalent to the category mod $-\mathcal{T}$ of finitely presented \mathcal{T} -modules. When \mathcal{T} is finite and $T := \coprod_{T' \in \mathcal{T}} T'$, then B = $\operatorname{End}_{\mathcal{D}}(T)$ is a right coherent algebra and $\mathcal{H}_{\mathcal{T}} \cong \operatorname{mod} - B$.

PROPOSITION.- Let $\tau = (\mathcal{U}, \mathcal{V})$ be a left nondegenerate t-structure in \mathcal{D} whose heart $\mathcal{H} = \mathcal{U} \cap \mathcal{V}[1]$ is equivalent to the category mod – B of finitely presented (right) modules over a right coherent algebra B. Fix an equivalence $F : \text{mod} - B \xrightarrow{\cong} \mathcal{H}$ and put P = F(B). If the functor $\text{Hom}_{\mathcal{H}}(P, \tilde{H}(?)) : \mathcal{D} \xrightarrow{\cong} \text{Mod} - K$ is representable, where $\tilde{H} : \mathcal{D} \longrightarrow \mathcal{H}$ is the cohomological functor given by the t-structure, then there exists a precovering partial silting object T of \mathcal{D} such that $\tau = (^{\perp}(T^{\perp \leq 0}), T^{\perp \leq 0})$. THEOREM (Bondal-Van den Bergh, Rouquier).- Let K be a commutative noetherian ring and let \mathcal{D} be an Hom-finite triangulated K-category. If \mathcal{D} has a strong generator, then each locally finitely presented cohomological functor $H : \mathcal{D} \longrightarrow \text{Mod} - K$ is representable. If, in addition, \mathcal{D} is Ext-finite, then each locally finite cohomological functor $F : \mathcal{D} \longrightarrow \text{Mod} - K$ is locally finitely presented, whence representable.

THEOREM.- Let \mathcal{D} be an Ext-finite triangulated Kcategory, where K is a commutative noetherian ring, and assume that \mathcal{D} has a strong generator. If τ is a bounded t-structure in \mathcal{D} whose heart is equivalent to $\operatorname{mod}-B$, for some coherent K-algebra B, then $\tau(^{\perp}(T^{\perp \leq 0}), T^{\perp \leq 0})$, for some precovering generating partial silting set T in \mathcal{D} . EXAMPLES.-

- 1. $\mathcal{D} = \mathcal{D}^b(\text{mod} A)$, where A is a Noether algebra of finite global dimension.
- 2. $\mathcal{D} = \mathcal{D}^b(\mathbb{X})$, where \mathbb{X} is a regular projective scheme of finite type over a field.
- 3. $\mathcal{D} = \mathcal{D}^b(\mathbf{coh}(\mathbb{X}))/\mathbf{per}(\mathbb{X})$, where \mathbb{X} is a Gorenstein separated scheme of finite type over a perfect field.