COHOMOLOGY OF PARTIAL SMASH PRODUCTS

María Julia Redondo (joint with Edson Ribeiro Álvares and Marcelo Muniz Alves)

Universidad Nacional del Sur Bahía Blanca, Argentina

VI ARTA: Geometry and Homology September 6th , 2017 A a K-algebra, G a group α a partial action of G on A $A \times_{\alpha} G$ the partial smash product A a K-algebra, G a group α a partial action of G on A $A \times_{\alpha} G$ the partial smash product

Aim

$H^*(A \times_{\alpha} G, M)$

A a K-algebra, G a group α a partial action of G on A $A \times_{\alpha} G$ the partial smash product

Aim

$H^*(A \times_{\alpha} G, M)$

PLAN

Relate it with $H^*(A, M)$ and some "partial group cohomology" of G with coefficients somewhere.

DEFINITION OF PARTIAL ACTIONS

 ${\cal G}$ a group, ${\cal A}$ an algebra

 $\{D_g\}_{g\in G}$ a collection of ideals of A

 $\{\alpha_g: D_{g^{-1}} \rightarrow D_g\}_{g \in G}$ a collection of algebra isomorphisms

G a group, A an algebra

 $\{D_g\}_{g\in G}$ a collection of ideals of A

 $\{\alpha_g: D_{g^{-1}} \to D_g\}_{g \in G}$ a collection of algebra isomorphisms

satisfying the following conditions:

(1) $D_e = A$, and $\alpha_e = id_A$;

G a group, A an algebra

 $\{D_g\}_{g\in G}$ a collection of ideals of A

 $\{\alpha_{\mathbf{g}}: D_{\mathbf{g}^{-1}} \to D_{\mathbf{g}}\}_{\mathbf{g} \in \mathbf{G}}$ a collection of algebra isomorphisms

satisfying the following conditions:

(1)
$$D_e = A$$
, and $\alpha_e = \operatorname{id}_A$;
(2) $\alpha_h^{-1}(D_h \cap D_{g^{-1}}) \subset D_{(gh)^{-1}}$;
(3) If $x \in \alpha_h^{-1}(D_h \cap D_{g^{-1}})$, then $\alpha_g \alpha_h(x) = \alpha_{gh}(x)$.

Remarks

 $\textbf{O} Although \ \alpha_{gh} \text{ is only an extension of } \alpha_g \alpha_h, \text{ we always have }$

$$\begin{aligned} \alpha_{g} \alpha_{h} \alpha_{h^{-1}} &= \alpha_{gh} \alpha_{h^{-1}}; \\ \alpha_{g^{-1}} \alpha_{g} \alpha_{h} &= \alpha_{g^{-1}} \alpha_{gh}. \end{aligned}$$

Remarks

2

() Although α_{gh} is only an extension of $\alpha_{g}\alpha_{h}$, we always have

$$\begin{split} &\alpha_{g}\alpha_{h}\alpha_{h^{-1}} = \alpha_{gh}\alpha_{h^{-1}};\\ &\alpha_{g^{-1}}\alpha_{g}\alpha_{h} = \alpha_{g^{-1}}\alpha_{gh}. \end{split}$$

$$\begin{split} A &= \sum_{g \in G} A_g \text{ is a } G\text{-graded algebra} \Rightarrow A_g A_h \subset A_{gh} \\ \text{If } A_g A_{g^{-1}} A_g &= A_g, \ \forall g \in G \text{, then} \\ & A_g A_h A_{h^{-1}} = A_{gh} A_{h^{-1}}\text{;} \\ & A_{g^{-1}} A_g A_h = A_{g^{-1}} A_{gh}. \end{split}$$

MOTIVATION/EXAMPLES

RESTRICTION

G acts on A, B a unital ideal of A

$$\alpha_{g}: B \cap g^{-1}B \to B \cap gB$$

MOTIVATION/EXAMPLES

RESTRICTION

G acts on A, B a unital ideal of A

$$\alpha_{g}: B \cap g^{-1}B \to B \cap gB$$

RUY EXEL, 1994

 C^* -algebras: when dealing with algebras generated by partial isometries on a Hilbert space.

MOTIVATION/EXAMPLES

RESTRICTION

G acts on A, B a unital ideal of A

$$\alpha_{g}: B \cap g^{-1}B \to B \cap gB$$

RUY EXEL, 1994

 C^* -algebras: when dealing with algebras generated by partial isometries on a Hilbert space.

- The Cuntz-Krieger algebras [Exel, Laca, Quigg, 2002].
- The Hecke algebras for protonormal subgroups [Exel, 2008].
- The Leavitt path algebras [Gonçalves, Öinert and Royer, 2014].

DEFINITION OF PARTIAL SMASH PRODUCT

DEFINITION OF PARTIAL SMASH PRODUCT

$$A imes_{lpha} G = \sum_{g \in G} D_g \# g$$

 $(a_g \# g)(b_h \# h) = lpha_g (lpha_g^{-1}(a_g)b_h) \# g h$

V a K-vector space,

$$\pi: G \to \mathsf{End}_{\mathsf{K}}(V)$$

such that: (A) $\pi(e) = id_V;$ (B) $\pi(s)\pi(t)\pi(t^{-1}) = \pi(st)\pi(t^{-1});$ (C) $\pi(s^{-1})\pi(s)\pi(t) = \pi(s^{-1})\pi(st).$

PARTIAL GROUP ALGEBRA $K_{par} G$

$$K_{par} G = KS(G), \qquad S(G) = <[g] : g \in G >$$
with relations:
(1) $[e] = 1;$
(2) $[s^{-1}][s][t] = [s^{-1}][st];$
(3) $[s][t][t^{-1}] = [st][t^{-1}];$ for all $s, t \in G$.

THEOREM [M. DOKUCHAEV, R. EXEL, P. PICCIONE, 2000]

The category Par G-mod is equivalent to the category K_{par} G-mod.

PARTIAL INVARIANTS

$$V^{\mathcal{G}_{par}} = \{ v \in V : [g]v = [g][g^{-1}]v \quad \text{for all } g \in G \}$$

$\mathsf{K}_{\mathsf{par}}\; \textit{G}\;\; \mathrm{IS}\;\; \textit{G}\text{-}\mathrm{GRADED}$

$${\sf K}_{\sf par} \; G = \sum_{g \in G} B_g$$

 $B_g = < [h_1][h_2]...[h_n] : g = h_1 h_2...h_n >$

K_{par} G IS G-GRADED

$${\sf K}_{\sf par} \; G = \sum_{g \in G} B_g$$

 $B_g = < [h_1][h_2]...[h_n] : g = h_1 h_2 ... h_n > 0$

In particular

$$B := B_e = < e_g = [g][g^{-1}] : g \in G > 0$$

is a commutative algebra generated by central idempotents.

PROPOSITION [AAR, 2017]

$$(-)^{\mathcal{G}_{par}} \simeq \operatorname{Hom}_{\operatorname{K}_{par} G}(B,-)$$

PROPOSITION [AAR, 2017]

$$(-)^{G_{par}} \simeq \operatorname{Hom}_{\operatorname{K}_{par} G}(B,-)$$

DEFINITION OF PARTIAL GROUP COHOMOLOGY

$$\mathsf{H}^n_{par}(G,V) = \mathsf{Ext}^n_{\mathsf{K}_{par}\,G}(B,V)$$

the right derived functor of $(-)^{\mathcal{G}_{par}} \simeq \operatorname{Hom}_{\operatorname{K}_{par} G}(B, -).$

LEMMA

Every *B*-module is flat.

Lemma

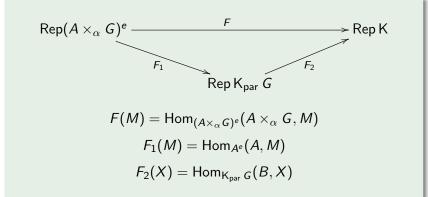
Every *B*-module is flat.

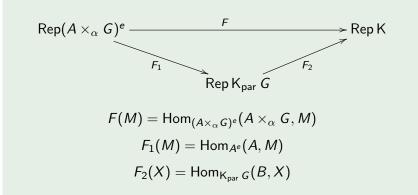
Proof: Any finitely generated ideal I of B is principal and generated by an idempotent.

THEOREM [AAR, 2017]

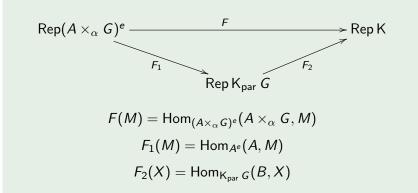
For any $A \times_{\alpha} G$ -bimodule M there is a third quadrant cohomology spectral sequence starting with E_2 and converging to $H^*(A \times_{\alpha} G, M)$:

$$E_2^{p,q} = H^q_{par}(G, H^p(A, M)) \Rightarrow H^{p+q}(A \times_{\alpha} G, M).$$

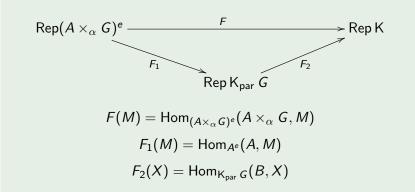




• commutativity,



- commutativity,
- F₂ is a left exact functor,



- commutativity,
- F₂ is a left exact functor,
- $F_1(M)$ is right F_2 -acyclic for every injective object M

$F_1(M)$ is right F_2 -acyclic for every injective object M

 $F_1(M) = \operatorname{Hom}_{A^e}(A, M)$ $F_2(X) = \operatorname{Hom}_{K_{par} G}(B, X)$

$$\operatorname{Ext}^n_{\operatorname{K}_{\operatorname{par}}G}(B,F_1(M))=0$$
 for any $n>0$

 $F_1(M)$ is right F_2 -acyclic for every injective object M

$$F_1(M) = \operatorname{Hom}_{A^e}(A, M)$$
 $F_2(X) = \operatorname{Hom}_{K_{par} G}(B, X)$

$$\operatorname{Ext}^n_{\operatorname{K}_{\operatorname{par}}G}(B,F_1(M))=0$$
 for any $n>0$

 $\operatorname{Hom}_{\operatorname{K}_{\operatorname{par}} G}(-,\operatorname{Hom}_{A^e}(A,M))\simeq \operatorname{Hom}_{(A\times_{\alpha}G)^e}(-\otimes_B (A\times_{\alpha}G),M)$

THEOREM [AAR, 2017]

For any $A \times_{\alpha} G$ -bimodule M there is a third quadrant cohomology spectral sequence starting with E_2 and converging to $H^*(A \times_{\alpha} G, M)$:

$$E_2^{p,q} = H^q_{par}(G, H^p(A, M)) \Rightarrow H^{p+q}(A \times_{\alpha} G, M).$$