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Classical case

k – an arbitrary field

k[x ] – the algebra of polynomials in one variable

α = (α1, . . . , αn) – a partition, α1 ≥ α2 ≥ . . . ≥ αn

Nα = Nα(k) =
⊕n

i=1 k[x ]/x i – the nilpotent linear operator of
type α

{nilp. lin. operators}/' oo
1−1 // {partitions}

k[x ]/x5 ⊕ k[x ]/x4 ⊕ k[x ]/x2 oo //
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Justyna Kosakowska, Nicolaus Copernicus University, Toruń, PolandGeneric extensions and Hall polynomials for invariant subspaces of nilpotent linear operators



Classical case

k – an arbitrary field

k[x ] – the algebra of polynomials in one variable

α = (α1, . . . , αn) – a partition, α1 ≥ α2 ≥ . . . ≥ αn

Nα = Nα(k) =
⊕n

i=1 k[x ]/x i – the nilpotent linear operator of
type α

{nilp. lin. operators}/' oo
1−1 // {partitions}

k[x ]/x5 ⊕ k[x ]/x4 ⊕ k[x ]/x2 oo //
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Classical case

N = N (k) – the category of nilpotent linear operators:

objects: Nα

morphisms: homomorphisms of k[x ]-modules

α, β, γ – partitions

Hall numbers:

F βα,γ = F βα,γ(k) = #{U ⊆ Nβ ; U ' Nα and Nβ/U ' Nγ}
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Classical case

Theorem (Hall)

Let α, β, γ be partitions. There exists a polynomial
ϕβα,γ ∈ Z[T ], such that for any finite field k:

ϕβα,γ(#k) = F βα,γ(k)

C. M. Ringel - the existence of Hall polynomials for
representation directed algebras.

Conjecture (Ringel)

There exist Hall polynomials for all representation finite
algebras.
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Justyna Kosakowska, Nicolaus Copernicus University, Toruń, PolandGeneric extensions and Hall polynomials for invariant subspaces of nilpotent linear operators



Classical case

Theorem (Hall)

Let α, β, γ be partitions. There exists a polynomial
ϕβα,γ ∈ Z[T ], such that for any finite field k:

ϕβα,γ(#k) = F βα,γ(k)

C. M. Ringel - the existence of Hall polynomials for
representation directed algebras.

Conjecture (Ringel)

There exist Hall polynomials for all representation finite
algebras.
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Invariant subspaces of nilpotent linear operators

S = S(k) - the category of invariant subspaces of nilpotent
linear operators:

objects: triples (Nα,Nβ, f ), where f : Nα → Nβ - injective
k[x ] - homomorphism

morphisms: pairs (h1, h2) : (Nα,Nβ, f )→ (Nγ,Nδ, g)
such that h1 : Nα → Nγ, h2 : Nβ → Nδ and the following
diagram is commutative

Nα
f //

h1

��

Nβ

h2

��
Nγ

g // Nδ

The category S is wild.
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LR-tableaux and extensions

Theorem (Green, Klein)

There exists a short exact sequence of nilpotent k[x ]-modules

η : 0 −→ Nα
f−→ Nβ −→ Nγ −→ 0

if and only if there exists an LR-tableau Γ of type (α, β, γ).

If Γ = [γ(0), . . . , γ(s)], then

Nγ(i)
∼= Nβ/x

i f (Nα)

for all i .

We say that f is of type Γ.
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Invariant subspaces of nilpotent linear operators

S1 = S1(k) - full subcategory of S consisting of triples
(Nα,Nβ, f ) such that α1 ≤ 1

the category S1 has discrete representation type

indecomposables:

Pm
0 = (0,N(m), 0), for all m ∈ N

Pm
1 = (N(1),N(m), f ), for all m ∈ N, f (1) = xm−1

{objects of S1}/' oo
1−1 // LR1

LR1 – the set of Littlewood-Richardson tableaux with entries 1
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Justyna Kosakowska, Nicolaus Copernicus University, Toruń, PolandGeneric extensions and Hall polynomials for invariant subspaces of nilpotent linear operators



Invariant subspaces of nilpotent linear operators

S1 = S1(k) - full subcategory of S consisting of triples
(Nα,Nβ, f ) such that α1 ≤ 1

the category S1 has discrete representation type

indecomposables:

Pm
0 = (0,N(m), 0), for all m ∈ N

Pm
1 = (N(1),N(m), f ), for all m ∈ N, f (1) = xm−1

{objects of S1}/' oo
1−1 // LR1

LR1 – the set of Littlewood-Richardson tableaux with entries 1

Justyna Kosakowska, Nicolaus Copernicus University, Toruń, PolandGeneric extensions and Hall polynomials for invariant subspaces of nilpotent linear operators



Invariant subspaces of nilpotent linear operators

S1 = S1(k) - full subcategory of S consisting of triples
(Nα,Nβ, f ) such that α1 ≤ 1

the category S1 has discrete representation type

indecomposables:

Pm
0 = (0,N(m), 0), for all m ∈ N

Pm
1 = (N(1),N(m), f ), for all m ∈ N, f (1) = xm−1

{objects of S1}/' oo
1−1 // LR1

LR1 – the set of Littlewood-Richardson tableaux with entries 1
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The bijection

N(Γ) = P7
0 ⊕ P7

1 ⊕ P5
1 ⊕ P2

1 ⊕ P2
1 ⊕ P1

0

Γ =

1 1

1

1
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Hall polynomials

Theorem (S. Kasjan - J. K., 2017)

Let Γ,Σ,∆ ∈ LR1. There exists a polynomial ϕ∆
Γ,Σ ∈ Q[T ]

such that for any finite field k:

ϕ∆
Γ,Σ(#k) = F∆

Γ,Σ(k),

where

F∆
Γ,Σ = #{U ⊆ N(∆) ; U ' N(Γ) and N(∆)/U ' N(Σ)}

Conjecture

ϕ∆
Γ,Σ ∈ Z[T ]
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Example

#k = q

P1
0 = (0,N(1), 0) , P1

1 = (N(1),N(1), 1)

P2
1 = (N(1),N(2), 1 7→ x)

F
P2

1

P1
1 ,P

1
0

= 1

F
P1

1⊕P1
0

P1
1 ,P

1
0

= 1 Hom(P1
1 ,P

1
0 ) = 0

F
P1

1⊕P1
0

P1
0 ,P

1
1

= q
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Hall algebras

Hq(N ) – the Hall Q-algebra associated with the category N :

Q-linear basis: {uα}α∈P , P – the set of all partitions

uα · uγ =
∑

β∈P ϕ
β
α,γ(q) · uβ

Hq(S1) – the Hall Q-algebra associated with the category S1:

Q-linear basis: {uΓ}Γ∈LR1 , LR1 – the set of LR-tableaux
with entries 1

uΓ · uΣ =
∑

∆∈LR1
ϕ∆

Γ,Σ(q) · u∆

Both are associative algebras with unit u0.

Hq(N ) ⊆ Hq(S1) uα 7→ u
P

|α|
0

|α| = α1 + . . . + αn

Hq(N ) is commutative, Hq(S1) is non-commutative
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Example

P1
0 = (0,N(1), 0) , P1

1 = (N(1),N(1), 1)

P2
1 = (N(1),N(2), 1 7→ x)

uP1
0
· uP1

1
= q · uP1

1⊕P1
0

uP1
1
· uP1

0
= uP1

1⊕P1
0

+ uP2
1
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Hall algebras and generic extensions

Theorem

H0(N ) ' QM(N ),

where QM(N ) is the Q-algebra generated by the monoid
M(N ) of generic extensions in N .

This is also true for representations of Dynkin quivers (M.
Reineke).

Questions
1 Is the same true for H0(S1)?

2 Do there exist generic extensions in the category S1?
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Generic extensions

Definition

Let M ,N ∈ S1(k) (k-arbitrary). If there exists exactly one (up
to isomorphism) extension X ∈ S1 of M by N with the
minimal dimension of endomorphism ring EndS1(X ), then we
call X the generic extension of M by N and denote it by
X = M ∗ N .

Theorem (M. Kaniecki, J. K., 2017)

1 For arbitrary objects M ,N ∈ S1, there exists the generic
extension M ∗ N.

2 For arbitrary objects M ,N ,U ∈ S1, we have
(M ∗ N) ∗ U = M ∗ (N ∗ U).
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About the proof

1 Given M ,N ∈ S1 we described a combinatorial algorithm
that computes an extnesion X of M by N .

2 We proved that X (constructed by this algorithm) is the
generic extension of M by N :

1 the degeneration order ≤deg in S1 was used,

2 the equivalence of orders ≤box , ≤ext , ≤deg , ≤hom, ≤dom

was proved and applied.
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Generic extensions - classical case

In the category N : Nα ∗ Nγ = Nα+γ

α = (5, 4, 2) γ = (3, 3, 1) α + γ = (8, 7, 3)

∗ =
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Generic extensions

N(Γ) = P4
0 ⊕P4

1 ⊕P3
1 N(Σ) = P4

1 ⊕P3
0 ⊕P2

0 ⊕P2
1 ⊕P1

0 ⊕P1
0

Γ =
1

1

Σ =
1

1

1

1

∗
1

1

=

1 1

1

1
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Algorithm
Input. X ,Y ∈ S1.
Output. The generic extension Z = Y ∗ X .

1 set n = 0

2 for any i = 1, . . . ,min{βX
1 , β

Y
1 }, do

1 put γZi = γXi + γYi
2 put βZ

i = βX
i + γYi

3 if βY
i 6= γYi , then put n = n + 1

3 if βX
1 > min{βX

1 , β
Y
1 }, then for i = min{βX

1 , β
Y
1 }+ 1, . . . , βX

1 put

γ iZ = γ iX and βi
Z = βi

X ,

else for i = min{βX
1 , β

Y
1 }+ 1, . . . , βY

1 we set

γZi = γYi andβZ
i = βY

i +1{γYi = βY
i and n > 0} and n = n−1{γYi = βY

i and n > 0},

where by 1{X} we denote the characteristic function of a set X .

4 We set
βZ = βZ ∪ α

where α = (1, 1, . . . , 1) is a partition with n copies of 1.
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The algebra generated by generic extensions

M(S1) = ({[M] ; M ∈ obj(S1)}, ∗) - the monoid of generic
extensions of the category S1

QM(S1) – the Q-algebra generated by M(S1)

Question: QM(S1) ' H0(S1)

Answer ...
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