Generic extensions and Hall polynomials for invariant subspaces of nilpotent linear operators

Justyna Kosakowska, Nicolaus Copernicus University, Toruń, Poland

A report on a joint project with Mariusz Kaniecki and Stanisław Kasjan

ARTA

September 2017

 Hall polynomials for invariant subspaces of nilpotent linear operators (joint work with Stanisław Kasjan)

- Hall polynomials for invariant subspaces of nilpotent linear operators (joint work with Stanisław Kasjan)
- Generic extensions of invariant subspaces of nilpotent linear operators (joint work with Mariusz Kaniecki)

- Hall polynomials for invariant subspaces of nilpotent linear operators (joint work with Stanisław Kasjan)
- Generic extensions of invariant subspaces of nilpotent linear operators (joint work with Mariusz Kaniecki)

Onnections

k – an arbitrary field

k – an arbitrary field

k[x] – the algebra of polynomials in one variable

k – an arbitrary field k[x] – the algebra of polynomials in one variable $\alpha = (\alpha_1, \dots, \alpha_n)$ – a partition, $\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_n$

k – an arbitrary field k[x] – the algebra of polynomials in one variable $\alpha = (\alpha_1, \dots, \alpha_n)$ – a partition, $\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_n$ $N_{\alpha} = N_{\alpha}(k) = \bigoplus_{i=1}^n k[x]/x^i$ – the nilpotent linear operator of type α

k – an arbitrary field k[x] – the algebra of polynomials in one variable $\alpha = (\alpha_1, \dots, \alpha_n)$ – a partition, $\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_n$ $N_{\alpha} = N_{\alpha}(k) = \bigoplus_{i=1}^n k[x]/x^i$ – the nilpotent linear operator of type α

{nilp. lin. operators}/
$$_{\simeq} \xrightarrow{1-1}$$
 {partitions}

- $\mathcal{N} = \mathcal{N}(k)$ the category of nilpotent linear operators:
 - objects: N_{lpha}
 - morphisms: homomorphisms of k[x]-modules

 $\mathcal{N} = \mathcal{N}(k)$ – the category of nilpotent linear operators:

- objects: N_{lpha}
- morphisms: homomorphisms of k[x]-modules

 $\alpha,\beta,\gamma-\text{partitions}$

Hall numbers:

$$\mathcal{F}^{eta}_{lpha,\gamma}=\mathcal{F}^{eta}_{lpha,\gamma}(k)=\#\{U\subseteq N_{eta}\ ;\ U\simeq N_{lpha}\ ext{and}\ N_{eta}/U\simeq N_{\gamma}\}$$

Theorem (Hall)

Let α, β, γ be partitions. There exists a polynomial $\varphi_{\alpha,\gamma}^{\beta} \in \mathbb{Z}[T]$, such that for any finite field k:

$$arphi^eta_{lpha,\gamma}(\#k)=\mathsf{F}^eta_{lpha,\gamma}(k)$$

Theorem (Hall)

Let α, β, γ be partitions. There exists a polynomial $\varphi_{\alpha,\gamma}^{\beta} \in \mathbb{Z}[T]$, such that for any finite field k:

$$arphi^eta_{lpha,\gamma}(\# k) = extsf{F}^eta_{lpha,\gamma}(k)$$

C. M. Ringel - the existence of Hall polynomials for representation directed algebras.

Theorem (Hall)

Let α, β, γ be partitions. There exists a polynomial $\varphi_{\alpha,\gamma}^{\beta} \in \mathbb{Z}[T]$, such that for any finite field k:

$$arphi^eta_{lpha,\gamma}(\#k)= extsf{F}^eta_{lpha,\gamma}(k)$$

C. M. Ringel - the existence of Hall polynomials for representation directed algebras.

Conjecture (Ringel)

There exist Hall polynomials for all representation finite algebras.

S = S(k) - the category of invariant subspaces of nilpotent linear operators:

S = S(k) - the category of invariant subspaces of nilpotent linear operators:

- objects: triples $(N_{\alpha}, N_{\beta}, f)$, where $f : N_{\alpha} \to N_{\beta}$ injective k[x] homomorphism
- morphisms: pairs $(h_1, h_2) : (N_\alpha, N_\beta, f) \to (N_\gamma, N_\delta, g)$ such that $h_1 : N_\alpha \to N_\gamma$, $h_2 : N_\beta \to N_\delta$ and the following diagram is commutative

$$\begin{array}{ccc}
 & & & & & \\ N_{\alpha} & \stackrel{f}{\longrightarrow} & N_{\beta} \\
 & & & & & \\ \downarrow^{h_{1}} & & & & \downarrow^{h_{2}} \\
 & & & & & & \\ N_{\gamma} & \stackrel{g}{\longrightarrow} & N_{\delta}
\end{array}$$

S = S(k) - the category of invariant subspaces of nilpotent linear operators:

- objects: triples $(N_{\alpha}, N_{\beta}, f)$, where $f : N_{\alpha} \to N_{\beta}$ injective k[x] homomorphism
- morphisms: pairs $(h_1, h_2) : (N_\alpha, N_\beta, f) \to (N_\gamma, N_\delta, g)$ such that $h_1 : N_\alpha \to N_\gamma$, $h_2 : N_\beta \to N_\delta$ and the following diagram is commutative

$$\begin{array}{ccc}
 & & & & & \\ N_{\alpha} & \stackrel{f}{\longrightarrow} & N_{\beta} \\
 & & & & & \\ \downarrow^{h_{1}} & & & & \downarrow^{h_{2}} \\
 & & & & & & \\ N_{\gamma} & \stackrel{g}{\longrightarrow} & N_{\delta}
\end{array}$$

The category S is wild.

Theorem (Green, Klein)

There exists a short exact sequence of nilpotent k[x]-modules

$$\eta : 0 \longrightarrow N_{\alpha} \xrightarrow{f} N_{\beta} \longrightarrow N_{\gamma} \longrightarrow 0$$

if and only if there exists an LR-tableau Γ of type (α, β, γ) .

If
$$\Gamma = [\gamma^{(0)}, \dots, \gamma^{(s)}]$$
, then

$$N_{\gamma^{(i)}} \cong N_{\beta}/x^i f(N_{\alpha})$$

for all i. We say that f is of type Γ .

 $\mathcal{S}_1 = \mathcal{S}_1(k)$ - full subcategory of \mathcal{S} consisting of triples $(N_{\alpha}, N_{\beta}, f)$ such that $\alpha_1 \leq 1$

 $\mathcal{S}_1 = \mathcal{S}_1(k)$ - full subcategory of \mathcal{S} consisting of triples (N_{lpha}, N_{eta}, f) such that $\alpha_1 \leq 1$

the category \mathcal{S}_1 has discrete representation type

 $\mathcal{S}_1 = \mathcal{S}_1(k)$ - full subcategory of \mathcal{S} consisting of triples (N_{lpha}, N_{eta}, f) such that $\alpha_1 \leq 1$

the category S_1 has discrete representation type indecomposables:

- $P_0^m = (0, N_{(m)}, 0)$, for all $m \in \mathbb{N}$
- $P_1^m = (N_{(1)}, N_{(m)}, f)$, for all $m \in \mathbb{N}$, $f(1) = x^{m-1}$

 $\mathcal{S}_1 = \mathcal{S}_1(k)$ - full subcategory of \mathcal{S} consisting of triples (N_{lpha}, N_{eta}, f) such that $lpha_1 \leq 1$

the category \mathcal{S}_1 has discrete representation type indecomposables:

$${\text{objects of } S_1}/_{\simeq} \xrightarrow{1-1} LR_1$$

 LR_1 – the set of Littlewood-Richardson tableaux with entries 1

$N(\Gamma) = P_0^7 \oplus P_1^7 \oplus P_1^5 \oplus P_1^2 \oplus P_1^2 \oplus P_0^1$

Justyna Kosakowska, Nicolaus Copernicus University, Generic extensions and Hall polynomials for invariant subspaces of

Hall polynomials

Theorem (S. Kasjan - J. K., 2017)

Let $\Gamma, \Sigma, \Delta \in LR_1$. There exists a polynomial $\varphi_{\Gamma,\Sigma}^{\Delta} \in \mathbb{Q}[T]$ such that for any finite field k:

$$\varphi_{\Gamma,\Sigma}^{\Delta}(\#k)=F_{\Gamma,\Sigma}^{\Delta}(k),$$

where

$$\mathcal{F}^{\Delta}_{\Gamma,\Sigma}=\#\{U\subseteq \mathcal{N}(\Delta)\ ;\ U\simeq \mathcal{N}(\Gamma)\ and\ \mathcal{N}(\Delta)/U\simeq \mathcal{N}(\Sigma)\}$$

Hall polynomials

Theorem (S. Kasjan - J. K., 2017)

Let $\Gamma, \Sigma, \Delta \in LR_1$. There exists a polynomial $\varphi_{\Gamma,\Sigma}^{\Delta} \in \mathbb{Q}[T]$ such that for any finite field k:

$$\varphi_{\Gamma,\Sigma}^{\Delta}(\#k) = F_{\Gamma,\Sigma}^{\Delta}(k),$$

where

$$\mathcal{F}^{\Delta}_{\Gamma,\Sigma}=\#\{U\subseteq \mathcal{N}(\Delta)\ ;\ U\simeq \mathcal{N}(\Gamma)\ and\ \mathcal{N}(\Delta)/U\simeq \mathcal{N}(\Sigma)\}$$

Conjecture

$$\varphi_{\Gamma,\Sigma}^{\Delta} \in \mathbb{Z}[T]$$

Justyna Kosakowska, Nicolaus Copernicus University, Generic extensions and Hall polynomials for invariant subspaces

伺 ト く ヨ ト く ヨ ト

Example

$$\begin{aligned} \#k &= q \\ P_0^1 &= (0, N_{(1)}, 0) , \quad P_1^1 &= (N_{(1)}, N_{(1)}, 1) \\ P_1^2 &= (N_{(1)}, N_{(2)}, 1 \mapsto x) \end{aligned}$$

$$F^{P_1^2}_{P_1^1,P_0^1} = 1$$

$$F_{P_1^1,P_0^1}^{P_1^1\oplus P_0^1} = 1$$
 $\operatorname{Hom}(P_1^1,P_0^1) = 0$

$${\sf F}_{{\sf P}_0^1,{\sf P}_1^1}^{{\sf P}_1^1\oplus{\sf P}_0^1}=q$$

Justyna Kosakowska, Nicolaus Copernicus University, Generic extensions and Hall polynomials for invariant subspaces of

 $\mathcal{H}_q(\mathcal{N})$ – the Hall \mathbb{Q} -algebra associated with the category \mathcal{N} :

 $\mathcal{H}_q(\mathcal{N})$ – the Hall \mathbb{Q} -algebra associated with the category \mathcal{N} :

• Q-linear basis: $\{u_{\alpha}\}_{\alpha\in\mathcal{P}}$, \mathcal{P} – the set of all partitions

•
$$u_{\alpha} \cdot u_{\gamma} = \sum_{\beta \in \mathcal{P}} \varphi_{\alpha,\gamma}^{\beta}(q) \cdot u_{\beta}$$

 $\mathcal{H}_q(\mathcal{N})$ – the Hall \mathbb{Q} -algebra associated with the category \mathcal{N} :

• Q-linear basis: $\{u_{\alpha}\}_{\alpha\in\mathcal{P}}$, \mathcal{P} – the set of all partitions

•
$$u_{lpha} \cdot u_{\gamma} = \sum_{eta \in \mathcal{P}} \varphi^{eta}_{lpha,\gamma}(q) \cdot u_{eta}$$

 $\mathcal{H}_q(\mathcal{S}_1)$ – the Hall \mathbb{Q} -algebra associated with the category \mathcal{S}_1 :

 $\mathcal{H}_q(\mathcal{N})$ – the Hall \mathbb{Q} -algebra associated with the category \mathcal{N} :

• Q-linear basis: $\{u_{\alpha}\}_{\alpha\in\mathcal{P}}$, \mathcal{P} – the set of all partitions

•
$$u_{lpha} \cdot u_{\gamma} = \sum_{eta \in \mathcal{P}} \varphi^{eta}_{lpha,\gamma}(q) \cdot u_{eta}$$

 $\mathcal{H}_q(\mathcal{S}_1)$ – the Hall $\mathbb Q$ -algebra associated with the category \mathcal{S}_1 :

• Q-linear basis: $\{u_{\Gamma}\}_{\Gamma \in LR_1}$, LR_1 – the set of LR-tableaux with entries 1

•
$$u_{\Gamma} \cdot u_{\Sigma} = \sum_{\Delta \in LR_1} \varphi^{\Delta}_{\Gamma,\Sigma}(q) \cdot u_{\Delta}$$

 $\mathcal{H}_q(\mathcal{N})$ – the Hall \mathbb{Q} -algebra associated with the category \mathcal{N} :

• Q-linear basis: $\{u_{\alpha}\}_{\alpha\in\mathcal{P}}$, \mathcal{P} – the set of all partitions

•
$$u_{lpha} \cdot u_{\gamma} = \sum_{eta \in \mathcal{P}} \varphi^{eta}_{lpha,\gamma}(q) \cdot u_{eta}$$

 $\mathcal{H}_q(\mathcal{S}_1)$ – the Hall \mathbb{Q} -algebra associated with the category \mathcal{S}_1 :

• Q-linear basis: $\{u_{\Gamma}\}_{\Gamma \in LR_1}$, LR_1 – the set of LR-tableaux with entries 1

•
$$u_{\Gamma} \cdot u_{\Sigma} = \sum_{\Delta \in LR_1} \varphi^{\Delta}_{\Gamma,\Sigma}(q) \cdot u_{\Delta}$$

Both are associative algebras with unit u_0 .

 $\mathcal{H}_q(\mathcal{N})$ – the Hall \mathbb{Q} -algebra associated with the category \mathcal{N} :

• Q-linear basis: $\{u_{\alpha}\}_{\alpha\in\mathcal{P}}$, \mathcal{P} – the set of all partitions

•
$$u_{lpha} \cdot u_{\gamma} = \sum_{eta \in \mathcal{P}} \varphi^{eta}_{lpha,\gamma}(q) \cdot u_{eta}$$

 $\mathcal{H}_q(\mathcal{S}_1)$ – the Hall $\mathbb Q\text{-algebra}$ associated with the category $\mathcal{S}_1\text{:}$

• Q-linear basis: $\{u_{\Gamma}\}_{\Gamma \in LR_1}$, LR_1 – the set of LR-tableaux with entries 1

•
$$u_{\Gamma} \cdot u_{\Sigma} = \sum_{\Delta \in LR_1} \varphi^{\Delta}_{\Gamma,\Sigma}(q) \cdot u_{\Delta}$$

Both are associative algebras with unit u_0 .

$$\mathcal{H}_q(\mathcal{N}) \subseteq \mathcal{H}_q(\mathcal{S}_1) \quad u_{\alpha} \mapsto u_{P_0^{|\alpha|}} \quad |\alpha| = \alpha_1 + \ldots + \alpha_n$$

 $\mathcal{H}_q(\mathcal{N})$ – the Hall \mathbb{Q} -algebra associated with the category \mathcal{N} :

• Q-linear basis: $\{u_{lpha}\}_{lpha\in\mathcal{P}}$, \mathcal{P} – the set of all partitions

•
$$u_{lpha} \cdot u_{\gamma} = \sum_{eta \in \mathcal{P}} \varphi^{eta}_{lpha,\gamma}(q) \cdot u_{eta}$$

 $\mathcal{H}_q(\mathcal{S}_1)$ – the Hall $\mathbb Q$ -algebra associated with the category \mathcal{S}_1 :

• Q-linear basis: $\{u_{\Gamma}\}_{\Gamma \in LR_1}$, LR_1 – the set of LR-tableaux with entries 1

•
$$u_{\Gamma} \cdot u_{\Sigma} = \sum_{\Delta \in LR_1} \varphi^{\Delta}_{\Gamma,\Sigma}(q) \cdot u_{\Delta}$$

Both are associative algebras with unit u_0 .

$$\begin{split} \mathcal{H}_q(\mathcal{N}) &\subseteq \mathcal{H}_q(\mathcal{S}_1) \quad u_{\alpha} \mapsto u_{P_0^{|\alpha|}} \quad |\alpha| = \alpha_1 + \ldots + \alpha_n \\ \mathcal{H}_q(\mathcal{N}) \text{ is commutative, } \mathcal{H}_q(\mathcal{S}_1) \text{ is non-commutative} \end{split}$$

Example

$$P_0^1 = (0, N_{(1)}, 0) , P_1^1 = (N_{(1)}, N_{(1)}, 1)$$
$$P_1^2 = (N_{(1)}, N_{(2)}, 1 \mapsto x)$$

$$u_{P_0^1} \cdot u_{P_1^1} = q \cdot u_{P_1^1 \oplus P_0^1}$$

$$u_{P_1^1} \cdot u_{P_0^1} = u_{P_1^1 \oplus P_0^1} + u_{P_1^2}$$

Hall algebras and generic extensions

Theorem

$$\mathcal{H}_0(\mathcal{N})\simeq \mathbb{Q}\mathcal{M}(\mathcal{N}),$$

where $\mathbb{Q}\mathcal{M}(\mathcal{N})$ is the \mathbb{Q} -algebra generated by the monoid $\mathcal{M}(\mathcal{N})$ of generic extensions in \mathcal{N} .

Hall algebras and generic extensions

Theorem

$$\mathcal{H}_0(\mathcal{N})\simeq \mathbb{Q}\mathcal{M}(\mathcal{N}),$$

where $\mathbb{Q}\mathcal{M}(\mathcal{N})$ is the \mathbb{Q} -algebra generated by the monoid $\mathcal{M}(\mathcal{N})$ of generic extensions in \mathcal{N} .

This is also true for representations of Dynkin quivers (M. Reineke).

Hall algebras and generic extensions

Theorem

$$\mathcal{H}_0(\mathcal{N})\simeq \mathbb{Q}\mathcal{M}(\mathcal{N}),$$

where $\mathbb{Q}\mathcal{M}(\mathcal{N})$ is the \mathbb{Q} -algebra generated by the monoid $\mathcal{M}(\mathcal{N})$ of generic extensions in \mathcal{N} .

This is also true for representations of Dynkin quivers (M. Reineke).

Questions

- Is the same true for $\mathcal{H}_0(\mathcal{S}_1)$?
- **2** Do there exist generic extensions in the category S_1 ?

Definition

Let $M, N \in S_1(k)$ (*k*-arbitrary). If there exists exactly one (up to isomorphism) extension $X \in S_1$ of M by N with the minimal dimension of endomorphism ring $\operatorname{End}_{S_1}(X)$, then we call X **the generic extension** of M by N and denote it by X = M * N.

Definition

Let $M, N \in S_1(k)$ (*k*-arbitrary). If there exists exactly one (up to isomorphism) extension $X \in S_1$ of M by N with the minimal dimension of endomorphism ring $\operatorname{End}_{S_1}(X)$, then we call X the generic extension of M by N and denote it by X = M * N.

Theorem (M. Kaniecki, J. K., 2017)

- For arbitrary objects $M, N \in S_1$, there exists the generic extension M * N.
- **②** For arbitrary objects $M, N, U \in S_1$, we have (M * N) * U = M * (N * U).

- Given $M, N \in S_1$ we described a combinatorial algorithm that computes an extnesion X of M by N.
- We proved that X (constructed by this algorithm) is the generic extension of M by N:
 - **1** the degeneration order \leq_{deg} in \mathcal{S}_1 was used,
 - equivalence of orders ≤_{box}, ≤_{ext}, ≤_{deg}, ≤_{hom}, ≤_{dom} was proved and applied.

Generic extensions - classical case

In the category \mathcal{N} : $N_{\alpha} * N_{\gamma} = N_{\alpha+\gamma}$ $\alpha = (5, 4, 2)$ $\gamma = (3, 3, 1)$ $\alpha + \gamma = (8, 7, 3)$

Justyna Kosakowska, Nicolaus Copernicus University, Generic extensions and Hall polynomials for invariant subspaces of

< ≣ >

Generic extensions

Justyna Kosakowska, Nicolaus Copernicus University, Generic extensions and Hall polynomials for invariant subspaces of

- ∢ ≣ ▶

- < ∃ →

-

Algorithm

Input. X. $Y \in S_1$. **Output.** The generic extension Z = Y * X. set n = 0 2 for any $i = 1, \ldots, \min\{\beta_1^X, \beta_1^Y\}$, do **1** put $\gamma_i^Z = \gamma_i^X + \gamma_i^Y$ 2 put $\beta_i^Z = \beta_i^X + \gamma_i^Y$ 3) if $\beta_i^Y \neq \gamma_i^Y$, then put n = n + 13 if $\overline{\beta_1^X} > \min\{\overline{\beta_1^X}, \overline{\beta_1^Y}\}$, then for $i = \min\{\overline{\beta_1^X}, \overline{\beta_1^Y}\} + 1, \dots, \overline{\beta_1^X}$ put $\gamma_{\mathbf{Z}}^{i} = \gamma_{\mathbf{X}}^{i}$ and $\beta_{\mathbf{Z}}^{i} = \beta_{\mathbf{Y}}^{i}$. else for $i = \min\{\overline{\beta_1^X}, \overline{\beta_1^Y}\} + 1, \dots, \overline{\beta_1^Y}$ we set $\gamma_i^Z = \gamma_i^Y$ and $\beta_i^Z = \beta_i^Y + \mathbf{1}\{\gamma_i^Y = \beta_i^Y$ and $n > 0\}$ and $n = n - \mathbf{1}\{\gamma_i^Y = \beta_i^Y$ and $n > 0\}$, where by $1{X}$ we denote the characteristic function of a set X. We set

$$\beta_Z = \beta_Z \cup \alpha$$

4 E 6 4 E 6

where $\alpha = (1, 1, ..., 1)$ is a partition with *n* copies of 1.

 $\mathcal{M}(\mathcal{S}_1) = (\{[M] ; M \in obj(\mathcal{S}_1)\}, *)$ - the monoid of generic extensions of the category \mathcal{S}_1

 $\mathcal{M}(\mathcal{S}_1)=(\{[M]\ ;\ M\in obj(\mathcal{S}_1)\},*)$ - the monoid of generic extensions of the category \mathcal{S}_1

 $\mathbb{Q}\mathcal{M}(\mathcal{S}_1)$ – the $\mathbb{Q}\text{-algebra generated}$ by $\mathcal{M}(\mathcal{S}_1)$

 $\mathcal{M}(\mathcal{S}_1)=(\{[M]\,;\;M\in obj(\mathcal{S}_1)\},*)$ - the monoid of generic extensions of the category \mathcal{S}_1

 $\mathbb{Q}\mathcal{M}(\mathcal{S}_1)$ – the $\mathbb{Q}\text{-algebra generated}$ by $\mathcal{M}(\mathcal{S}_1)$

Question: $\mathbb{Q}\mathcal{M}(\mathcal{S}_1) \simeq \mathcal{H}_0(\mathcal{S}_1)$

 $\mathcal{M}(\mathcal{S}_1)=(\{[M]\,;\;M\in obj(\mathcal{S}_1)\},*)$ - the monoid of generic extensions of the category \mathcal{S}_1

 $\mathbb{Q}\mathcal{M}(\mathcal{S}_1)$ – the $\mathbb{Q}\text{-algebra generated}$ by $\mathcal{M}(\mathcal{S}_1)$

Question: $\mathbb{Q}\mathcal{M}(\mathcal{S}_1) \simeq \mathcal{H}_0(\mathcal{S}_1)$

Answer ...