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Notation

• Let A be a �nite dimensional k-algebra over an algebraically closed

�eld, k.

• modA denotes the category of �nitely generated right A-modules.

• indA denotes the full subcategory of modA which consists of the

indecomposable A-modules.

• ΓA denotes the Auslander-Reiten quiver of modA.
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De�nition

For X,Y ∈ modA, the radical of HomA(X,Y ) is de�ned by

<(X,Y ) = {f ∈ HomA(X,Y ) | hfg is not an isomorphism,

g : M → X and h : Y →M , M ∈ indA}.

Inductively, the natural powers of <(X,Y ) are de�ned:

f ∈ <n(X,Y ) if and only if f =
r∑

i=1
higi with Mi ∈ modA,

gi ∈ <(X,Mi) and hi ∈ <n−1(Mi, Y ).

Finally, the in�nite radical is de�ned:

<∞ (X,Y ) =
⋂
n∈N
<n (X,Y ) .
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De�nition

A morphism f : X → Y in modA is said to be irreducible provided:

(i) f is neither a section nor a retraction and

(ii) if f = hg, either g is a section or h is a retraction.

Theorem (Bautista)

Let X,Y be indecomposable modules in modA.
A morphism f : X → Y is irreducible if and only if f ∈ <(X,Y ) \
<2(X,Y ).
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De�nition

An algebra A is said to be representation-�nite if the number of

the isomorphism classes of indecomposable A-modules is �nite.

Theorem (Auslander)

A is representation-�nite if and only if there exists a positive integer

m such that <m(X,Y ) = 0 for all X and Y in modA, that is

<m(modA) = 0.

De�nition

Let A a representation-�nite algebra. The minimal lower bound

m such that <m(modA) = 0 is called the nilpotency bound of

<(modA).
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Objective

The goal of our work is to establish a relationship between the radical

of modA and the radical of the module category of EndAT , with T
a tilting A-module.
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Tilting theory

De�nition

A pair (T ,F) of full subcategories of mod A is called torsion theory

if the following conditions are satis�ed:

(a) HomA(M,N) = 0 for all M ∈ T y N ∈ F .
(b) If HomA(M,F ) = 0 for all F ∈ F , implies M ∈ T .
(c) If HomA(T,N) = 0 for all T ∈ T , implies N ∈ F .

The class T is called the torsion class and the class F is called the

torsion-free class.

A torsion theory (T ,F) is called splitting if, every indecomposable

A-module is either torsion or torsion-free.
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De�nition

An A-module T is called a tilting module if it satis�es the

following conditions:

(T1) dpT ≤ 1.

(T2) Ext1A(T, T ) = 0.

(T3) If T = T
(m1)
1 ⊕ · · · ⊕ T (mt)

t , with Ti � Tj whenever i 6= j.
Then, t = rankK0(A).
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A tilting A-module T induces a torsion theory (T (T ),F(T )) in

modA:

T (T ) = {M ∈ modA | Ext1A(T,M) = 0}

F(T ) = {M ∈ modA | HomA(T,M) = 0}.

If B = EndA(T ), T also induces a torsion theory (X (T ),Y(T )) in

modB:

X (T ) = {X ∈ modB | X ⊗B T = 0}

Y(T ) = {Y ∈ modB | TorB1 (Y, T ) = 0}.

• T is said to be separating if the induced torsion theory

(T (T ),F(T )) in modA is splitting, and

• T is said to be splitting if the induced torsion theory (X (T ),Y(T ))
in modB is splitting.
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Theorem (Brenner-Butler)

Let A be an algebra, T a tilting A-module and B = EndAT . Then:

(a) T is a tilting B-module and A ' EndBT .

(b) (i) The functors HomA(T,−) and −⊗B T induce inverse

equivalences between the full subcategories T (T ) and Y(T ).

(ii) The functors Ext1A(T,−) y TorB1 (−, T ) induce inverse

equivalences between the full subcategories F(T ) and X (T ).
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Theorem

Let A an algebra, T is a separating and splitting tilting A−module

and B = EndAT . Let M,N be indecomposable A−modules of

T (T ) and f : M → N a morphism. Then,

f ∈ <n
A\<n+1

A if and only if HomA(T, f) ∈ <n
B\<n+1

B .

Theorem

Let A an algebra, T is a separating and splitting tilting A−module

and B = EndAT . Let M,N be indecomposable A−modules of

F(T ) and f : M → N a morphism. Then,

f ∈ <n
A\<n+1

A if and only if Ext1A(T, f) ∈ <n
B\<n+1

B .
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Example

Let A be the algebra 1→ 2→ 3→ 4

ΓA : P1 = I4

$$
P2

::

$$

I3

��
T = P1 ⊕ I3 ⊕M ⊕ S3

P3

��

??

M

$$

::

I2

$$
S4 = P4

::

S3

::

S2

??

I1 = S1

Then B = EndAT is the algebra 1′ ← 2′ → 3′ → 4′

ΓB : P1′ = S1′

%%

I4′

  
P2′

  

>>

I3′

%%
P3′

%%

99

N

  

>>

I2′ = S2′ .

S4′ = P4′

77

S3′

>>

I1′

99

Claudia Chaio - Victoria Guazzelli On tilting theory and the radical



Example

Let A be the algebra 1→ 2→ 3→ 4

ΓA : P1 = I4

$$
P2

::

$$

I3

��
T = P1 ⊕ I3 ⊕M ⊕ S3

P3

��

??

M

$$

::

I2

$$
S4 = P4

::

S3

::

S2

??

I1 = S1

Then B = EndAT is the algebra 1′ ← 2′ → 3′ → 4′

ΓB : P1′ = S1′

%%

I4′

  
P2′

  

>>

I3′

%%
P3′

%%

99

N

  

>>

I2′ = S2′ .

S4′ = P4′

77

S3′

>>

I1′

99

Claudia Chaio - Victoria Guazzelli On tilting theory and the radical



Proposition

Let A an algebra, T is a separating tilting A−module and

B = EndAT . Let M,N be indecomposable A−modules of T (T )
and f : M → N a morphism.

If f ∈ <n
A\<n+1

A then HomA(T, f) ∈ <n
B.

Moreover, if HomA(T, f) /∈ <n+1
B , then there exists

F (M)
f̃1 // X̃1

f̃2 // . . .
f̃n−1// X̃n−1

f̃n // F (N)

with f̃i irreducible and X̃i ∈ Y(T ), for all i.
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Example

Let A be the algebra 1
α
// 2

β
// 3

γ
// 4

ΓA : P4 = S4

$$
S3

$$

S2

$$

I1

P3

$$

::

M

$$

::

I2

55

P2 = I4

::

P1 = I3

::

T = P1 ⊕ P2 ⊕ P3 ⊕ S3

2′ β
%%

Then B = EndAT is the algebra 1
α $$

γ ::

3′

4′ δ

99

ΓB : P4′

%%
S2′

((

I4′

((
P3′

&&

88

X

((

66

// P1′ = I3′
// Y

%%

99

I1′ = S1′

P2′

99

S4′

66

I2′

66
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Example

Let A be the algebra 1
α
// 2

β
// 3

γ
// 4

ΓA : P4 = S4

$$
S3

$$

S2
f

$$

I1

P3

$$

::

M

$$

::

I2

55

P2 = I4

::

P1 = I3

::

T = P1 ⊕ P2 ⊕ P3 ⊕ S3

2′ β
%%

Then B = EndAT is the algebra 1
α $$

γ ::

3′

4′ δ

99

ΓB : P4′

%%
S2′

((

I4′

((
P3′

&&

88

X

((

66

// P1′ = I3′
// Y

%%

99

I1′ = S1′

P2′

99

S4′

66

I2′

66

F (f) ∈ R2
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The APR tilting module

Let A = KQ/I be an algebra and let Sa be a simple projective

non-injective module (correspondig to the sink a ∈ Q0).

Then, the module

T [a] = τ−1(Sa)⊕ (
⊕
b 6=a

Pb)

is called the APR-tilting module associated to Sa.

Moreover, T [a] is a separating module, where

F(T [a]) = addSa and T (T [a]) = add(indA\Sa).

De�nition

We say that T [a] is a free APR-tilting module if the sink a ∈ Q0

is free, that is, it is not the terminal point of a generating relation

on Q.
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Proposition

Let A be an algebra, let T be an APR tilting A-module and

B = EndAT . Then the following statement hold.

(i) If A is of in�nite representation type, then B is of in�nite

representation type.

(ii) Let A be a representation-�nite algebra. If there exist a natural

number m such that <m(modB) = 0 then <m(modA) = 0.

If T is a free APR-tilting A-module, then

(i) A is representation-�nite if and only if B is

representation-�nite.

(ii) Let A be a representation �nite algebra. Then for any a

natural number m,

<m(modB) = 0 if and only if <m(modA) = 0.
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Example

Let A be an algebra given by the bound quiver 2

!!
1
""

==

4

3

<<

ΓA : P2

��

S3

  

I2

##

T [4] = P1 ⊕ P2 ⊕ P3 ⊕ τ−1P4

S4 = P4

$$

;;

I4 |

  

??

| P1

  

??

I1 = S1

P3

>>

S2

==

I3

;;

Then B = EndAT is the algebra given by the bound quiver

1′

����
B is of in�nite representation type.

4′

����
2′ 3′

We can observe that B is a representation-in�nite algebra.
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Iterated tilted algebras

De�nition

Let ∆ be a �nite connected quiver without oriented cycles.

An algebra A is called iterated tilted algebra of type ∆
if there exist a sequence of algebras A = A0, A1, . . . , Ar = k∆ and

a sequence T (i), 0 ≤ i < r of separating tilting Ai−modules such

that Ai+1 = EndAiT
(i), for each i.

Theorem (Happel)

If A is iterated tilted of type ∆, where ∆ is a Dynkin quiver,

then A may be transformed to an hereditary algebra of Dynkin type

by a �nite sequences of APR-tilting modules.

Claudia Chaio - Victoria Guazzelli On tilting theory and the radical



Theorem

Let ∆ be a quiver of Dynkin type and let A be an iterated tilted

algebra of type ∆. Then the following statement hold.

(a) If ∆ = An, then <n(modA) = 0 for n ≥ 1.

(b) If ∆ = Dn, then <2n−3(modA) = 0 for n ≥ 4.

(c) If ∆ = E6, then <11(modA) = 0.

(d) If ∆ = E7, then <17(modA) = 0.

(e) If ∆ = E8, then <29(modA) = 0.

Claudia Chaio - Victoria Guazzelli On tilting theory and the radical



Example

Let A and Ã be the iterated tilted algebras of type A5 given by the

bound quivers

1
α // 2

β // 3
γ // 4

δ // 5

1
α // 2

β // 3
γ // 4

δ // 5

We prove that <5(modA) = 0 = <5(mod Ã).

Moreover we have that <4(modA) 6= 0, but <4(mod Ã) = 0.
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Theorem (Chaio)

Let A ∼= kQ/I be a representation-�nite algebra. For each vertex

a ∈ (QA)0 we consider

ra = `(Pa  Sa  Ia)

Then,

<m(modA) 6= 0 and <m+1(modA) = 0,

where m = max{ra}a∈Q0 .

We denote by

R0 = {u ∈ Q0 | ru = m}
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Proposition

Let A ∼= kQ/I be an algebra. Let T be a separating tilting A−
module and B = EndAT .

(i) If A is of in�nite representation type, then B is of in�nite

representation type.

(ii) Let A be a representation-�nite algebra and Pu ∈ addT , for
some u ∈ R0 ⊂ Q0 . If there exist a natural number m such

that <m(modB) = 0 then <m(modA) = 0.
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Thank you for your attention!
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