A generalization of quasitilted and almost hereditary algebras

Edson Ribeiro Alvares

Universidade Federal do Paraná - UFPR - Brazil joint work with:D. Castonguay-UFG, P. Le Meur-Paris 7, T.C. Pierin-UFPR

A is finite dimensional algebra over an algebraically closed field k.

mod A

$\mathcal{D}^b(\operatorname{mod} A)$

${\mathcal H} \mbox{ is a hereditary abelian }$

(k-linear) category with split idempotents, finite-dimensional Hom-spaces, and with tilting objects.

Definition

A is said to be (m, n)-quasitilted algebra if there exists a sequence of triples

 $(A_i, T_i, A_{i+1} = \operatorname{End}_{A_i} T_i)$ s.t

 A_0 is a quasitilted algebra of global dimension two; and $A = A_{m+n-2}$.

each T_i is a stair splitting tilting or cotilting A_i -module (in each step i, gl.dim A_i < gl.dim A_{i+1}) where

n-1 (m-1) is the number of indexes *i* s.t, T_i is tilting (cotilting).

<ロ> < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

Let *d* be a postive integer. Let *A* be an algebra with gl.dimA = d, *T* an *A*-module and $B = End_AT$.

(i) If *T* is a stair splitting tilting module, then *B* is (d, 1)-almost hereditary. (ii) If *T* is a stair splitting cotilting module, then *B* is (1, d)-almost hereditary. In particular, any (m, n)-quasitilted algebra is (m + n - 1, 1)-almost hereditary, or else (1, m + n - 1)-almost hereditary. $\mathcal{L}_{\mathcal{C}}$ denotes the class of $X \in ind A$ such that every predecessor of X in ind A lies in \mathcal{C} .

Proposition (-CMP)

Let *n* be a positive integer. Let C be a torsion-free class of *mod A* such that, for all $X \in ind A$,

 $X \in C$, or else $id_A X \leq n$.

Then ind $A = \mathcal{L}_{\mathcal{C}} \cup \mathcal{R}_{A}^{n}$.

Proposition

Let *m* be a positive integer. Let *A* be a finite dimensional *k*-algebra such that $A \in \text{add } \mathcal{L}^m_A$. Then

- 1. *gl.dim* $A \leq m + 1$ and, for all $X \in ind A$, then $pd_A X \leq m$ or else $id_A X \leq 1$;
- 2. if, moreover, gl.dim A = m + 1, then A is (m, 1)-almost hereditary.

t-structures

 $(\mathcal{W}, \mathcal{W}^{\perp}[1])$: natural t-structure in $\mathcal{D}^{b}(\mathcal{H})$

 $(\mathcal{U}, \mathcal{U}^{\perp}[1])$ induced t-structure: $(\mathcal{T}(T), \mathcal{F}(T))$ torsion pair in \mathcal{H} $\mathcal{U} = \{Z \in \mathcal{D}^{b}(\mathcal{H}) | H^{0}(Z) \in \mathcal{T}(T) \text{ and } H^{i}(Z) = 0, \text{ for } i > 0\}$ heart of $(\mathcal{U}, \mathcal{U}^{\perp}[1]) \simeq mod \operatorname{End}_{\mathcal{H}} T$ $\operatorname{End}_{\mathcal{H}}(T)^{op} = A_{0}$

 $(\mathcal{V}, \mathcal{V}^{\perp}[1])$ induced t-structure: $(\mathcal{T}(T_0), \mathcal{F}(T_0))$ torsion pair in $mod A_0$ $\mathcal{V} = \{Z \in \mathcal{D}^b(\mathcal{H}) | H^0_{\mathcal{U}}(Z^{\cdot}) \in \mathcal{T}(T_0) \text{ and } H^i_{\mathcal{U}}(Z^{\cdot}) = 0, \text{ for } i > 0\} \text{ heart of}$ $(\mathcal{V}, \mathcal{V}^{\perp}[1]) \simeq mod \operatorname{End}_{A_0} T_0$ $\operatorname{End}_{A_0}(T_0)^{op} = B$

イロン 不良 とくほう 不良 とうせい

Homological properties of a (1,2)-quasitilted algebra

$Ext^{\#}_{B}(_,_) = 0$	\mathcal{A}_1	\mathcal{A}_2	\mathcal{A}_3	\mathcal{A}_4
\mathcal{A}_1	≥ 2	≥ 1	≥ 1	≥ 0
\mathcal{A}_2	$0, \geq 3$	≥ 2	≥ 1	≥ 1
\mathcal{A}_3	$0, \ge 3$	$0, \geq 2$	≥ 2	≥ 1
\mathcal{A}_4	$0, 1, \ge 4$	$0, \ge 3$	$0, \geq 2$	≥ 2

E.R. Alvares, D. Castonguay, P. Le Meur, T.C. Pierin A generalization of quasitilted and almost hereditary algebras

イロン 不得い イヨン イヨン

Homological properties of a (1,2)-quasitilted algebra

 $(add(A_3 \cup A_4), add(A_1 \cup A_2))$ is a torsion pair in *mod* B

 $(add(A_1 \cup A_2), add(A_3 \cup A_4)[-1])$ is a torsion pair in *mod* A_0

$$0 \to A_1^Z \oplus A_2^Z \to Z \to A_3^Z[-1] \oplus A_4^Z[-1] \to 0$$

$$Z \in \mathcal{F}[1] \quad 0 \to A_1^Z \oplus A_2^Z \to Z \to A_4^Z[-1] \to 0$$

$$Z \in \mathcal{T} \quad 0 \to A_1^Z \to Z \to A_3^Z[-1] \oplus A_4^Z[-1] \to 0$$

<ロ> <昂> < 臣> < 臣> < 臣> < 臣 > ○ Q ()

Compatibility

Definition

(Keller-Vossieck)

Let $(\mathcal{U}, \mathcal{U}^{\perp}[1])$ and $(\mathcal{V}, \mathcal{V}^{\perp}[1])$ *t*-structures in a triangulated category \mathcal{C} . We say that \mathcal{U} is compatible with \mathcal{V} if \mathcal{U} is stable under the truncation functors $\tau_{\mathcal{V}}^{\leq n}$, $n \in \mathbb{Z}$, that is, $\tau_{\mathcal{V}}^{\leq n} \mathcal{U} \subseteq \mathcal{U}$, for all $n \in \mathbb{Z}$.

Proposition

 ${\mathcal W}$ is compatible with ${\mathcal U}.$

 ${\mathcal U}$ is compatible with ${\mathcal V}.$

Remark W is compatible with V if and only if, for each $C \in W$, $A_1 = 0$, where

$$0 \to A_1 \oplus A_2 \to \mathcal{H}^1_{\mathcal{U}}(C) \to A_3[-1] \oplus A_4[-1] \to 0$$

is the short exact sequence relatively to $(\mathcal{T}(T_0), \mathcal{F}(T_0))$.

Corollary

Let *B* be a (1, 2)-quasitilted algebra, $X \in \mathcal{F}(T_0)[1]$ and let

$$0 \to A_1 \oplus A_2 \to X \to A_4[-1] \to 0$$

be the canonical exact sequence for *X* relatively to $(\mathcal{T}(T_0), \mathcal{F}(T_0))$.

Then \mathcal{W} is compatible with \mathcal{V} if and only if $A_1 = 0$.

Compatibility - (1, 2)-quasitilted algebra

Corollary

If \mathcal{W} is compatible with \mathcal{V} then:

*H*₁ either Hom_{$\mathcal{D}^{b}(B)$}($A_{4}[-1], A_{1}[1]$) = 0 or Hom_{$\mathcal{D}^{b}(B)$}($A_{4}[-1], A_{2}[1]$) = 0.

$$H_2$$
 Ker $(A_2 \rightarrow A_4) = \oplus K_i \Rightarrow K_i \notin A_1$ and

 $Ker(A_3 \oplus A_4 \to C_4) = \oplus L_i \Rightarrow L_i \notin A_1.$

イロト 不得 トイヨト イヨト 二日

Compatibility

$$\mathcal{X} = \{ Z \in \textit{mod} A_1; A_1^Z = 0 \text{ and } A_3^Z[-1] = 0 \}$$

 $\mathcal{Y} = \{Z \in mod A_1; A_2^Z = 0 \text{ and the directs summands of } Z \text{ do not belongs to}$ $\mathcal{A}_4[-1]\}.$

イロン 不得 とくほう くほう 二日

Compatibly

Lemma

Seja $\mathcal{X} = \{Z \in mod A; A_1^Z = 0 \text{ e } A_3^Z[-1] = 0\}$. Então id_A $\mathcal{X} \leq 1$.

Lemma

Seja $\mathcal{Y} = \{Z \in mod A; A_2^Z = 0 \text{ e } Z \text{ não admite somando direto em } \mathcal{A}_4[-1]\}.$ Então $pd_A \mathcal{Y} \leq 1.$

イロト 不得 トイヨト イヨト 二日

Lemma

Let *B* be an (1, 2)-quasitilted algebra, $w : A'_4[-1] \to A_1[1]$ a right minimal add $A_4[-1]$ -approximation of $A_1[1] \in \text{add } A_1[1]$ and $w' : A_4[-1] \to A'_1[1]$ a left minimal add $A_1[1]$ -approximation of $A_4[-1] \in \text{add } A_4[-1]$.

(ii) If γ': A₄[-1] → B₁[1], with B₁ ∈ add A₁, is a morphism such that cone(γ')[-1] ∈ 𝒱(T₀), then a morphism δ': A'₁[1] → B₁[1] that satisfies δ'w' = γ' is such that Hom(δ',_) is surjective in A₁[2].

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Torsion pair given by a tilting

 \mathcal{T} is a cogenerator for \mathcal{A} $\mathcal{T} = Fac T$ $Ext^{i}(T, X) = 0$ for $X \in \mathcal{T}$ and i > 0If $Z \in \mathcal{T}$ satisfies $Ext^{i}(Z, X) = 0$ for all $X \in \mathcal{T}$ and i > 0, then $Z \in addT$ If $Ext^{i}(T, X) = 0$ for $i \ge 0$ and $X \in \mathcal{A}$, then X = 0.

Obrigado!

イロン イロン イヨン イヨン

-2