Fleet management for autonomous vehicles using flows in time-expanded networks

Sahar Bsaybes, Allain Quilliot, Annegret K. Wagler

Université Clermont Auvergne LIMOS UMR 6158 CNRS Clermont-Ferrand, France

LAGOS 2017, Marseille, France September 12, 2017

L'Europe s'engage en Auvergne avec le Fonds européen de développement régional (FEDER)

Projet co-financé par l'Union européenne

About the VIPAfleet Project

- 2 Modeling VIPAfleet Systems
- 3 Online Taxi Mode Problem
- 4 Conclusions

12/09/2017

About the VIPAfleet Project

- 2 Modeling VIPAfleet Systems
- 3 Online Taxi Mode Problem
- 4 Conclusions

VIPAfleet Project: The Partners

A VIPA is an Individual Public Autonomous Vehicle that

- allows passenger transport in closed sites, but
- does neither require a driver nor an infrastructure to operate.

The following partners are involved in the project:

- construction of VIPAs (Easymile and Ligier)
- computer vision guidance technologies (Institut Pascal, UCA)
- fleet management (LIMOS, UCA)

< 🗇 🕨

VIPAfleet Project: The Aim

The project VIPAfleet aims at

- contributing to innovative urban mobility solutions by
- transporting passenger in closed sites (e.g. industrial areas, airports).

Example: industrial site of Michelin at Clermont-Ferrand (experimentation from October 2015 until February 2016)

Image: Image:

About the VIPAfleet Project

- 2 Modeling VIPAfleet Systems
 - 3 Online Taxi Mode Problem
 - 4 Conclusions

Modeling the System

The closed site can be encoded by a **metric space** M = (V, d) induced by a weighted graph G = (V, E, w) where

- nodes in V stand for the stations (including an origin v_0 , the depot),
- edges in *E* represent the road connections between them,
- edge weights $w: E \rightarrow \mathbf{R}^+$ reflect the road lengths,

and $d: V \times V \rightarrow \mathbf{R}_0^+$ is a metric (induced by shortest path distances).

An Online Pickup-and-Delivery Problem

The task is to transport employees and visitors e.g.

- between parkings and buildings (morning, evening)
- to or from a restaurant (lunch time)
- between buildings (other periods of the day).

Hereby, the transport requests are released over time (online situation) leading to an Online Pickup-and-Delivery Problem.

A D > A B > A B >

An Online Pickup-and-Delivery Problem

The task is to transport employees and visitors e.g.

- between parkings and buildings (morning, evening)
- to or from a restaurant (lunch time)
- between buildings (other periods of the day).

Hereby, the transport requests are released over time (**online situation**), leading to an Online Pickup-and-Delivery Problem.

Image: A math a math

To serve transport requests, a VIPA can operate in three modes:

- **Tram mode:** VIPAs contineously run on predefined circuits in a predefined direction and stop at a station if requested to let users enter/leave.
- Elevator mode: VIPAs run on predefined lines, but react on customer requests (to enter or leave a car at a station).
- **Taxi mode:** users book their transport requests (from a start to a destination station within a time window) in real time

To serve transport requests, a VIPA can operate in three modes:

- **Tram mode:** VIPAs contineously run on predefined circuits in a predefined direction and stop at a station if requested to let users enter/leave.
- Elevator mode: VIPAs run on predefined lines, but react on customer requests (to enter or leave a car at a station).
- **Taxi mode:** users book their transport requests (from a start to a destination station within a time window) in real time

Proposition

- define inside G circuits/lines and use VIPAs in tram/elevator mode during morning and evening/lunch time
- use the whole network G and VIPAs in taxi mode during the other periods of the day

A D > A B > A B

12/09/2017

10 / 25

The latter leads to the Online Taxi Mode Problem!

About the VIPAfleet Project

- 2 Modeling VIPAfleet Systems
- Online Taxi Mode Problem
 - 4 Conclusions

The input for the Online Taxi Mode Problem consists of

- an edge-weighted graph G = (V, E, w) with depot $v_0 \in V$,
- the total number k and the capacity Cap of the VIPAs,
- a time horizon [0, T],
- a sequence $\sigma = \{r_1, \ldots, r_h\}$ of requests $r_j = (t_j, x_j, y_j, p_j, q_j, z_j)$ with
 - t_j is the release date (i.e., the time when r_j becomes known),
 - $x_j \in V$ is the origin node,
 - $y_j \in V$ the destination node,
 - p_j is the earliest possible pickup time,
 - q_j the latest possible delivery time,
 - z_j specifies the number of passengers,

satisfying $0 \le t_j \le p_j$, $p_j + d(x_j, y_j) \le q_j \le T$, as well as $z_j \le \mathsf{Cap}$,

ヘロン ヘロン ヘヨン ヘ

12/09/2017

12 / 25

• per request a profit $p(r_j)$ for serving the request r_j .

Online Taxi Mode Problem: Output and Objective

In order to serve requests, the operator creates tours $\Gamma^1, \ldots, \Gamma^k$ for the VIPAs to circulate in the network G and to pickup, transport and deliver users s.t.

- each tour starts and ends in the depot,
- each VIPA carries at most one request at the same time (thus the capacity Cap is always respected),
- each accepted request r_j is served within $[p_j, q_j]$ s.t. all z_j passengers are transported by the same VIPA on a shortest path from x_i to y_i .

Output:

- subset $\sigma_A \subseteq \sigma$ of accepted requests and
- tours $\Gamma^1, \ldots, \Gamma^k$ to serve all requests in σ_A

Objective:

- maximize $|\sigma_A|$ and
- minimize the total tour length of $\Gamma^1, \ldots, \Gamma^k$

・ロト ・回ト ・ヨト

REPLAN

Consider at each moment in time $t' \in [0, T]$ the subsequence $\sigma(t')$ of currently waiting requests and

- (1) determine which requests from $\sigma(t')$ can be accepted,
- (2) compute optimal (partial) tours to serve them,
- (3) perform these tours until new requests are released,
- (4) recompute $\sigma(t')$ and the tours (keeping already accepted requests).

Remark:

- Steps (1) and (2) correspond to finding an optimal offline solution for $\sigma(t')$. For that, we use flows in time-expanded request networks G(t').
- To keep previously accepted requests in steps (4), partition $\sigma(t')$ into
 - $\sigma_A(t')$ of previously accepted but until time t' not yet served requests and
 - $\sigma_N(t') = \{r_j \in \sigma : t_j = t'\}$ of requests that are newly released at time t'.

・ロン ・回 と ・ ヨン・

The node set $V' = V_+ \cup V_x \cup V_y \cup (v_0, T')$ is composed of

- the current VIPA positions as sources in V_+ ,
- all possible origins (x_j, t_i^{pick}) of all $r_j \in \sigma(t')$ in V_x ,
- all possible destinations (y_j, t_i^{drop}) of all $r_j \in \sigma(t')$ in V_y ,
- a sink node (v_0, T') with $T' = \max\{t_i^{drop}, r_i \in \sigma(t')\}$.

The arc set $A' = A_+ \cup A_R \cup A_I \cup A_-$ is composed of

- source arcs from all nodes in V_+ to all reachable origins in V_x in A_+ ,
- request arcs from each (x_i, t_i^{pick}) to $(y_j, t_i^{pick} + d(x_i, y_i))$ in A_R ,
- link arcs from all destinations in V_{v} to all reachable origins in V_{x} in A_{L} ,
- sink arcs from all destinations in V_v to (v_0, T') in A_{-} .

Moreover, define for each request $r_i \in \sigma(t')$ its subset A_B^{\prime} of request arcs in A_R .

15 / 25

Consider the following graph:

edge weights
$$x_e = 1$$
, depot o, 2 VIPAs

$$egin{aligned} r_1 &= (0, d, c, 1, 3, .) & r_3 &= (1, c, d, 2, 3, .) \ r_2 &= (0, b, a, 1, 4, .) & r_4 &= (1, c, b, 2, 4, .) \end{aligned}$$

REPLAN treats this instance as follows:

at time t = 0, we have $\sigma_N(0) = \{r_1, r_2\}$ and G(0):

16 / 25

A max profit flow problem on G(t')

$$\max \sum_{a \in A_R} p(a)f(a) - \sum_{a \in A' \setminus A_-} d(a)f(a)$$
(1a)
s.t.
$$\sum_{a \in \delta^+(v,t)} f(a) = k(v) \qquad \forall (v,t) \in V_+$$
(1b)

$$\sum_{a \in \delta^-(v,t)} f(a) = \sum_{a \in \delta^+(v,t)} f(a) \qquad \forall (v,t) \in V_x \cup V_y$$
(1c)

$$\sum_{a \in A_R^j} f(a) = 1 \qquad \forall r^j \in \sigma_A(t')$$
(1d)

$$\sum_{a \in A_R^j} f(a) \le 1 \qquad \forall r^j \in \sigma_N(t')$$
(1e)

$$f(a) \in \mathbf{Z}_+ \qquad \forall a \in A'$$
(1f)

N.B. Constraints (1d) ensure that previously accepted requests are served whereas constraints (1e) allow to reject newly released requests.

・ロト ・回ト ・ヨト ・

Consider the following graph:

edge weights
$$x_e = 1$$
, depot *o*, 2 VIPAs

$$egin{aligned} r_1 &= (0, d, c, 1, 3, .) & r_3 &= (1, c, d, 2, 3, .) \ r_2 &= (0, b, a, 1, 4, .) & r_4 &= (1, c, b, 2, 4, .) \end{aligned}$$

REPLAN treats this instance as follows:

 r_1 , r_2 are accepted and two (partial) tours are planned:

Consider the following graph:

edge weights
$$x_e = 1$$
, depot *o*, 2 VIPAs

$$egin{aligned} r_1 &= (0, d, c, 1, 3, .) & r_3 &= (1, c, d, 2, 3, .) \ r_2 &= (0, b, a, 1, 4, .) & r_4 &= (1, c, b, 2, 4, .) \end{aligned}$$

REPLAN treats this instance as follows:

at time t = 1, we have $\sigma_A(1) = \{r_1, r_2\}$ and $\sigma_N(1) = \{r_3, r_4\}$ and G(1):

19 / 25

Consider the following graph:

edge weights
$$x_e = 1$$
, depot o, 2 VIPAs

$$egin{aligned} r_1 &= (0, d, c, 1, 3, .) & r_3 &= (1, c, d, 2, 3, .) \ r_2 &= (0, b, a, 1, 4, .) & r_4 &= (1, c, b, 2, 4, .) \end{aligned}$$

REPLAN treats this instance as follows:

 r_3 , r_4 are accepted and two (partial) tours are planned:

The optimal offline solution

Consider the following graph: edge weights $x_e = 1$, depot o, 2 VIPAs

$$\begin{array}{ll} r_1 = (0, d, c, 1, 3, .) & r_3 = (1, c, d, 2, 3, .) \\ r_2 = (0, b, a, 1, 4, .) & r_4 = (1, c, b, 2, 4, .) \end{array}$$

< □ > < ^[] >

In the offline situation, the whole request sequence is known at the beginning; the resulting network is as follows:

The optimal offline solution

Consider the following graph: edge weights $x_e = 1$, depot o, 2 VIPAs

$$\begin{array}{ll} r_1 = (0, d, c, 1, 3, .) & r_3 = (1, c, d, 2, 3, .) \\ r_2 = (0, b, a, 1, 4, .) & r_4 = (1, c, b, 2, 4, .) \end{array}$$

In the offline situation, the whole request sequence is known at the beginning; the resulting optimal flow is as follows:

- About the VIPAfleet Project
- 2 Modeling VIPAfleet Systems
- 3 Online Taxi Mode Problem
- 4 Conclusions

The Online and Offline Taxi Mode Problem are NP-hard in general. However:

Corollary

The Offline Taxi Mode Problem with tight time windows (with $p_j + d(x_j, y_j) = q_j$ and thus $|A_R^j| = 1$ for each request $r_j \in \sigma$) can be solved in polynomial time.

Regarding the quality of the solutions obtained by REPLAN, we note that

- in theory, REPLAN is not competitive since there is no finite c s.t. for all instances σ we have that c REPLAN(σ) ≥ OPT(σ),
- in practice, REPLAN provides solutions of reasonable quality within short time for each recomputation step.

Future work: drop the condition that only one request can be served by one VIPA at the same time!

The Online and Offline Taxi Mode Problem are NP-hard in general. However:

Corollary

The Offline Taxi Mode Problem with tight time windows (with $p_j + d(x_j, y_j) = q_j$ and thus $|A_R^j| = 1$ for each request $r_j \in \sigma$) can be solved in polynomial time.

Regarding the quality of the solutions obtained by REPLAN, we note that

- in theory, REPLAN is *not* competitive since there is no finite c s.t. for all instances σ we have that $c \text{ REPLAN}(\sigma) \ge \text{OPT}(\sigma)$,
- in practice, REPLAN provides solutions of reasonable quality within short time for each recomputation step.

Future work: drop the condition that only one request can be served by one VIPA at the same time!

The Online and Offline Taxi Mode Problem are NP-hard in general. However:

Corollary

The Offline Taxi Mode Problem with tight time windows (with $p_j + d(x_j, y_j) = q_j$ and thus $|A_R^j| = 1$ for each request $r_j \in \sigma$) can be solved in polynomial time.

Regarding the quality of the solutions obtained by REPLAN, we note that

- in theory, REPLAN is *not* competitive since there is no finite c s.t. for all instances σ we have that $c \text{ REPLAN}(\sigma) \ge \text{OPT}(\sigma)$,
- in practice, REPLAN provides solutions of reasonable quality within short time for each recomputation step.

Future work: drop the condition that only one request can be served by one VIPA at the same time!

Thank you very much! Questions?

・ロト ・回ト ・ヨト ・