Locally self-avoiding Eulerian graphs

Tien-Nam Le (ENS Lyon)

September 12, 2017

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 1/15

The (Chinese) postman problem

I want to visit every street exactly once and return to the beginning.

- He wants: an Eulerian tour on the map.
- Satisfiable \IDRESs the map is an Eulerian graph (connected + even degree).

A hard-to-please postman

Moreover, I don't want to visit the same place twice in 4 hours.

- He has to cross a 6-way intersection 3 times.
 Example: (6:00, 12:00, 17:00): OK, (6:00, 12:00, 15:00): nope.
- He wants: an Eulerian tour on the map with some additional property.
- ► Question: what is the additional property exactly?

What does he want?

Given an Eulerian tour T of a (simple) graph G.

- Segment: a subwalk of \mathcal{T} .
- **Observation:** A segment either intersects itself or is a path.
- The postman wants: every segment of length 4 of T is a path.
- \mathcal{T} is ℓ -Eulerian: if every segment of length ℓ of \mathcal{T} is a path.
- ▶ **Question:** Which graphs admit an *ℓ*-Eulerian tour?
- Question: A sufficient condition?

Conjecture

Conjecture (Häggkvist 1989, Kriesell 2011) For every $\ell \ge 1$, there is d_{ℓ} such that

 $\left\{ \begin{array}{ll} (simple) \; Eulerian, \\ mindeg \geq d_{\ell} \end{array} \right. \implies \; \exists \; an \; \ell \text{-Eulerian tour.}$

• **Remark:** Clearly false for multigraphs.

Results

$$\textit{Conjecture}: \left\{ \begin{array}{ll} \mathsf{Eulerian}, \\ \textit{mindeg} \geq d_\ell \end{array} \right. \implies \exists \mathsf{an} \ \ell\text{-Eulerian tour}.$$

▶ $\ell = 1, 2$: trivial.

▶ l = 3 (i.e. triangle-free Eulerian tour): Oksimets 1997: True with d₃ = 6 (sharp).

Bensmail, Harutyunyan, L., Thomassé 2014:

 $\left\{ \begin{array}{ll} {\sf Eulerian},\\ {\sf mindeg} \geq d_\ell, &\Longrightarrow \ \exists \ {\sf an} \ \ell {\sf -} {\sf Eulerian} \ {\sf tour}.\\ {\sf 4-edge \ {\sf connected}} \end{array} \right.$

► L. 2016+: The conjecture is true.

A Corollary

- P_{ℓ} : path with ℓ edges.
- ▶ G is P_{ℓ} -decomposable: if G can be decomposed into copies P_{ℓ} , and an additional shorter path when $\ell \not| |E|$.

Conjecture (Barát-Thomassen 2006, path case) $edge \ connectivity \ge c_{\ell} \implies P_{\ell}$ -decomposable. [Proved in 2014 independently by Botler-Mota-Oshiro-Wakabayashi and our team.]

► L. 2016+:

$$\begin{cases} \text{Eulerian,} \\ \text{mindeg} \geq d_{\ell} \end{cases} \implies P_{\ell}\text{-decomposable.} \end{cases}$$

Sketch of proof

Cactus graph

Given a loopless multigraph G:

- *G* is a cactus: every edge belongs to at most one cycle.
- ▶ If a cactus is Eulerian: every edge belongs to exactly one cycle.
- Key property of an Eulerian cactus: From x visit y and come back to x, then you will never visit y again.

First observations

- ► Given G: Eulerian + high mindeg.
- ▶ If *G* is 4-edge-connected, then apply BHLT'14.
- ► Else, G has a cut of size 2 ⇒ cut them ⇒ obtain two partitions of G.
- "Heal" missing degrees by one dummy edge (or loop) in each partition =>> get two Eulerian "induced" sub-multigraphs of G.
- What do we get if we exhaustively repeat this process?

Partitioning the big graph

Lemma

Every Eulerian multigraph G can be partitioned into "induced" sub-multigraphs $G_1, ..., G_k$ such that:

- ▶ Each G_i is Eulerian + 4-edge-connected, and
- $G_1, ..., G_k$ are globally linked by a giant cactus.

Proved by induction.

Upgrade to multigraphs

Upgrade BHLT'14 to multigraphs:

$$G_i: \left\{ \begin{array}{ll} \text{multi Eulerian,} \\ \textit{mindeg} \geq d_\ell, \\ \text{4-edge connected} \end{array} \right. \implies \exists \text{ an } \ell\text{-Eulerian tour.}$$

- Obviously false.
- Avoidable by relaxing the definition of *l*-Eulerian tour, which is sufficient for the proof:

Weaker " ℓ -**Eulerian property:** G_i has an Eulerian tour \mathcal{T}_i s.t. every segment with no dummy-edge of length $\leq \ell$ is a path.

Final step

- Every G_i has a "weak ℓ -Eulerian" tour \mathcal{T}_i .
- ► Carefully rewiring T_i by the giant cactus to get an ℓ-Eulerian tour of G, using the key property of cactus graphs.

Open questions

- The proof gives a tower bound for d_{ℓ} .
- Question 1: Can we obtain a sharp (or good) bound for d_{ℓ} ?

- The proof uses some probabilistic methods.
- ► **Question 2:** Can we have an efficient algorithm to find an *ℓ*-Eulerian tour?

- The theorem gives a sufficient condition.
- Question 3: Can we characterize graphs admitting an *l*-Eulerian tour?

Thank you.