Facets of the polytope of legal sequences

Manoel Campêlo¹ Daniel Severín^{2,3}

¹ Universidade Federal do Ceará, Brasil mcampelo@lia.ufc.br

² Universidad Nacional de Rosario, Argentina daniel@fceia.unr.edu.ar

³ CONICET, Argentina

LAGOS 2017, Marseille, France

set V

• function
$$N\langle_{-}\rangle: V \to \mathcal{P}(V)$$

 $u \in N\langle v \rangle \implies v \in N\langle u \rangle$

Dominanting sequence

 $S = (v_1, \dots, v_k)$ sequence of different elements from VS dominating $\iff \bigcup_{i=1}^k N\langle v_i \rangle = V$

set V

• function
$$N\langle_{-}\rangle: V \to \mathcal{P}(V)$$

 $u \in N\langle v \rangle \implies v \in N\langle u \rangle$

Dominanting sequence

 $S = (v_1, \dots, v_k)$ sequence of different elements from VS dominating $\iff \bigcup_{i=1}^k N\langle v_i \rangle = V$

set V

• function
$$N\langle - \rangle : V \to \mathcal{P}(V)$$

 $u \in N\langle v \rangle \implies v \in N\langle u \rangle$

Dominanting sequence

 $S = (v_1, \dots, v_k)$ sequence of different elements from VS dominating $\iff \bigcup_{i=1}^k N \langle v_i \rangle = V$

set V

• function
$$N\langle _{-} \rangle : V \to \mathcal{P}(V)$$

 $u \in N\langle v \rangle \implies v \in N\langle u \rangle$

Dominanting sequence

 $S = (v_1, \dots, v_k)$ sequence of different elements from VS dominating $\iff \bigcup_{i=1}^k N \langle v_i \rangle = V$

Legal sequence

$$\begin{split} S &= (v_1, \ldots, v_k) \text{ sequence of different elements from } V \\ S \; \textit{legal} \; \iff \; N \langle v_i \rangle \setminus \bigcup_{j=1}^{i-1} N \langle v_j \rangle \neq \emptyset, \; \; \forall \; i = 2, \ldots, k \end{split}$$

Each v_i dominates at least one vertex from $N\langle v_i \rangle$ not "previously" dominated by $v_1, v_2, \ldots, v_{i-1}$

We say that v_i footprints those vertices from $N\langle v_i \rangle \setminus \bigcup_{i=1}^{\prime-1} N\langle v_i \rangle$

Legal sequence

$$\begin{split} S &= (v_1, \ldots, v_k) \text{ sequence of different elements from } V \\ S \; \textit{legal} \; \iff \; N \langle v_i \rangle \setminus \bigcup_{j=1}^{i-1} N \langle v_j \rangle \neq \emptyset, \; \; \forall \; i = 2, \ldots, k \end{split}$$

Each v_i dominates at least one vertex from $N\langle v_i \rangle$ not "previously" dominated by $v_1, v_2, \ldots, v_{i-1}$

We say that v_i footprints those vertices from $N\langle v_i \rangle \setminus \bigcup_{i=1}^{i-1} N\langle v_i \rangle$

Legal sequence

$$\begin{split} S &= (v_1, \ldots, v_k) \text{ sequence of different elements from } V \\ S \; \textit{legal} \; \iff \; N \langle v_i \rangle \setminus \bigcup_{j=1}^{i-1} N \langle v_j \rangle \neq \emptyset, \; \; \forall \; i = 2, \ldots, k \end{split}$$

Each v_i dominates at least one vertex from $N\langle v_i \rangle$ not "previously" dominated by $v_1, v_2, \ldots, v_{i-1}$

We say that v_i footprints those vertices from $N\langle v_i \rangle \setminus \bigcup_{i=1}^{i-1} N\langle v_i \rangle$

¿How "long" can a dominating legal sequence be?

Grundy domination number

For a given graph G, the Grundy domination number $\gamma_{gr}(G)$ computes the size of the longest legal dominating sequence.

In this work, we give integer programming formulations for obtaining $\gamma_{
m gr}(G)$ and we study the polytope associated to one of them.

¿How "long" can a dominating legal sequence be?

Grundy domination number

For a given graph G, the Grundy domination number $\gamma_{gr}(G)$ computes the size of the longest legal dominating sequence.

In this work, we give integer programming formulations for obtaining $\gamma_{\rm gr}(G)$ and we study the polytope associated to one of them.

A bit of history

- "Grundy" concept emerged as a way of studying worst case in greedy coloring heuristics.
 [Christen, Selkow 1979]
 [Bonnet, Foucaud, Kim, Sikora 2015]
- Interest in studying γ_{gr} related to "domination game". [Brešar, Klavžar, Rall 2010]
 [Kinnersley, West, Zamani 2013]
 [Košmrlj 2014]
- Finding γ_{gr}(G) with "N[v]" is NP-Hard even on chordal graphs. On trees, cographs and splits it is linear.
 [Brešar, Gologranc, Milanič, Rall, Rizzi 2014]
- Finding $\gamma_{gr}(G)$ with "N(v)" is *NP*-Hard even on bipartites... [Brešar, Henning, Rall 2016]
- ... but is linear on trees, *P*₄-tidy and distance-hereditary bipartites.

[Brešar, Kos, Nasini, Torres] (submitted)

Sequence legal ∧ longest ⇒ dominating

 ∞ Enough to ask for legality

• $G = disjoint union of G_1 and G_2$:

 $\gamma_{
m gr}(G) = \gamma_{
m gr}(G_1) + \gamma_{
m gr}(G_2)$

Suppose graphs are connected

• $N\langle u \rangle = N\langle v \rangle$: $\leftarrow u, v$ "twins"

$$\gamma_{\rm gr}(G) = \gamma_{\rm gr}(G - v)$$

Suppose there are no twins

• $\delta^*(G) = \min_{v \in V} |N\langle v \rangle|$ ext{ (degree)} (G) \leftarrow (least "degree")

$$\gamma_{
m gr}(G) \leq m \doteq n - \delta^*(G) + 1$$

- Sequence legal ∧ longest ⇒ dominating

 ∞ Enough to ask for legality
- $G = \text{disjoint union of } G_1 \text{ and } G_2$:

$$\gamma_{
m gr}(G) = \gamma_{
m gr}(G_1) + \gamma_{
m gr}(G_2)$$

$$\gamma_{\rm gr}(G) = \gamma_{\rm gr}(G - v)$$

Suppose there are no twins

• $\delta^*(G) = \min_{v \in V} |N\langle v \rangle|$ ext{ (degree)} (G) \leftarrow (least "degree")

$$\gamma_{
m gr}(G) \leq m \doteq n - \delta^*(G) + 1$$

- Sequence legal ∧ longest ⇒ dominating

 ∞ Enough to ask for legality
- $G = \text{disjoint union of } G_1 \text{ and } G_2$:

$$\gamma_{
m gr}(G) = \gamma_{
m gr}(G_1) + \gamma_{
m gr}(G_2)$$

Suppose graphs are connected

• $N\langle u \rangle = N\langle v \rangle$: \leftarrow u, v "twins"

$$\gamma_{
m gr}(G) = \gamma_{
m gr}(G - v)$$

Suppose there are no twins

• $\delta^*(G) = \min_{v \in V} |N\langle v
angle|$ agenum least "degree"

 $\gamma_{
m gr}(G) \leq m \doteq n - \delta^*(G) + 1$

- Sequence legal ∧ longest ⇒ dominating

 ∞ Enough to ask for legality
- $G = \text{disjoint union of } G_1 \text{ and } G_2$:

$$\gamma_{
m gr}(G) = \gamma_{
m gr}(G_1) + \gamma_{
m gr}(G_2)$$

Suppose graphs are connected

• $N\langle u \rangle = N\langle v \rangle$: $\leftarrow u, v$ "twins"

$$\gamma_{\rm gr}({\it G})=\gamma_{\rm gr}({\it G}-{\it v})$$

Suppose there are no twins

• $\delta^*(G) = \min_{v \in V} |N\langle v \rangle| \quad \longleftarrow \text{ least "degree"}$

$$\gamma_{
m gr}(G) \leq m \doteq n - \delta^*(G) + 1$$

Representation of legal sequences

$$\forall v \in V, i = 1, \dots, m$$
:
 $y_{vi} = \begin{cases} 1, & v \text{ is chosen in step } i \\ 0, & \text{otherwise} \end{cases}$

 $\forall u \in V, i = 1, \ldots, m$:

$$x_{ui} = \begin{cases} 1, & u \text{ is not footprinted in steps } 1, \dots, i \\ 0, & \text{otherwise} \end{cases}$$

Example: $u \in N\langle v \rangle$

 $y_{\nu} = (0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0)$ \downarrow $x_{u} = (1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0)$

Representation of legal sequences

$$\forall v \in V, i = 1, ..., m$$
:
 $y_{vi} = \begin{cases} 1, & v \text{ is chosen in step } i \\ 0, & \text{otherwise} \end{cases}$

 $\forall u \in V, i = 1, \dots, m$:

 $x_{ui} = \begin{cases} 1, & u \text{ is not footprinted in steps } 1, \dots, i \\ 0, & \text{otherwise} \end{cases}$

Example: $u \in N\langle v \rangle$

 $y_{v} = (0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0)$ \downarrow $x_{u} = (1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0)$

Representation of legal sequences

$$\forall v \in V, i = 1, \dots, m$$
:
 $y_{vi} = \begin{cases} 1, & v \text{ is chosen in step } i \\ 0, & \text{otherwise} \end{cases}$

 $\forall u \in V, i = 1, \dots, m$:

 $x_{ui} = \begin{cases} 1, & u \text{ is not footprinted in steps } 1, \dots, i \\ 0, & \text{otherwise} \end{cases}$

Example: $u \in N\langle v \rangle$

 $y_{\nu} = (0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0)$ $\downarrow \\ x_{\mu} = (1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0)$

$$F_1: \max_{i=1}^m \sum_{v \in V} y_{vi}$$

s.a

asig.y $\sum_{v \in V} y_{vi} \leq 1$, $\forall i = 1, \dots, m$ (1) asig.y $\sum_{v \in V}^{m} y_{vi} \leq 1$, $\forall v \in V$ (2)

legal.
$$y_{vi+1} \leq \sum_{u \in N\langle v \rangle} (x_{ui} - x_{ui+1}), \quad \forall \quad v \in V, \ i = 1, \dots, m-1$$
 (3)

def.x
$$x_{ui} + \sum_{v \in N\langle u \rangle} y_{vi} \leq 1,$$
 $\forall u \in V, i = 1, \dots, m$ (4)

- def.x $x_{ui+1} \le x_{ui}$, $\forall u \in V, i = 1, ..., m-1$ (5) $x, y \in \{0, 1\}^{nm}$,
- x_{ui} can switch to 0 even if nobody footprints u
- There are steps where nobody is chosen

$$F_1: \max_{i=1}^m \sum_{v \in V} y_{vi}$$

s.a

asig.y $\sum_{v \in V} y_{vi} \leq 1$, $\forall i = 1, \dots, m$ (1) asig.y $\sum_{i=1}^{m} y_{vi} \leq 1$, $\forall v \in V$ (2)

legal.
$$y_{vi+1} \leq \sum_{u \in N \langle v \rangle} (x_{ui} - x_{ui+1}), \quad \forall v \in V, i = 1, \dots, m-1$$
 (3)

def.x
$$x_{ui} + \sum_{v \in N\langle u \rangle} y_{vi} \leq 1,$$
 $\forall u \in V, i = 1, \dots, m$ (4)

- $\begin{array}{ll} \textit{def.x} & x_{ui+1} \leq x_{ui}, \\ & x, y \in \{0,1\}^{nm}, \end{array} \qquad \qquad \forall \ u \in V, \ i = 1, \dots, m-1 \ (5) \end{array}$
- x_{ui} can switch to 0 even if nobody footprints u
- There are steps where nobody is chosen

$$L_1: \max_{i=1}^m \sum_{v \in V} y_{vi}$$

s.a

asig.y $\sum_{v \in V} y_{vi} \leq 1$, $\forall i = 1, \dots, m$ (1) asig.y $\sum_{i=1}^{m} y_{vi} \leq 1$, $\forall v \in V$ (2)

legal.
$$y_{vi+1} \leq \sum_{u \in N \langle v \rangle} (x_{ui} - x_{ui+1}), \quad \forall \ v \in V, \ i = 1, \dots, m-1$$
 (3)

def.x
$$x_{ui} + \sum_{v \in N \langle u \rangle} y_{vi} \leq 1,$$
 $\forall u \in V, i = 1, \dots, m$ (4)

def.x
$$x_{ui+1} \le x_{ui}$$
, $\forall u \in V, i = 1, ..., m-1$ (5)
 $x, y \in \{0, 1\}^{nm}$,

- x_{ui} can switch to 0 even if nobody footprints u
- There are steps where nobody is chosen

$$F_1: \max_{i=1}^m \sum_{v \in V} y_{vi}$$

s.a

asig.y $\sum_{v \in V} y_{vi} \leq 1$, $\forall i = 1, \dots, m$ (1) asig.y $\sum_{i=1}^{m} y_{vi} \leq 1$, $\forall v \in V$ (2)

legal.
$$y_{vi+1} \leq \sum_{u \in N \langle v \rangle} (x_{ui} - x_{ui+1}), \quad \forall \quad v \in V, \ i = 1, \dots, m-1$$
 (3)

def.x
$$x_{ui} + \sum_{v \in N \langle u \rangle} y_{vi} \leq 1,$$
 $\forall u \in V, i = 1, \dots, m$ (4)

def.x
$$x_{ui+1} \le x_{ui}$$
, $\forall u \in V, i = 1, ..., m-1$ (5)
 $x, y \in \{0, 1\}^{nm}$,

- x_{ui} can switch to 0 even if nobody footprints u
- There are steps where nobody is chosen

 F_2 : x_{ui} set to 0 only when u is footprinted

$$x, y \in \{0, 1\}^{nm}$$

F₃: Vertices are chosen in first steps

$$\max \sum_{i=1}^m \sum_{v \in V} y_{vi}$$

s.a ··· · · ·

$$\sum_{v \in V} y_{v1} = 1,$$
(8)
$$\sum_{v \in V} y_{vi+1} \le \sum_{v \in V} y_{vi},$$

$$\forall i = 1, \dots, m-1$$
(9)

$$x, y \in \{0, 1\}^{nm}$$

 F_4 : 1-to-1 corresp.: legal seq. \iff integer sol.

$$\max \sum_{i=1}^{m} \sum_{v \in V} y_{vi}$$

$$s.a \cdots \cdots$$

$$x_{u1} + \sum_{v \in N \langle u \rangle} y_{v1} \ge 1, \qquad \forall \ u \in V \quad (6)$$

$$x_{ui+1} + \sum_{v \in N \langle u \rangle} y_{vi+1} \ge x_{ui}, \quad \forall \ u \in V, \ i = 1, \dots, m-1 \quad (7)$$

$$\sum_{v \in V} y_{v1} = 1, \qquad (8)$$

$$\sum_{v \in V} y_{vi+1} \le \sum_{v \in V} y_{vi}, \qquad \forall \ i = 1, \dots, m-1 \quad (9)$$

$$x,y\in \{0,1\}^{nm},$$

*F*₅: sequences are dominating

$$\max \sum_{i=1}^m \sum_{v \in V} y_{vi}$$

s.a ··· · · ·

$$\sum_{i=1}^{m} \sum_{v \in N \langle u \rangle} y_{vi} \ge 1,$$
$$x, y \in \{0, 1\}^{nm},$$

 $\forall u \in V$ (10)

Breaking symmetries F_6 :

$$\sum_{i=1}^{m} \sum_{v \in N\langle u \rangle} y_{vi} \ge 1,$$

x, y $\in \{0, 1\}^{nm},$

 $\forall u \in V$ (10)

Breaking symmetries F_7 :

$$\max \sum_{i=1}^m \sum_{v \in V} y_{vi}$$

s.a ··· · · · ·

$$\sum_{v \in V} y_{v1} = 1,$$
(8)
$$\sum_{v \in V} y_{vi+1} \leq \sum_{v \in V} y_{vi},$$

$$\forall i = 1, \dots, m-1 \quad (9)$$

$$\sum_{i=1}^{m} \sum_{v \in N(u)} y_{vi} \geq 1,$$

$$\forall u \in V \quad (10)$$

$$x, y \in \{0, 1\}^{nm},$$

 F_8 : 1-to-1 cor.: legal dom. seq. \iff int. sol.

Comparing formulations

Form.	(6)-(7)	(8)-(9)	(10)	Solutions
<i>F</i> ₁				16253
<i>F</i> ₂	\checkmark			205
F ₃		\checkmark		463
<i>F</i> 4	\checkmark	\checkmark		43
<i>F</i> 5			\checkmark	1668
F ₆	\checkmark		\checkmark	124
F ₇		\checkmark	\checkmark	68
F ₈	\checkmark	\checkmark	\checkmark	28

Comparing formulations

Form.	(6)-(7)	(8)-(9)	(10)	Solutions
F_1				16253
F_2	\checkmark			205
F ₃		\checkmark		463
F ₄	\checkmark	\checkmark		43
<i>F</i> 5			\checkmark	1668
F ₆	\checkmark		\checkmark	124
<i>F</i> ₇		\checkmark	\checkmark	68
F ₈	\checkmark	\checkmark	\checkmark	28

From computational experiments, we determined that the best form. is $F_4 \quad \longleftarrow \quad$ "dominating" ineq. hinder the optimization

Manoel Campêlo¹ D

• P_i = Polytope associated to F_i

Proposition

P_1 is full dimensional.

Proposition

 $dim(P_3) = nm - m|V_0| - (m-1)|V_1| + \sum_{v \in V} i(G; C, v) - 1$

where:

$$V_0 = \{v \in V : N \langle v \rangle = V\}, V_1 = \{v \in V : N \langle v \rangle = V \setminus \{v\}\},\$$

i(G; C, v) = largest index where v can be chosen

Minimal system:

1)
$$y_{vi} = 0$$
 $\forall v \in V, i = i(G; C, v) + 1, ..., m,$
2) $x_{vi} = 0$ $\forall v \in V_0, i = 1, 2, ..., m,$
3) $x_{vi} = 0$ $\forall v \in V_1, i = 2, ..., m,$
4) $\sum_{v \in V} y_{v1} = 1.$

- P_2, P_4, \ldots, P_8 are harder to study.
 - $P_i \subset P_1 \quad \longrightarrow \quad$ valid on $P_1 \Rightarrow$ valid on P_i

• P_i = Polytope associated to F_i

Proposition

 P_1 is full dimensional.

Proposition

$$\dim(P_3) = nm - m|V_0| - (m-1)|V_1| + \sum_{v \in V} i(G; C, v) - 1$$

where:

$$V_0 = \{v \in V : N \langle v \rangle = V\}, V_1 = \{v \in V : N \langle v \rangle = V \setminus \{v\}\}, i(G; C, v) = \text{largest index where } v \text{ can be chosen}$$

Minimal system:

1)
$$y_{vi} = 0$$
 $\forall v \in V, i = i(G; C, v) + 1, ..., m,$
2) $x_{vi} = 0$ $\forall v \in V_0, i = 1, 2, ..., m,$
3) $x_{vi} = 0$ $\forall v \in V_1, i = 2, ..., m,$
4) $\sum_{v \in V} y_{v1} = 1.$

• P_i = Polytope associated to F_i

Proposition

 P_1 is full dimensional.

Proposition

$$\dim(P_3) = nm - m|V_0| - (m-1)|V_1| + \sum_{v \in V} i(G; C, v) - 1$$

where:

$$V_0 = \{v \in V : N \langle v \rangle = V\}, V_1 = \{v \in V : N \langle v \rangle = V \setminus \{v\}\}, i(G; C, v) = \text{largest index where } v \text{ can be chosen}$$

Minimal system:

1)
$$y_{vi} = 0$$
 $\forall v \in V, i = i(G; C, v) + 1, ..., m,$
2) $x_{vi} = 0$ $\forall v \in V_0, i = 1, 2, ..., m,$
3) $x_{vi} = 0$ $\forall v \in V_1, i = 2, ..., m,$
4) $\sum_{v \in V} y_{v1} = 1.$

• P_2, P_4, \ldots, P_8 are harder to study.

• P_i = Polytope associated to F_i

Proposition

 P_1 is full dimensional.

Proposition

$$\dim(P_3) = nm - m|V_0| - (m-1)|V_1| + \sum_{v \in V} i(G; C, v) - 1$$

where:

$$V_0 = \{v \in V : N \langle v \rangle = V\}, V_1 = \{v \in V : N \langle v \rangle = V \setminus \{v\}\}, i(G; C, v) = \text{largest index where } v \text{ can be chosen}$$

Minimal system:

1)
$$y_{vi} = 0$$
 $\forall v \in V, i = i(G; C, v) + 1, ..., m,$
2) $x_{vi} = 0$ $\forall v \in V_0, i = 1, 2, ..., m,$
3) $x_{vi} = 0$ $\forall v \in V_1, i = 2, ..., m,$
4) $\sum_{v \in V} y_{v1} = 1.$

• P_2, P_4, \ldots, P_8 are harder to study. *P_i*

$$P \subset P_1 \longrightarrow$$
valid on $P_1 \Rightarrow$ valid on P_i .

Manoel Campêlo¹

Daniel Severín^{2,3}

1. Ineq. that generalize constraints (3):

 $\sum y_{wi+1} \leq \sum (x_{ui} - x_{ui+1})$ $w \in W$ $u \in N\langle w_1 \rangle$ • " \Leftrightarrow " condition for facet-definition on P_1 .

1. Ineq. that generalize constraints (3):

$$\sum_{w \in W} y_{wi+1} \leq \sum_{u \in N \langle w_1 \rangle} (x_{ui} - x_{ui+1})$$

• " \Leftrightarrow " condition for facet-definition on P_1 .

2. Ineq. that generalize constr. (4) and dominates constr. (2):

$$x_{ui} + \sum_{v \in N} y_{vi} + \sum_{r=1}^{t} \sum_{j=j_r}^{j_{r+1}} y_{w_rj} \le 1$$

• " \Leftrightarrow " condition for facet-definition on P_1 .

Leads to new valid inequalities:

 $\zeta_{ui} + \sum_{j=1} y_{wj} \leq 1 \quad \longleftarrow \quad {\sf Family \ 1 \ (sep. \ polytime)}$

3. New valid inequalities:

$\begin{aligned} x_{u_1i} + x_{u_2i} + \sum_{j=1} y_{wj} + \sum_{v \in N \langle u_1 \rangle \cup N \langle u_2 \rangle} y_{vk} &\leq 2 \quad \longleftarrow \quad \text{Family 2} \quad (\text{sep.}) \\ & \bullet \quad \text{``} \Rightarrow \text{``} \text{ condition for facet-definition on } P_1. \end{aligned}$

1. Ineq. that generalize constraints (3):

$$\sum_{w \in W} y_{wi+1} \leq \sum_{u \in N \langle w_1 \rangle} (x_{ui} - x_{ui+1})$$

• " \Leftrightarrow " condition for facet-definition on P_1 .

2. Ineq. that generalize constr. (4) and dominates constr. (2):

$$x_{ui} + \sum_{v \in N} y_{vi} + \sum_{r=1}^{t} \sum_{j=j_r}^{j_{r+1}} y_{w_rj} \le 1$$

• " \Leftrightarrow " condition for facet-definition on P_1 .

Leads to new valid inequalities:

 $x_{ui} + \sum_{j=1}^{r} y_{wj} \le 1 \quad \longleftarrow \quad Family \ 1 \ (sep. \ polytime)$

3. New valid inequalities:

$$x_{u_1i} + x_{u_2i} + \sum_{j=1} y_{wj} + \sum_{v \in N \langle u_1 \rangle \cup N \langle u_2 \rangle} y_{vk} \le 2 \quad \longleftarrow \quad \text{Family 2} \quad (\text{sep.})$$

= " \Rightarrow " condition for facet-definition on P_1 .

1. Ineq. that generalize constraints (3):

$$\sum_{w \in W} y_{wi+1} \leq \sum_{u \in N \langle w_1 \rangle} (x_{ui} - x_{ui+1})$$

• " \Leftrightarrow " condition for facet-definition on P_1 .

2. Ineq. that generalize constr. (4) and dominates constr. (2):

$$x_{ui} + \sum_{v \in N} y_{vi} + \sum_{r=1}^{t} \sum_{j=j_r}^{j_{r+1}} y_{w_rj} \le 1$$

• " \Leftrightarrow " condition for facet-definition on P_1 .

Leads to new valid inequalities:

$$x_{ui} + \sum_{j=1}^{r} y_{wj} \leq 1 \quad \longleftarrow \quad \textit{Family 1} \quad (\textit{sep. polytime})$$

3. New valid inequalities:

Results on clutters

Clutter

$$\begin{aligned} \mathcal{H} &= (V, \mathcal{E}) \text{ where } \mathcal{E} &= \{ N \langle v \rangle : v \in V \} \\ \mathcal{H} \text{ clutter } \iff N \langle u \rangle \setminus N \langle v \rangle \neq \emptyset \text{ for all } u \neq v \end{aligned}$$

Proposition

If \mathcal{H} is a clutter, then:

- Constraint (3), (4) and (5) define facets of P₁
- Family 1 defines facets of P₁
- If another small condition holds, Family 2 define facets of P_1

Results on clutters

Clutter

$$\begin{split} \mathcal{H} &= (V, \mathcal{E}) \text{ where } \mathcal{E} = \{ N \langle v \rangle : v \in V \} \\ \mathcal{H} \text{ clutter } \iff N \langle u \rangle \setminus N \langle v \rangle \neq \emptyset \text{ for all } u \neq v \end{split}$$

Proposition

If ${\mathcal H}$ is a clutter, then:

- Constraint (3), (4) and (5) define facets of P_1
- Family 1 defines facets of P₁
- If another small condition holds, Family 2 define facets of P₁

Computational experiments

- CPLEX 12.7, 1 thread, 1 hour (limit)
- Form. *F*₄
- 24 instances
- B&C₁ = B&B + Family 1 as cuts
- B&C₂ = B&B + Family 1 and 2 as cuts

	All instances		High density $(p = 0.8)$	
Algorithm	Nodes	Time	Nodes	Time
B&B	64106	425.18	18596	362.52
$B\&C_1$	29658	287.38	23327	443.79
B&C ₂	50779	409.59	17970	300.41

Conclusion:

- Family 1 helps to reduce B&B nodes and CPU time.
- Family 2 useful on high density instances.

Computational experiments

- CPLEX 12.7, 1 thread, 1 hour (limit)
- Form. *F*₄
- 24 instances
- $B\&C_1 = B\&B + Family 1$ as cuts
- $B\&C_2 = B\&B + Family 1 and 2 as cuts$

	All instances		High density $(p = 0.8)$	
Algorithm	Nodes	Time	Nodes	Time
B&B	64106	425.18	18596	362.52
$B\&C_1$	29658	287.38	23327	443.79
B&C ₂	50779	409.59	17970	300.41

Conclusion:

- Family 1 helps to reduce B&B nodes and CPU time.
- Family 2 useful on high density instances.

Merci!