Ruling out FPT algorithms for WEIGHTED COLORING on forests

Júlio Araújo¹ Julien Baste² Ignasi Sau^{1,2}

LAGOS, CIRM, Marseille, France September 14, 2017

Full version available at [arXiv:1703.09726]

- ¹ Departamento de Matemática, UFC, Fortaleza, Brazil.
- ² CNRS, LIRMM, Université de Montpellier, Montpellier, France.

We are given a graph G together with a weight function $w: V(G) \to \mathbb{R}^+$.

A (proper) k-coloring of G is a partition $c = (S_i)_{i \in [1,k]}$ of V(G) into k stable sets S_1, \ldots, S_k .

We are given a graph G together with a weight function $w: V(G) \to \mathbb{R}^+$.

A (proper) k-coloring of G is a partition $c = (S_i)_{i \in [1,k]}$ of V(G) into k stable sets S_1, \ldots, S_k .

The weight of a color S_i is $w(i) = \max_{v \in S_i} w(v)$.

We are given a graph G together with a weight function $w : V(G) \to \mathbb{R}^+$.

A (proper) k-coloring of G is a partition $c = (S_i)_{i \in [1,k]}$ of V(G) into k stable sets S_1, \ldots, S_k .

The weight of a color S_i is $w(i) = \max_{v \in S_i} w(v)$.

The weight of a coloring c is $w(c) = \sum_{i=1}^{k} w(i)$.

We are given a graph G together with a weight function $w : V(G) \to \mathbb{R}^+$.

A (proper) k-coloring of G is a partition $c = (S_i)_{i \in [1,k]}$ of V(G) into k stable sets S_1, \ldots, S_k .

The weight of a color S_i is $w(i) = \max_{v \in S_i} w(v)$.

The weight of a coloring c is $w(c) = \sum_{i=1}^{k} w(i)$.

The weighted chromatic number of a pair (G, w) is

 $\sigma(G, w) = \min\{w(c) \mid c \text{ is a proper coloring of } G\}.$

We are given a graph G together with a weight function $w : V(G) \to \mathbb{R}^+$.

A (proper) k-coloring of G is a partition $c = (S_i)_{i \in [1,k]}$ of V(G) into k stable sets S_1, \ldots, S_k .

The weight of a color S_i is $w(i) = \max_{v \in S_i} w(v)$.

The weight of a coloring c is $w(c) = \sum_{i=1}^{k} w(i)$.

The weighted chromatic number of a pair (G, w) is

 $\sigma(G, w) = \min\{w(c) \mid c \text{ is a proper coloring of } G\}.$

For a positive integer r, we define

 $\sigma(G, w; r) = \min\{w(c) \mid c \text{ is a proper } r \text{-coloring of } G\}.$

What is known about WEIGHTED COLORING

The WEIGHTED COLORING problem was introduced by [Guan, Zhu. 1997] to study practical applications related to resource allocation.

What is known about WEIGHTED COLORING

The WEIGHTED COLORING problem was introduced by [Guan, Zhu. 1997] to study practical applications related to resource allocation.

If all the vertex weights are equal to one, then $\sigma(G, w) = \chi(G)$. Thus, determining $\sigma(G, w)$ and $\sigma(G, w; r)$ are NP-hard problems.

What is known about WEIGHTED COLORING

The WEIGHTED COLORING problem was introduced by [Guan, Zhu. 1997] to study practical applications related to resource allocation.

If all the vertex weights are equal to one, then $\sigma(G, w) = \chi(G)$. Thus, determining $\sigma(G, w)$ and $\sigma(G, w; r)$ are NP-hard problems.

The problem is NP-hard even on:

• split graphs, interval graphs, bipartite graphs, and triangle-free planar graphs with bounded degree.

On the other hand, it is polynomial on

cographs and some subclasses of bipartite graphs.

[de Werra, Demange, Monnot, Paschos. 2002] [Escoffier, Monnot, Paschos. 2006] [de Werra, Demange, Escoffier, Monnot, Paschos. 2009]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

On an *n*-vertex graph of treewidth t, $\sigma(G, w; r)$ can be computed in time

 $n^{O(r)} \cdot r^{O(t)}$. [Guan, Zhu. 1997]

On an *n*-vertex graph of treewidth t, $\sigma(G, w; r)$ can be computed in time $n^{O(r)} \cdot r^{O(t)}$. [Guan, Zhu. 1997]

They showed that we may assume $r \leq \chi_{FF}(G)$ (first-fit chromatic number).

On an *n*-vertex graph of treewidth t, $\sigma(G, w; r)$ can be computed in time $n^{O(r)} \cdot r^{O(t)}$. [Guan, Zhu. 1997]

They showed that we may assume $r \leq \chi_{FF}(G)$ (first-fit chromatic number). For any graph G, it holds that $\chi_{FF}(G) = O(t \log n)$. [Linhares, Reed. 2006]

On an *n*-vertex graph of treewidth t, $\sigma(G, w; r)$ can be computed in time

 $n^{O(r)} \cdot r^{O(t)}$. [Guan, Zhu. 1997]

They showed that we may assume $r \leq \chi_{FF}(G)$ (first-fit chromatic number).

For any graph G, it holds that $\chi_{FF}(G) = O(t \log n)$. [Linhares, Reed. 2006]

 $\implies \text{WEIGHTED COLORING can be solved on forests in time} \\ n^{O(\log n)} = 2^{O(\log^2 n)} \text{ (quasi-polynomial).}$

On an *n*-vertex graph of treewidth t, $\sigma(G, w; r)$ can be computed in time $n^{O(r)} \cdot r^{O(t)}.$ [Guan, Zhu, 1997]

They showed that we may assume $r \leq \chi_{FF}(G)$ (first-fit chromatic number).

For any graph G, it holds that $\chi_{FF}(G) = O(t \log n)$. [Linhares, Reed. 2006]

 $\implies \text{WEIGHTED COLORING can be solved on forests in time} \\ n^{O(\log n)} = 2^{O(\log^2 n)} \text{ (quasi-polynomial).}$

Open problem Is WEIGHTED COLORING **polynomial** on trees/forests? More generally, on graphs of bounded treewidth?

On an *n*-vertex graph of treewidth t, $\sigma(G, w; r)$ can be computed in time

 $n^{O(r)} \cdot r^{O(t)}$. [Guan, Zhu. 1997]

They showed that we may assume $r \leq \chi_{FF}(G)$ (first-fit chromatic number).

For any graph G, it holds that $\chi_{FF}(G) = O(t \log n)$. [Linhares, Reed. 2006]

 $\implies \text{WEIGHTED COLORING can be solved on forests in time} \\ n^{O(\log n)} = 2^{O(\log^2 n)} \text{ (quasi-polynomial).}$

 Open problem
 Is WEIGHTED COLORING polynomial on trees/forests?

 More generally, on graphs of bounded treewidth?

Some partial results:

- PTAS on bounded treewidth graphs. [Escoffier, Monnot, Paschos. 2006]
- Polynomial on the class of trees where vertices with degree at least three induce a stable set.
 [Kavitha, Mestre. 2012]

The question of [Guan, Zhu. 1997] has been answered only recently:

Theorem (Araújo, Nisse, Pérennes. 2014),

Unless the ETH fails, there is no algorithm computing the weighted chromatic number of n-vertex trees in time $n^{o(\log n)}$.

The question of [Guan, Zhu. 1997] has been answered only recently:

Theorem (Araújo, Nisse, Pérennes. 2014)

Unless the ETH fails, there is no algorithm computing the weighted chromatic number of n-vertex trees in time $n^{o(\log n)}$.

Exponential Time Hypothesis (ETH): the 3-SAT problem on formulas with *n* variables cannot be solved in subexponential time, that is, $2^{o(n)}$. [Impagliazzo, Paturi, Zane. 2001]

The question of [Guan, Zhu. 1997] has been answered only recently:

Theorem (Araújo, Nisse, Pérennes. 2014)

Unless the ETH fails, there is no algorithm computing the weighted chromatic number of n-vertex trees in time $n^{o(\log n)}$.

Exponential Time Hypothesis (ETH): the 3-SAT problem on formulas with *n* variables cannot be solved in subexponential time, that is, $2^{o(n)}$. [Impagliazzo, Paturi, Zane. 2001]

That is, the running time $n^{O(\log n)}$ is tight under the ETH.

The question of [Guan, Zhu. 1997] has been answered only recently:

Theorem (Araújo, Nisse, Pérennes. 2014)

Unless the ETH fails, there is no algorithm computing the weighted chromatic number of n-vertex trees in time $n^{o(\log n)}$.

Exponential Time Hypothesis (ETH): the 3-SAT problem on formulas with *n* variables cannot be solved in subexponential time, that is, $2^{o(n)}$. [Impagliazzo, Paturi, Zane. 2001]

That is, the running time $n^{O(\log n)}$ is tight under the ETH.

• WEIGHTED COLORING on forests is unlikely to be in P, as this would contradict the ETH.

The question of [Guan, Zhu. 1997] has been answered only recently:

Theorem (Araújo, Nisse, Pérennes. 2014)

Unless the ETH fails, there is no algorithm computing the weighted chromatic number of n-vertex trees in time $n^{o(\log n)}$.

Exponential Time Hypothesis (ETH): the 3-SAT problem on formulas with *n* variables cannot be solved in subexponential time, that is, $2^{o(n)}$. [Impagliazzo, Paturi, Zane. 2001]

That is, the running time $n^{O(\log n)}$ is tight under the ETH.

- WEIGHTED COLORING on forests is unlikely to be in P, as this would contradict the ETH.
- Also unlikely to be NP-hard, as all problems in NP could be solved in subexponential time, contradicting again the ETH.

Can we relax the complexity hypothesis?

<ロト < 部 > < 言 > < 言 > 三 の Q (~ 9/19

Providing hardness results for computing $\sigma(G, w)$ and $\sigma(G, w; r)$ when G is a forest, relying on complexity assumptions weaker than the ETH.

Providing hardness results for computing $\sigma(G, w)$ and $\sigma(G, w; r)$ when G is a forest, relying on complexity assumptions weaker than the ETH.

We study the problem from the viewpoint of parameterized complexity, and we assume the weaker hypothesis $FPT \neq W[1]$.

Providing hardness results for computing $\sigma(G, w)$ and $\sigma(G, w; r)$ when G is a forest, relying on complexity assumptions weaker than the ETH.

We study the problem from the viewpoint of parameterized complexity, and we assume the weaker hypothesis $FPT \neq W[1]$.

Indeed, it is well-known that

$$\begin{array}{ccc} \mathsf{ETH} & \Longrightarrow & \mathsf{FPT} \neq \mathsf{W}[1] & \Longrightarrow & \mathsf{P} \neq \mathsf{NP} \end{array}$$

Providing hardness results for computing $\sigma(G, w)$ and $\sigma(G, w; r)$ when G is a forest, relying on complexity assumptions weaker than the ETH.

We study the problem from the viewpoint of parameterized complexity, and we assume the weaker hypothesis $FPT \neq W[1]$.

Indeed, it is well-known that

$$\begin{array}{ccc} \mathsf{ETH} & \Longrightarrow & \mathsf{FPT} \neq \mathsf{W}[1] & \Longrightarrow & \mathsf{P} \neq \mathsf{NP} \end{array}$$

Instances of a parameterized problem: come with an integer parameter k.

Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm \mathcal{A} , a computable function f, and a constant c such that given an instance I = (x, k), \mathcal{A} solves the problem in time bounded by $f(k) \cdot |I|^c$.

Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm \mathcal{A} , a computable function f, and a constant c such that given an instance I = (x, k), \mathcal{A} solves the problem in time bounded by $f(k) \cdot |I|^c$.

Parameterized reduction: given an input I = (x, k) of the source problem, computes in time $f(k) \cdot |I|^c$, an equivalent instance I' = (x', k') of the target problem, such that $k' \leq g(k)$ for some function g.

Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm \mathcal{A} , a computable function f, and a constant c such that given an instance I = (x, k), \mathcal{A} solves the problem in time bounded by $f(k) \cdot |I|^c$.

Parameterized reduction: given an input I = (x, k) of the source problem, computes in time $f(k) \cdot |I|^c$, an equivalent instance I' = (x', k') of the target problem, such that $k' \leq g(k)$ for some function g.

W[1]-hard problems: any problem that admits a parameterized reduction from INDEPENDENT SET parameterized by the size of the solution.

Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm \mathcal{A} , a computable function f, and a constant c such that given an instance I = (x, k), \mathcal{A} solves the problem in time bounded by $f(k) \cdot |I|^c$.

Parameterized reduction: given an input I = (x, k) of the source problem, computes in time $f(k) \cdot |I|^c$, an equivalent instance I' = (x', k') of the target problem, such that $k' \leq g(k)$ for some function g.

W[1]-hard problems: any problem that admits a parameterized reduction from INDEPENDENT SET parameterized by the size of the solution.

W[2]-hard problems: any problem that admits a parameterized reduction from **DOMINATING SET** parameterized by the size of the solution.

Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists an algorithm \mathcal{A} , a computable function f, and a constant c such that given an instance I = (x, k), \mathcal{A} solves the problem in time bounded by $f(k) \cdot |I|^c$.

Parameterized reduction: given an input I = (x, k) of the source problem, computes in time $f(k) \cdot |I|^c$, an equivalent instance I' = (x', k') of the target problem, such that $k' \leq g(k)$ for some function g.

W[1]-hard problems: any problem that admits a parameterized reduction from INDEPENDENT SET parameterized by the size of the solution.

W[2]-hard problems: any problem that admits a parameterized reduction from DOMINATING SET parameterized by the size of the solution.

The theory of parameterized complexity is built based on $FPT \neq W[1]$.

W[1]-hardness: strong evidence of not being FPT. W[2]-hardness: even more!

Given a weighted forest (G, w), computing $\sigma(G, w)$ is W[1]-hard parameterized by the size of a largest connected component of G.

Given a weighted forest (G, w), computing $\sigma(G, w)$ is W[1]-hard parameterized by the size of a largest connected component of G.

Consequences: W[1]-hard parameterized by treewidth, cliquewidth, maximum degree, maximum diameter of a connected component, number of colors, etc.

Given a weighted forest (G, w), computing $\sigma(G, w)$ is W[1]-hard parameterized by the size of a largest connected component of G.

Consequences: W[1]-hard parameterized by treewidth, cliquewidth, maximum degree, maximum diameter of a connected component, number of colors, etc.

Theorem (Araújo, Baste, S.)

Given a weighted tree (G, w) and an integer r, computing $\sigma(G, w; r)$ is W[2]-hard parameterized by r.

Given a weighted forest (G, w), computing $\sigma(G, w)$ is W[1]-hard parameterized by the size of a largest connected component of G.

Consequences: W[1]-hard parameterized by treewidth, cliquewidth, maximum degree, maximum diameter of a connected component, number of colors, etc.

Theorem (Araújo, Baste, S.)

Given a weighted tree (G, w) and an integer r, computing $\sigma(G, w; r)$ is W[2]-hard parameterized by r.

Note: results are incomparable to those of [Araújo, Nisse, Pérennes. 2014]

Given a weighted forest (G, w), computing $\sigma(G, w)$ is W[1]-hard parameterized by the size of a largest connected component of G.

Consequences: W[1]-hard parameterized by treewidth, cliquewidth, maximum degree, maximum diameter of a connected component, number of colors, etc.

Theorem (Araújo, Baste, S.)

Given a weighted tree (G, w) and an integer r, computing $\sigma(G, w; r)$ is W[2]-hard parameterized by r.

Note: results are incomparable to those of [Araújo, Nisse, Pérennes. 2014] Recall: on forests, $\sigma(G, w; r)$ can be computed in time $n^{O(r)}$.

Given a weighted forest (G, w), computing $\sigma(G, w)$ is W[1]-hard parameterized by the size of a largest connected component of G.

Consequences: W[1]-hard parameterized by treewidth, cliquewidth, maximum degree, maximum diameter of a connected component, number of colors, etc.

Theorem (Araújo, Baste, S.)

Given a weighted tree (G, w) and an integer r, computing $\sigma(G, w; r)$ is W[2]-hard parameterized by r.

Note: results are incomparable to those of [Araújo, Nisse, Pérennes. 2014]

Recall: on forests, $\sigma(G, w; r)$ can be computed in time $n^{O(r)}$.

Corollary (Araújo, Baste, S.)

Assuming ETH, there is no algorithm that, given a weighted tree (G, w) and a positive integer r, computes $\sigma(G, w; r)$ in time $f(r) \cdot n^{o(r)}$ for any computable function f.

General framework

Our reductions are inspired by the one of [Araújo, Nisse, Pérennes. 2014]

We present two parameterized reductions:

1 Instance (G, k) of INDEPENDENT SET \rightarrow Instance (G', w) of WEIGHTED COLORING.

We present two parameterized reductions:

- Instance (G, k) of INDEPENDENT SET \longrightarrow Instance (G', w) of WEIGHTED COLORING.
 - There exists a solution of INDEPENDENT SET on $(G, k) \iff \sigma(G', w) \le M$, for some appropriately chosen real number M < 2.
 - The size of any connected component of G' is at most $13 \cdot 2^{4k} + 12$.

We present two parameterized reductions:

- Instance (G, k) of INDEPENDENT SET \longrightarrow Instance (G', w) of WEIGHTED COLORING.
 - There exists a solution of INDEPENDENT SET on $(G, k) \iff \sigma(G', w) \le M$, for some appropriately chosen real number M < 2.
 - The size of any connected component of G' is at most $13 \cdot 2^{4k} + 12$.
- ② Instance (G, k) of DOMINATING SET → Instance (G', w) of WEIGHTED COLORING.

We present two parameterized reductions:

- Instance (G, k) of INDEPENDENT SET \longrightarrow Instance (G', w) of WEIGHTED COLORING.
 - There exists a solution of INDEPENDENT SET on $(G, k) \iff \sigma(G', w) \le M$, for some appropriately chosen real number M < 2.
 - The size of any connected component of G' is at most $13 \cdot 2^{4k} + 12$.
- ② Instance (G, k) of DOMINATING SET → Instance (G', w) of WEIGHTED COLORING.
 - There exists a solution of DOMINATING SET on $(G, k) \iff \sigma(G', w; r) \le M$, with r = 4k + 4.

For $i \in [0, 4k + 3]$ and $j \in [0, n]$, let $w_i^j = \frac{1}{2^i} + j\varepsilon$, for some $\varepsilon > 0$. Index *i*: colors in *G'*. Index *j*: vertices of the input graph *G*.

For $i \in [0, 4k + 3]$ and $j \in [0, n]$, let $w_i^j = \frac{1}{2^i} + j\varepsilon$, for some $\varepsilon > 0$. Index *i*: colors in *G'*. Index *j*: vertices of the input graph *G*.

Binomial trees **Role**: force most of the colors of the vertices of the forest.

For each $i \in [0, 4k + 3]$, we define recursively the weighted rooted tree B_i :

• if i = 0, then B_0 has a unique node of weight w_0^0 ,

• otherwise, B_i has a root r of weight w_i^0 and, for each $j \in [0, i - 1]$, we introduce a copy of B_j and we connect its root to r_{z} , $z \in [z - 2]$

For $\ell \in [0,3]$, let $W_{\ell} = w_{4k+\ell}^0 = \frac{1}{2^{4k+\ell}}$. Let $R_{\ell} = S_{4k+\ell}$ to be the unique color of weight W_{ℓ} .

For $\ell \in [0,3]$, let $W_{\ell} = w_{4k+\ell}^0 = \frac{1}{2^{4k+\ell}}$. Let $R_{\ell} = S_{4k+\ell}$ to be the unique color of weight W_{ℓ} .

AND gadget

Let $i \in [0, 1]$. Given two vertices l_1 , l_2 , we define the R_i -AND gadget between the input vertices l_1 and l_2 , to be "this" graph:

Available colors are forced by pendant binomial trees (omitted).

For $\ell \in [0,3]$, let $W_{\ell} = w_{4k+\ell}^0 = \frac{1}{2^{4k+\ell}}$. Let $R_{\ell} = S_{4k+\ell}$ to be the unique color of weight W_{ℓ} .

AND gadget

Let $i \in [0, 1]$. Given two vertices l_1 , l_2 , we define the R_i -AND gadget between the input vertices l_1 and l_2 , to be "this" graph:

Available colors are forced by pendant binomial trees (omitted).

If both I_1 and I_2 are colored R_i , then O must be colored R_i . If either I_1 or I_2 is not colored R_i , then O can be colored either R_0 or $R_1 \to \infty \cap O$

Vertex tree

For $i \in [0, k - 1]$ and $j \in [0, n - 1]$, we define the vertex tree T_i^j , representing the vertex j, to be "this" graph, with root u:

Vertex tree

For $i \in [0, k - 1]$ and $j \in [0, n - 1]$, we define the vertex tree T_i^j , representing the vertex j, to be "this" graph, with root u:

Idea: root u gets color R_0 (R_1) \Rightarrow vertex v is (not) in the solution. (It can be proved that the choices need to be consistent for each vertex.)

Vertex tree

For $i \in [0, k - 1]$ and $j \in [0, n - 1]$, we define the vertex tree T_i^j , representing the vertex j, to be "this" graph, with root u:

Idea: root u gets color R_0 $(R_1) \Rightarrow$ vertex v is (not) in the solution. (It can be proved that the choices need to be consistent for each vertex.) Each time we choose a vertex \Rightarrow "pay" $(n-1)\varepsilon$ in the total weight.

Vertex tree

For $i \in [0, k - 1]$ and $j \in [0, n - 1]$, we define the vertex tree T_i^j , representing the vertex j, to be "this" graph, with root u:

Idea: root *u* gets color $R_0(R_1) \Rightarrow$ vertex *v* is (not) in the solution. (It can be proved that the choices need to be consistent for each vertex.) Each time we choose a vertex \Rightarrow "pay" $(n-1)\varepsilon$ in the total weight. Making *k* such choices is forced by $M = k(n-1)\varepsilon_{\Box} + \sum_{i \in [0,4k+3]=2^{i}}$.

Sketch of the W[1]-hardness reduction

(G, k) of INDEPENDENT SET $\longrightarrow (G', w)$ of WEIGHTED COLORING.

Sketch of the W[1]-hardness reduction

(G, k) of INDEPENDENT SET $\longrightarrow (G', w)$ of WEIGHTED COLORING.

We create, for each edge $\{v_1, v_2\} \in E(G)$ and $i_1, i_2 \in [0, k-1]$, a tree $H_{\{v_1, v_2\}, i_1, i_2}$ obtained from the vertex trees $T_{i_1}^{v_1}$ and $T_{i_2}^{v_2}$ as follows:

Idea: for $\{v_1, v_2\} \in E(G)$, at most one of v_1 and v_2 in the stable set.

Sketch of the W[1]-hardness reduction

(G, k) of INDEPENDENT SET $\longrightarrow (G', w)$ of WEIGHTED COLORING.

We create, for each edge $\{v_1, v_2\} \in E(G)$ and $i_1, i_2 \in [0, k-1]$, a tree $H_{\{v_1, v_2\}, i_1, i_2}$ obtained from the vertex trees $T_{i_1}^{v_1}$ and $T_{i_2}^{v_2}$ as follows:

Idea: for $\{v_1, v_2\} \in E(G)$, at most one of v_1 and v_2 in the stable set.

Forest (G', w): disjoint union of these trees $H_{\{v_1, v_2\}, i_1, i_2}$, for $\{v_1, v_2\} \in E(G)$ and $i_1, i_2 \in [0, k-1]$. (with some other technical stuff)

There exists a solution of INDEPENDENT SET on $(G, k) \Leftrightarrow \sigma(G', w) \leq M_{q, Q}$

18/19

Gràcies!

<□ > < @ > < ≥ > < ≥ > ≥ ♡ < ♡ 19/19