Advances in Aharoni-Hartman-Hoffman's Conjecture for Split digraphs

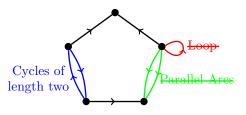
Maycon Sambinelli

Institute of Computing – University of Campinas

Joint work with Cândida Nunes da Silva and Orlando Lee

Basic definitions

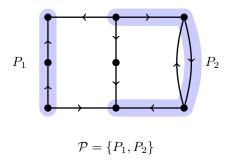
- $\bullet\,$ Let D be a digraph
 - Vertex set: V(D)
 - Arc set: A(D)



• Paths are directed

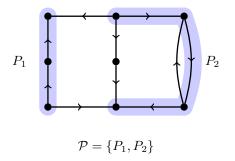
k-pack

A $k\operatorname{-pack}$ is a collection of at most $k\in\mathbb{Z}_+$ vertex-disjoint paths



k-pack

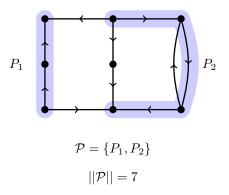
A *k*-pack is a collection of at most $k \in \mathbb{Z}_+$ vertex-disjoint paths



A vertex v is *covered* by a k-pack \mathcal{P} if $\exists P \in \mathcal{P}$ such that $v \in V(P)$

Weight of a k-pack

The *weight* of a k-pack \mathcal{P} , denoted by $||\mathcal{P}||$, is the number of vertices covered by \mathcal{P}



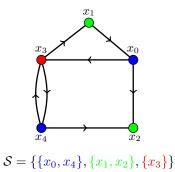
Optimal k-pack

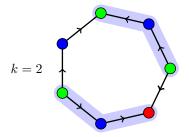
• A k-pack \mathcal{P} of D is *optimal* if its weight is maximum among all k-packs of D

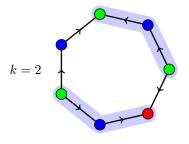
• $\lambda_k(D)$: the weight of an optimal k-pack of D

Coloring

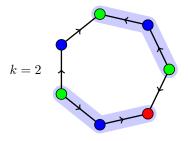
A *coloring* of a digraph D is a partition of its vertices into stable sets *(color classes)*



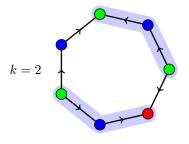




$$\min(|\mathbf{O}|, k) = \min(3, 2) = 2$$



$$\min(|\mathbf{O}|, k) = \min(3, 2) = 2$$



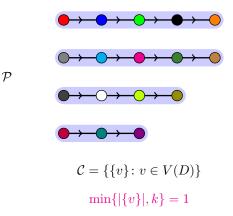
$$\min(|\bullet|, k) = \min(1, 2) = 1$$

Aharoni, Hartman, and Hoffman's Conjecture

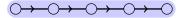
Aharoni, Hartman, and Hoffman's Conjecture (AHH), 1985. If \mathcal{P} is an optimal k-pack, then there exists a coloring orthogonal to \mathcal{P} .

Orthogonality: each color class C must meet min $\{|C|, k\}$ paths

Orthogonality: each color class C must meet min $\{|C|, k\}$ paths



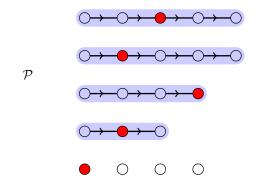
Orthogonality: each color class C must meet min $\{|C|, k\}$ paths



 \circ \circ \circ \circ

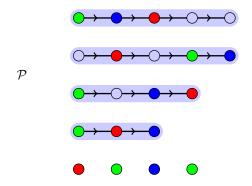
Orthogonality: each color class C must meet min $\{|C|, k\}$ paths

Orthogonality: each color class C must meet min $\{|C|, k\}$ paths

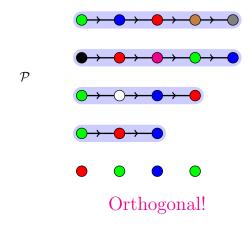


Transversal color: a color which meets every path in the k-pack

Orthogonality: each color class C must meet min $\{|C|, k\}$ paths



Orthogonality: each color class C must meet min $\{|C|, k\}$ paths



- k = 1 (Gallai, 1968, and Roy, 1967)
- Bipartite digraphs (Hartman et al., 1994)
- Acyclic digraphs (Aharoni et al., 1985)
- The optimal k-pack has at least one trivial path (Hartman et al., 1994)

- k = 1 (Gallai, 1968, and Roy, 1967)
- Bipartite digraphs (Hartman et al., 1994)
- Acyclic digraphs (Aharoni et al., 1985)
- The optimal k-pack has at least one trivial path (Hartman et al., 1994)

AHH's Conjecture \Rightarrow Linial's Conjecture (1981)

- k = 1 (Gallai, 1968, and Roy, 1967)
- Bipartite digraphs (Hartman et al., 1994)
- Acyclic digraphs (Aharoni et al., 1985)
- The optimal k-pack has at least one trivial path (Hartman et al., 1994)

AHH's Conjecture \Rightarrow Linial's Conjecture (1981)

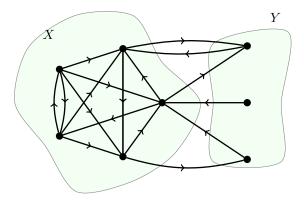
- k = 1 (Gallai, 1968, and Roy, 1967)
- Bipartite digraphs (Hartman et al., 1994)
- Acyclic digraphs (Aharoni et al., 1985)
- The optimal k-pack has at least one trivial path (Hartman et al., 1994)

AHH's Conjecture \Rightarrow Linial's Conjecture (1981)

- k = 1 (Gallai, 1968, and Roy, 1967)
- Bipartite digraphs (Hartman et al., 1994)
- Acyclic digraphs (Aharoni et al., 1985)
- The optimal k-pack has at least one trivial path (Hartman et al., 1994)

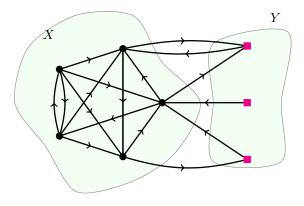
 $\begin{array}{ccc} \text{AHH's Conjecture} & \Rightarrow & \text{Linial's Conjecture (1981)} \\ \swarrow & & \checkmark \\ ??? & & \text{Split digraphs} \end{array}$

Split digraph



 \boldsymbol{X} is a clique and \boldsymbol{Y} a stable set

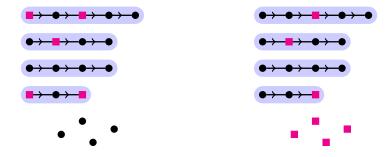
Split digraph

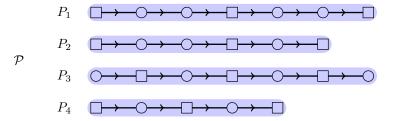


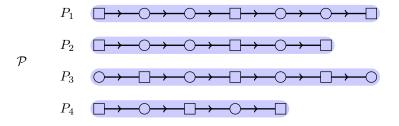
 \boldsymbol{X} is a clique and \boldsymbol{Y} a stable set

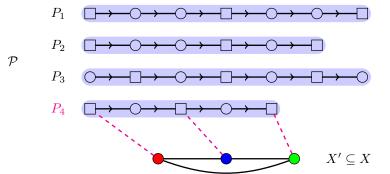
Our results

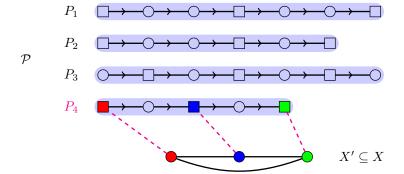
Given a split digraph D, we verified Aharoni, Hartman, and Hoffman's Conjecture when the optimal k-pack \mathcal{P} satisfies one of the following conditions:

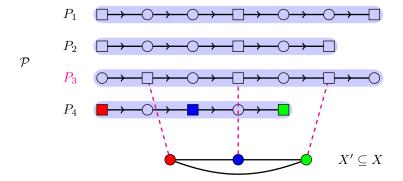


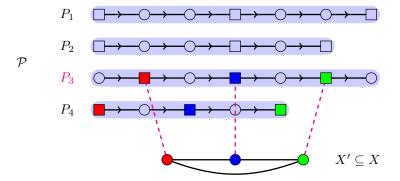


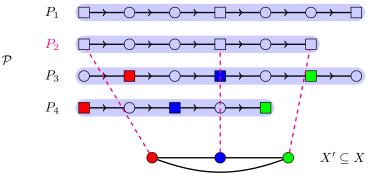




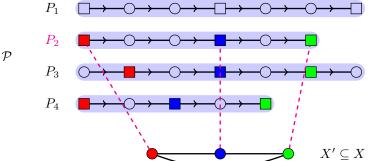


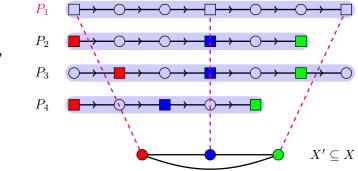




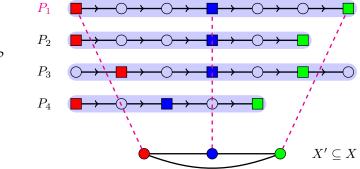


14 / 25

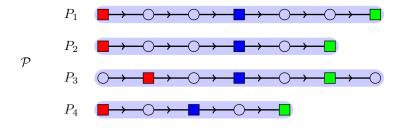


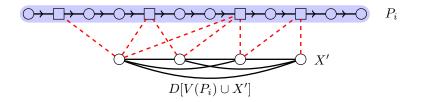


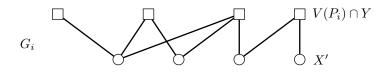
 \mathcal{P}



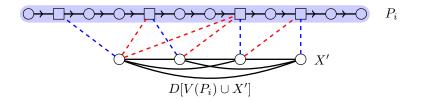
 \mathcal{P}

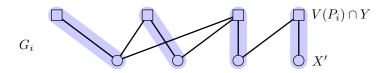




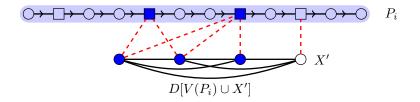


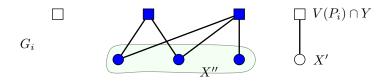
 $E(G_i) = \{uv \colon u \in V(P_i) \cap Y \text{ and } v \in X' \text{ are nonadjacent in } D\}$

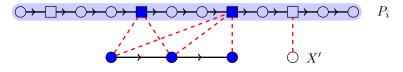




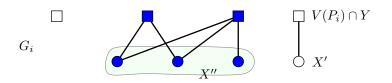
 $E(G_i) = \{uv \colon u \in V(P_i) \cap Y \text{ and } v \in X' \text{ are nonadjacent in } D\}$

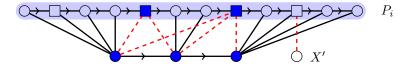




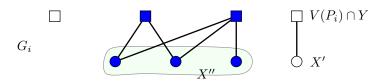


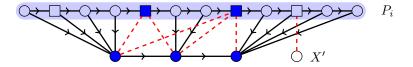
 $D[V(P_i) \cup X']$



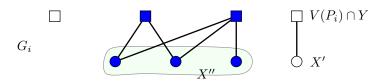


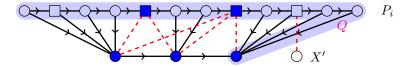
 $D[V(P_i) \cup X']$





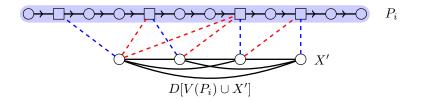
 $D[V(P_i) \cup X']$

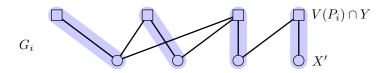




 $D[V(P_i) \cup X']$

$||\mathcal{P} - P_i + Q|| > ||\mathcal{P}||$





 $E(G_i) = \{uv \colon u \in V(P_i) \cap Y \text{ and } v \in X' \text{ are nonadjacent in } D\}$

