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Interval graphs

Interval graphs
A graph is an interval graph if it is possible to assign an interval to each
vertex in such a way that two different vertices are adjacent if and only if
the corresponding intervals have nonempty intersection.

The corresponding set of intervals is called an interval model of the
graph.

Hajós (1957) posed the problem of characterizing interval graphs.



Interval graphs

There are many different characterizations of interval graphs.

The following is the minimal forbidden induced subgraph characterization
of interval graphs. (An induced subgraph of a graph G is any graph
obtained from G by vertex removals.)

Theorem (Lekkerkerker and Boland, 1962)
A graph is an interval graph if and only if it contains none of the
following as an induced subgraph:

bipartite claw umbrella
1 2· · ·k

k-net, k > 2
1 2 3 · · · k
k-tent, k > 3

1

k2

3 · · ·
Ck, k > 4

Recently, Lindzey and McConnell (2016) devised the first linear-time
algorithm that, given any graph G which is not an interval graph, finds
one of the minimal forbidden induced subgraphs of Lekkerkerker and
Boland’s characterization contained in G as an induced subgraph.



Characterizing and finding forbidden subgraphs

I Algorithms for recognizing interval graphs and producing an interval
model if the input is an interval graph are known since long ago;
e.g., Fulkerson and Gross (1965) (first polynomial-time) and Booth
and Lueker (1976) (first linear-time).

I The algorithm by Lindzey and McConnell (2016) adds the possibility
of producing one of Lekkerkerker and Boland’s minimal forbidden
induced subgraphs when the input graph is not an interval graph.
(Previously, Kratsch, McConnell, Mehlhorn, and Spinrad (2006)
devised an algorithm which, given any graph that is not an interval
graph, produced a hole or an asteroidal triple, which form the
obstruction set in a different characterization of interval graphs).

I This approach of complementing recognition algorithms by an
algorithm that produces a minimal forbidden induced subgraph when
the input graph is not in the class may be applied to other hereditary
graph classes (i.e., graph classes closed by taking induced
subgraphs).



Characterizing and finding forbidden subgraphs

I We are interested in obtaining results analogous to those of
Lekkerkerker and Boland (1962) and Lindzey and McConnell (2016),
for other related hereditary graph classes.

I That is, we are interested in minimal forbidden induced subgraph
characterizations and linear-time algorithms for finding one of the
corresponding minimal forbidden induced subgraphs.

I In this talk, we will present some recent results in this direction
regarding three different hereditary subclasses of circular-arc graphs
and the main problems that remain open.



Circular-arc graphs

Circular-arc graphs
A graph is a circular-arc graph if it is possible to assign an arc of some
fixed circle to each vertex in such a way that two different vertices are
adjacent if and only if the corresponding arcs have nonempty intersection.

The set of circular-arcs is called a circular-arc model of the graph.

Klee (1969) was the first to pose explicitly the problem of characterizing
circular-arc graphs.

Different subclasses of circular-arc graphs have been characterized.



Restricted circular-arc models and graphs

A circular-arc model is:

I proper if no arc of the model is properly contained in another arc of
the model;

I normal if no two arcs together cover the whole circle;

I Helly if every set of pairwise intersecting arcs of the model has
nonempty total intersection;

I proper Helly if it is simultaneously proper and Helly;

I normal Helly if it is simultaneously normal and Helly.

not proper not normal not Helly proper, normal
model model model and Helly model

A circular-arc graph is proper, normal, Helly, proper Helly, or normal
Helly if it admits at least one circular-arc model which is so.



Concave-round graphs

We will also consider the following graphs.

Concave-round graphs
A graph is concave-round if there is a circular enumeration of its vertices
in such a way that the closed neighborhood of each vertex is an arc in
the enumeration.

admits 1, 2, 3, 4, 5, 6, 7 as a concave-round enumeration:
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Concave-round graphs

Tucker (1971) was the first to study concave-round graphs as a special
type of circular-arc graphs.

Theorem (Tucker, 1971)
Concave-round graphs form a subclass of circular-arc graphs.
Moreover, concave-round graphs form a superclass of proper circular-arc
graphs.

The name ‘concave-round’ is due to Bang-Jensen, Huang, and Yeo
(2000).

Concave-round graphs are also known as Γ circular-arc graphs or Tucker
circular-arc graphs.



Circular-arc graphs: Recognition algorithms

I Linear-time recognition algorithms that also produce a corresponding
circular-arc model or concave-round enumeration proving
memembership to the class are known for all the subclasses of
circular-arc graphs we will consider, with the only exception of
normal circular-arc graphs (for which no polynomial-time recognition
algorithm is known).

I The diagram that follows shows the classes we will discuss and the
references to the first such linear-time algorithm in each case.



Circular-arc graphs: Recognition algorithms

All graphs

CA graphs [MC03]

Helly CA [JLMSS11]normal CA

normal Helly CA [LSS13]proper CA [DHH’96]

concave-round [BL76]

proper Helly CA [LSS07] interval [BL76]

BL: Booth and Lueker
DHH: Deng, Hell, and Huang
JLMSS: Joeris, Lin, McConnell,
Spinrad, and Szwarcfiter
LSS: Lin, Soulignac, and Szwarcfiter
MC: McConnell



Circular-arc graphs: Forbidden subgraphs

I Our next diagram will present known results regarding forbidden
induced subgraph characterizations of the same subclasses of
circular-arc graphs and, on top this diagram, we will be presenting
our results.

I A complete characterization of circular-arc graphs by forbidden
structures, together with an O(n3)-time algorithm for finding one
such forbidden structure in any given graph that is not a circular-arc
graph, was recently given by Francis, Hell, and Stacho (2015).

The corresponding forbidden structures are called anchored invertible
pairs which, roughly speaking, a pair of mutually avoiding walks that
also avoid a fixed third vertex in a so-called circular completion of
the graph.

Although not strictly a forbidden induced subgraph characterization,
it is very relevant as a forbidden structure characterization of
circular-arc graphs and we include it in our chart.



Circular-arc graphs: Forbidden subgraphs/structures

All graphs

CA graphs

Helly CAnormal CA

normal Helly CA [LSS13]proper CA [T74]

concave-round

proper Helly CA [LSS07] interval [LB62]

FHS: Francis, Hell, and Stacho
JLMSS: Joeris, Lin, McConnell,
Spinrad, and Szwarcfiter
LB: Lekkerkerker and Boland
LSS: Lin, Soulignac, and Szwarcfiter
T: Tucker

anchored inv. pairs [FHS15]

obstacles
[JLMSS11]? ?
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Forbidden subgraphs of normal Helly circular-arc graphs

Lin, Soulignac, and Szwarcfiter (2013) proved the following
characterization of normal Helly circular-arc graphs by minimal forbidden
induced subgraphs, by restricting the characterization to circular-arc
graphs only.

Theorem (Lin, Soulignac, and Szwarcfiter, 2013)
Let G be a circular-arc graph. Then, G is a normal Helly circular-arc
graph if and only if G contains none of the following as an induced
subgraph:

bipartite claw umbrella net
1 2 3 · · · k
k-tent, k > 3

1

k2

3 · · ·
k-wheel, k > 4

They also posed the problem of finding the complete characterization
(i.e., dropping the hypothesis that G is a circular-arc graph).



Forbidden subgraphs of normal Helly circular-arc graphs

We solved this problem; i.e,. we found the complete list of minimal
forbidden induced subgraphs for the class of normal Helly circular-arc
graphs.

Theorem (Cao, Grippo, and S., 2017)
A graph is a normal Helly circular-arc graph if and only if it contains
none of the following graphs as an induced subgraph:

bipartite claw umbrella
1 2· · ·k

k-net, k > 2
1 2 3 · · · k
k-tent, k > 3

1

k2

3 · · ·
k-wheel, k > 4

G1 = K2,3 G2 G3 G4 domino C6

1

k2

3 · · ·
Ck ∪ K1, k > 4



Forbidden subgraphs of normal Helly circular-arc graphs

Theorem (Cao, Grippo, and S., 2017)
There is a linear-time algorithm that, given any graph G that is not a
normal Helly circular-arc graph, finds an induced subgraph of G that is a
minimal forbidden induced subgraph for the class of normal Helly
circular-arc graphs.

The main idea behind the algorithm is that, if G is a graph that is not a
normal Helly circular-arc graph, considering certain auxiliary graph f(G),
either f(G) is non-interval or from any interval model of f(G) we can
build a normal circular-arc model of G which is not Helly. In both cases,
we show how this leads to an induced subgraph of G isomorphic to one
of the stated minimal forbidden induced subgraphs.
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Concave-round graphs and the circular-ones property

Circular-ones property (Tucker, 1970)

I A matrix has the circular-ones property for rows if there is a circular
ordering of its columns in such a way that that the ones in each row
are consecutive in this circular ordering.

0 0 1 0 1 0 1
1 1 0 1 1 1 0
1 0 1 1 1 0 1
1 1 0 1 0 1 0
1 1 1 0 1 0 1

 →


0 0 0 0 1 1 1
1 1 1 1 0 0 1
1 0 0 1 1 1 1
1 1 1 1 0 0 0
1 1 0 0 1 1 1


I The circular-ones property for columns is defined analogously.



Concave-round graphs and the circular-ones property

An augmented adjacency matrix M(G) of a graph G arises by putting 1’s
all along the diagonal of an adjacency matrix of G.

Remark
A graph G is concave-round if and only if the augmented adjacency
matrix M(G) has the circular-ones property for rows and columns.

1

2

6

4 7

3

5

M(G) =



1 1 0 1 1 1 1
1 1 0 1 0 1 1
0 0 1 0 1 0 1
1 1 0 1 1 1 0
1 0 1 1 1 0 1
1 1 0 1 0 1 0
1 1 1 0 1 0 1


→



1 1 1 1 1 0 1
1 1 1 1 1 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 1
1 1 0 0 1 1 1
0 0 0 0 1 1 1
1 0 0 1 1 1 1





Forbidden subgraphs of concave-round graphs

Bang-Jensen, Huang, and Yeo (2000) posed the problem of
characterizing concave-round graphs by forbidden induced subgraphs.

The result below gives the solution to the problem.

Theorem (S., 2016+[a])
A graph is concave-round if and only if G contains none of the following
as an induced subgraph: Ck ∪ K1 for any k > 4, C2k+1 ∪ K1 for any
k > 1, C2k for any k > 3, plus



Forbidden subgraphs of concave-round graphs

Theorem (S., 2016+[a])
There is a linear-time algorithm that, given a graph G that is not
concave-round, finds an induced subgraph of G which is a minimal
forbidden induced subgraph for the class of concave-round graphs.

The proof is in two steps.

I We first identify the minimal forbidden submatrices for the
circular-ones property for rows and columns and show that one such
submatrix (if present) can be found in linear time.

I Then, we apply this result to the augmented adjacency matrix and
exploit the fact that the class of proper circular-arc graphs is a
subclass of the class of concave-round graphs.

We also observed, by combining results from Tucker (1971, 1974),
Golumbic (1980), Müller (1997), and Hell and Huang (2004), that
concave-round graphs are normal circular-arc graphs.
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Obstacles and Helly circular-arc graphs

Theorem
(Joeris, Lin, McConnell, Spinrad, and Szwarcfiter, 2011)
Let G be a circular-arc graph. Then, G is a Helly circular-arc graph if
and only if G contains no induced obstacle.

This theorem gives a characterization of Helly circular-arc graphs by
forbidden induced subgraphs restricted to circular-arc graphs.

Nevertheless, this characterization is not by minimal forbidden induced
circular-arc subgraphs because:

I There are obstacles that contain other obstacles with fewer vertices
as induced subgraphs.

I There are obstacles which are not circular-arc graphs.



Obstacle enumeration and witnesses

Obstacle enumeration
An obstacle enumeration of a graph is circular enumeration v1, v2, . . . , vk
of the vertices for some clique Q such that k > 3 and, for each two
consecutive vertices vi and vi+1 in the circular enumeration (where vk+1

stands for v1), one of the following situations holds:

vi vi+1

wi

vi vi+1

ui zi

Black vertices are those of the clique Q and white vertices are called the
witnesses of the circular enumeration.
Notice that adjacencies between witnesses corresponding to different
pairs of consecutive vertices of the enumeration are arbitrary.



Obstacles

Obstacles
(Joeris, Lin, McConnell, Spinrad, and Szwarcfiter, 2011)
An obstacle is a graph G admitting an obstacle enumeration such that
the vertices of G are those of the obstacle enumeration and its witnesses.

v2v1

v4 v3

w1

z4

z3 = u4 z2 = u3

u2

v2v1

v4 v3

w1

z4

z3 = u4z2 = u3

u2

Except for those edges required by the definition of obstacle enumeration
(u2z2, u3z3, and u4z4) adjacencies among white vertices are arbitrary.
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Obstacles

Obstacles
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z2 = u3

v3

v2v1

v4

w1

z4

z3 = u4

u2

v3

z2 = u3

v2v1

v4

w1

z4

z3 = u4

u2

Except for those edges required by the definition of obstacle enumeration
(u2z2, u3z3, and u4z4) adjacencies among white vertices are arbitrary.



Obstacles may not be minimal or circular-arc

I Not only there are obstacles which contain other obstacles as
induced subgraphs:

I As already noticed by Joeris, Lin, McConnell, Spinrad, and
Szwarcfiter (2011), obstacles may not be circular-arc graphs.

C6 is not circular-arc



Valid edges

In order to overcome these drawbacks, we introduce essential obstacles,
which are defined in terms of valid edges.

Valid edges
An edge joining two witnesses is valid if it is of one of the following types:

vi
vi+1vi−1

wi

zi−1

ui−1
vi

vi+1vi−1

uizi−1

ui−1 zi
vi

vi+1
vi−1

zi

uiwi−1



Essential enumerations and essential obstacles

Essential enumerations and essential obstacles
An obstacle enumeration Q is essential if every edge joining two of its
witnesses is valid.
An obstacle is essential if it admits an essential obstacle enumeration.

I Each of the blue edges may or may not be present.

I No other edges between white vertices are allowed.

Lemma (S., 2016+[b])
Each essential obstacle is a circular-arc graph and a minimal forbidden
induced subgraph for the class of Helly circular-arc graphs.
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Non-essential obstacle enumerations

The following example shows a minimal forbidden induced subgraph for
the class of Helly circular-arc graphs which is also a circular-arc graph:

Lemma (S., 2016+[b])
Each minimal forbidden induced subgraph for the class of Helly
circular-arc graphs that is a circular-arc graph is an essential obstacle.
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Essential obstacles

Theorem (S., 2016+[b])
Essential obstacles are precisely the minimal forbidden induced
circular-arc subgraphs for the class of Helly circular-arc graphs.

Corollary
The number of minimal forbidden induced subgraphs for the class of
Helly circular-arc having at most N vertices grows exponentially with N.



Essential obstacles

Joeris et al. (2011) gave an algorithm for finding an induced obstacle in
any circular-arc graph which is not a Helly circular-arc graph.

Theorem
(Joeris, Lin, McConnell, Spinrad, and Szwarcfiter, 2011)
Given a circular-arc graph G which is not a Helly circular-arc graph, it is
possible find in linear time an obstacle induced in G.
Moreover, if a circular-arc model of G is given as input, the time bound
reduces to O(n).

We managed to modify their algorithm so as to produce an essential
obstacle instead, within the same time bound.

Theorem (S., 2016+[b])
Given any circular-arc graph G which is not a Helly circular-arc graph, it
is possible to find in linear time an essential obstacle induced in G.
Moreover, if a circular-arc model of G is given as input, the time bound
reduces to O(n).
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... and finding forbidden subgraphs/structures
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essential
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[S16+]
?



Main open problems

I Characterize circular-arc graphs by forbidden (sub)structures that
can be found and authenticated in less than O(n3) time. The
O(n3)-time bound is matched by the algorithm by Francis, Hell, and
Stacho (2015).

I Characterize normal circular-arc graphs by forbidden structures (at
least within circular-arc graphs) and devise a polynomial-time
algorithm for finding one of the corresponding forbidden
substructures (if present).

Hell and Huang (2004) proved that normal circular-arc graphs which
are co-bipartite are precisely the complement of interval bigraphs, for
which the forbidden induced subgraphs are only partially known
(A. K. Das, S. Das, and Sen, 2016). More partial characterizations
of normal circular-arc graphs were found by Bonomo, Durán, Grippo,
and S. (2009).

I Characterize Helly circular-arc graphs by forbidden induced
subgraphs not restricted to circular-arc graphs and design a
polynomial-time algorithm for finding one of the corresponding
forbidden induced subgraphs.



{claw, 5-wheel}-free Helly circular-arc graphs

As a partial solution to the last problem, we found:

I the characterization by minimal forbidden induced subgraphs of Helly
circular-arc graphs restricted to {claw, 5-wheel}-free graphs, and

I a linear-time algorithm that, given any graph G that is not a Helly
circular-arc graph, finds an induced subgraph of G which is
isomorphic to claw, 5-wheel, or a minimal forbidden induced
subgraph for the class of Helly circular-arc graphs.

claw 5-wheel

Notice that no forbidden induced subgraph characterization for
circular-arc graphs restricted to {claw, 5-wheel}-free graphs is known.
It is known for the following more restricted classes: complements of
bipartite graphs (Trotter and Moore, 1976) and claw-free chordal
graphs (Bonomo, Durán, Grippo, and S., 2009).



{claw, 5-wheel}-free Helly circular-arc graphs

Theorem (S., 2016+[b])
Let G be {claw, 5-wheel}-free graph. Then, G is a Helly circular-arc graph
if and only if G contains no induced 3K2, P7, F1, F2, H3, net, 2P4, F8,
C6, tent ∪ K1, or Ck ∪ K1 for any k > 4.

F1 F2 H3

net F8 tent ∪ K1

For the proof, we determine explicitly all claw-free essential obstacles and
exploit our characterization for concave-round graphs (S., 2016+[a]).



{claw, 5-wheel}-free Helly circular-arc graphs

Theorem (S., 2016+[b])
There is a linear-time algorithm that, given any graph G that is not a
Helly circular-arc graph, finds an induced subgraph of G isomorphic to
claw, 5-wheel, or one of the following minimal forbidden induced
subgraphs for the class of Helly circular-arc graphs: 3K2, P7, F1, F2, H3,
net, 2P4, F8, C6, tent ∪ K1, or Ck ∪ K1 for any k > 4.

F1 F2 H3

net F8 tent ∪ K1
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