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INTRODUCTION



Objective

Characterization of graphs G, that maximize |K2(G)|.
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Definition of clique

A clique is a maximal complete induced subgraph.
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3

q1 � {1, 4}, q2 � {1, 2, 3}.
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Definition of clique graph K(G)

The clique graph K(G) of a graph G is the intersection graph of
the set of all cliques.

G
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K(G)

q1 � {1, 4}

q2 � {1, 2, 3}
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Second clique graph K2(G)

K2(G) � K(K(G)).

G
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1
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3

K(G)

q1 � {1, 4}

q2 � {1, 2, 3}

K2(G)

{q1 , q2}
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Graphs that maximize |K(G)|

The Moon-Moser graphs maximize |K(G)|.
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Complement of Moon-Moser Graph, n � |G |

G �

If n ≡ 0 (mod 3)
n
3 triangles

G �

If n ≡ 1 (mod 3)

(n − 4)
3 triangles

G �

If n ≡ 2 (mod 3)

(n − 2)
3 triangles
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Graphs that maximize |K2(G)|

It is unknown which graphs maximize |K2(G)|.
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Our conjecture for |K2(G)| (complement graph of G)

G �

If |G | is even, d �
|G |
2

I2 � K2

G � I2 + . . . + I2 (d times).
G � Od

(Od is the d-dimensional Octahedral graph).

G �

If |G | is odd, d �
n−3

2
G � I3 + Od
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BICLIQUES



A new biclique definition

Let B� {(X,Y) ∈ 2G × 2G | x ' y , for every x ∈ X and y ∈ Y}.

Define a partial order on Bby
(X1 ,Y1) 4 (X2 ,Y2) ⇔ X1 ⊆ X2 and Y1 ⊆ Y2.

A biclique (X,Y) of G is a maximal element of B.

x1

x2

xs

y1

y2

yr

X Y
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A new biclique definition

Let B� {(X,Y) ∈ 2G × 2G | x ' y , for every x ∈ X and y ∈ Y}.

Define a partial order on Bby
(X1 ,Y1) 4 (X2 ,Y2) ⇔ X1 ⊆ X2 and Y1 ⊆ Y2.

A biclique (X,Y) of G is a maximal element of B.

x5 � y5

X Y

x6 � y6

y1x1

x2

x3

y2

y3

x4 � y4
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Bicliques (examples)

P3
1

2

3

({1, 2}, {1, 2})
({2, 3}, {2, 3})
({2}, {1, 2, 3})
({1, 2, 3}, {2})
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Biclique graph

The biclique graph B(G) of G is a graph such that

# V(B(G)) � bicliques of G
# Two vertices (X1 ,Y1), (X2 ,Y2) ∈ B(G) are adjacent if and

only if:
◦ X1 ∩ X2 , �, or
◦ Y1 ∩ Y2 , �.
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Suspensions

The suspension S(G) of a graph G is defined as

S(G) � I2 + G.

G
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Suspensions

The suspension S(G) of a graph G is defined as

S(G) � I2 + G.

G S(G)
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Suspensions

The suspension S(G) of a graph G is defined as

S(G) � I2 + G.

G S(G)
x y

16



Our conjecture for |K2(G)| (suspensions)

If |G | ≥ 5, then we have suspensions in our conjecture.

G �

If |G | is even, d �
|G |
2

G � I2 + . . . + I2 (d times).
G � Od

G �

If |G | is odd, d �
n−3

2
G � I3 + Od
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Characterization of K2(S(G))

Theorem 1

K2(S(G)) � B(K(G)).
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Characterization of K2(S(G))

Theorem 2

K2(S(G)) � B(K(G)).

Sketch of the proof:

G S(G)

1

2

3

4

1

2

3

4

x y

q � {1, 2, 3} ∈ K(G) q ∪ {x} ∈ K(G)
19



Characterization of K2(S(G))

Theorem 2

K2(S(G)) � B(K(G)).

Sketch of the proof:

G S(G)
x y

1

2

3

4

1

2

3

4

q � {1, 2, 3} ∈ K(G) q ∪ {y} ∈ K(G)
19



Characterization of K2(S(G))

Theorem 3

K2(S(G)) � B(K(G)).

Sketch of the proof:

Define τ : K2(S(G)) → B(K(G)) by noting that

if Q ∈ K2(S(G)), then exists { q1 , . . . , qr} ∪ { q′1 , . . . , q
′
r} ⊆ K(G)

such that

Q �
{

q1 ∪ {x}, . . . , qr ∪ {x}
} ⋃ {

q′1 ∪ {y}, . . . , q′s ∪ {y}
}
.

Then(
{ q1 , . . . , qr}, { q′1 , . . . , q

′
r}

)
∈ B(K(G))
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The closed neighborhood of a set

Let X ⊆ G, define N : 2G → 2G as

N[X] �
{⋂

x∈X NG[x] if X , �
V(G) if X � �

N[X] = set of vertices adyacent or equal to every v ∈ X.

21
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Bicliques and the closed neighborhood of a set

N[X] = set of vertices adyacent or equal to every v ∈ X.

x1

x2

xs

y1

y2

yr

Biclique (X,Y)

X Y
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Biclique (X,Y)

X Y � N[X]
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Bicliques and the closed neighborhood of a set

N[X] = set of vertices adyacent or equal to every v ∈ X.

x1

x2

xs

y1

y2

yr

Biclique (X,Y)

X � N[Y] Y � N[X]
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Bicliques and the closed neighborhood of a set

N[X] = set of vertices adyacent or equal to every v ∈ X.

x1

x2

xs

y1

y2

yr

Biclique (X,Y) � (N[N[X]],N[X])

N[Y] � N[N[X]] Y � N[X]
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The β function

Define β : 2G → B(G) by

β(X) � (N[N[X]],N[X]).

Observation 1

β is surjective, therefore |B(G)| ≤ 2|G |.

23



GRAPHS THAT MAXIMIZE |B(G)| IF |G |
IS EVEN



Graphs that maximize |B(G)| if |G | is even

β(X) � (N[N[X]],N[X])

Theorem 4

The following statements are equivalent:

1. β is injective.

2. N[X] , N[X′] for all X,X′ ⊆ G with X , X′.
3. N[G − x] , N[G] for all x ∈ G.
4. For all x ∈ G, there is some y ∈ G such that

x ; y and y ' z for all z ∈ G − x.
5. n � |G | is even and G � Od for d �

n
2 .

25
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Graphs that maximize |B(G)| if |G | is even, (4)⇒ (5)

For all x ∈ G, there is some y ∈ G such that
x ; y and y ' z for all z ∈ G − x.

x

G
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Graphs that maximize |B(G)| if |G | is even, (4)⇒ (5)

For all x ∈ G, there is some y ∈ G such that
x ; y and y ' z for all z ∈ G − x.

x

y G − x − y
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Graphs that maximize |B(G)| if |G | is even, (4)⇒ (5)

For all x ∈ G, there is some y ∈ G such that
x ; y and y ' z for all z ∈ G − x.

x

G � I2 + (G − x − y)

y G − x − y
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Graphs that maximize |B(G)| if |G | is even, (4)⇒ (5)

For all x ∈ G, there is some y ∈ G such that
x ; y and y ' z for all z ∈ G − x.

G � I2 + · · · + I2 (d �
|G |
2 times)

G � Od

y G − x − y

26



Graphs that maximize |B(G)| if |G | is even, (5)⇒ (1)

n � |G | is even and G � Od for d �
n
2 .

z

w

X1

X2

X1,X2 ⊆ V(G)

X1 , X2

N[w] � G − z

w ∈ N[X2], w < N[X1]

N[X2] , N[X1]
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GRAPHS THAT MAXIMIZE |B(G)| IF |G |
IS ODD



The circle product

The circle product is defined as

G ◦ H � G × H .

Note that if (g1 , h1), (g2 , h2) ∈ G ◦ H, then:

(g1 , h1) ' (g2 , h2) ⇔ g1 ' g2 in G or h1 ' h2 in H

29
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Biclique graph of the circle product

Theorem 5

For any graphs G and H, we have: B(G + H) � B(G) ◦ B(H).

Sketch of the proof:

Define φ : B(G + H) → B(G) ◦ B(H) by

φ((G1 ∪ H1 ,G2 ∪ H2)) � ((G1 ,G2), (H1 ,H2))

30
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Bicliques

Lemma 1
Number of bicliques for some basic graph families:

# |B(Kn)| � 1.
# |B(In)| � n + 2, for n ≥ 2.
# |B(Pn)| � 3n − 3, for n ≥ 4.
# |B(Cn)| � 3n + 2, for n ≥ 5.

Exceptional cases:

# |B(P3)| � 4
# |B(C3)| � 1
# |B(C4)| � 16

31



Graphs that maximize |B(G)| if |G | is odd

Lemma 2

Let n � 2d + 3 � |I3 + Od |, then |B(I3 + Od)| � 5
8 · 2n

Proof.
By Theorem 5,

B(I3 + Od) � B(I3) ◦ B(Od),

hence

|B(I3 + Od)| � |B(I3) ◦ B(Od)| � |B(I3)| · |B(Od)|

� 5 · 22d
�

5
8 · 2

n .

�

32



Graphs that maximize |B(G)| if |G | is odd

Lemma 2

Let n � 2d + 3 � |I3 + Od |, then |B(I3 + Od)| � 5
8 · 2n

Proof.
By Theorem 5,

B(I3 + Od) � B(I3) ◦ B(Od),

hence

|B(I3 + Od)| � |B(I3) ◦ B(Od)| � |B(I3)| · |B(Od)|

� 5 · 22d
�

5
8 · 2

n .

�
32



Graphs that maximize |B(G)| if |G | is odd

Theorem 6

Let G be a graph of order n > 1, maximizing |B(G)|. Then,

# if n � 2d, we have that G � Od ;
# otherwise, n � 2d + 3 and G � I3 + Od .

33



Graphs that maximize |B(G)| if |G | is odd

Sketch of the proof if |G | � n � 2d + 3.

Lemma 3
G can not have twin vertices (i.e. N[x] , N[y] for all x , y ∈ G)
nor universal vertices (i.e. N[x] , G for all x ∈ G).

Lemma 4

If G has a vertex of degree r, then |B(G)| ≤ 2n(12 +
1
2r ). Hence

∆(G) ≤ 3.
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Lemma 5

If G has a vertex of degree 3, then |B(G)| ≤ 5
8 · 2n − 1. Hence

∆(G) ≤ 2 and G is the disjoint union of cycles and paths.

It follows that

G � Pn1 + Pn2 + · · · + Pnr + Cm1 + Cm2 + · · · + Cms .

Lemma 6
The number of bicliques of the complements of paths satisfies:

1. |B(P2)| � 4 � 22

2. |B(Pn)| < 5
8 · 2n for n ≥ 3.
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Lemma 7
The number of bicliques of the complements of cycles satisfies:

1. |B(C3)| � 5 �
5
8 · 23.

2. |B(Cn)| < 5
8 · 2n for n ≥ 4.

Since I2 � P2, I3 � C3 and Od � I2 + I2 + · · · + I2 (d times), it
follows by the previous lemmas and by Theorem 5 that
G � I3 + Od , as claimed in Theorem 6.
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Graphs that maximizes |B(G)|

G �

If |G | is even, d �
|G |
2

G � I2 + . . . + I2 (d times).
G � Od

G �

If |G | is odd, d �
n−3

2
G � I3 + Od

Remember that K2(S(G)) � B(K(G)).
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Questions?
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