ON CLIQUES AND BICLIQUES LAGOS 2017

M.A. Pizaña 1 I.A. Robles 2

^{1,2}Universidad Autónoma Metropolitana. México.

INTRODUCTION

Characterization of graphs *G*, that **maximize** $|K^2(G)|$.

Definition of clique

A clique is a maximal complete induced subgraph.

 $q_1=\{1,4\}, \quad q_2=\{1,2,3\}.$

The clique graph K(G) of a graph G is the intersection graph of the set of all cliques.

Second clique graph $K^2(G)$

 $K^2(G) = K(K(G)).$ $K^2(G)$ K(G)G 4 $q_1 = \{1, 4\}$ $\{q_1, q_2\}$ $q_2 = \{1, 2, 3\}$ 3 2

The **Moon-Moser** graphs **maximize** |K(G)|.

Complement of Moon-Moser Graph, n = |G|

Complement of Moon-Moser Graph, n = |G|

Complement of Moon-Moser Graph, n = |G|

It is **unknown** which graphs **maximize** $|K^2(G)|$.

Our conjecture for $|K^2(G)|$ (complement graph of G)

(O_d is the *d*-dimensional Octahedral graph).

Our conjecture for $|K^2(G)|$ (complement graph of G)

(O_d is the *d*-dimensional Octahedral graph).

BICLIQUES

Let $\mathfrak{B} = \{(X, Y) \in 2^G \times 2^G \mid x \simeq y, \text{ for every } x \in X \text{ and } y \in Y\}.$

Let $\mathfrak{B} = \{(X, Y) \in 2^G \times 2^G \mid x \simeq y, \text{ for every } x \in X \text{ and } y \in Y\}.$

Define a partial order on \mathfrak{B} by $(X_1, Y_1) \leq (X_2, Y_2) \Leftrightarrow X_1 \subseteq X_2$ and $Y_1 \subseteq Y_2$.

Let $\mathscr{B} = \{(X, Y) \in 2^G \times 2^G \mid x \simeq y, \text{ for every } x \in X \text{ and } y \in Y\}.$

Define a partial order on \mathfrak{B} by $(X_1, Y_1) \leq (X_2, Y_2) \Leftrightarrow X_1 \subseteq X_2$ and $Y_1 \subseteq Y_2$.

A *biclique* (X, Y) of *G* is a maximal element of \mathfrak{B} .

Let $\mathscr{B} = \{(X, Y) \in 2^G \times 2^G \mid x \simeq y, \text{ for every } x \in X \text{ and } y \in Y\}.$

Define a partial order on \mathscr{B} by $(X_1, Y_1) \leq (X_2, Y_2) \Leftrightarrow X_1 \subseteq X_2 \text{ and } Y_1 \subseteq Y_2.$

A *biclique* (X, Y) of *G* is a maximal element of \mathfrak{B} .

Let $\mathscr{B} = \{(X, Y) \in 2^G \times 2^G \mid x \simeq y, \text{ for every } x \in X \text{ and } y \in Y\}.$

Define a partial order on \mathscr{B} by $(X_1, Y_1) \leq (X_2, Y_2) \Leftrightarrow X_1 \subseteq X_2 \text{ and } Y_1 \subseteq Y_2.$

A *biclique* (X, Y) of *G* is a maximal element of \mathfrak{B} .

Let $\mathscr{B} = \{(X, Y) \in 2^G \times 2^G \mid x \simeq y, \text{ for every } x \in X \text{ and } y \in Y\}.$

Define a partial order on \mathscr{B} by $(X_1, Y_1) \leq (X_2, Y_2) \Leftrightarrow X_1 \subseteq X_2 \text{ and } Y_1 \subseteq Y_2.$

A *biclique* (X, Y) of *G* is a maximal element of \mathcal{B} .

13

Bicliques (examples)

The *biclique graph* B(G) of G is a graph such that

- \bigcirc *V*(*B*(*G*)) = bicliques of *G*
- Two vertices $(X_1, Y_1), (X_2, Y_2) \in B(G)$ are adjacent if and only if:
 - $X_1 \cap X_2 \neq \emptyset$, or
 - $Y_1 \cap Y_2 \neq \emptyset$.

The suspension S(G) of a graph G is defined as

 $S(G) = I_2 + G.$

The suspension S(G) of a graph G is defined as

 $S(G) = I_2 + G.$

The suspension S(G) of a graph G is defined as

 $S(G) = I_2 + G.$

Our conjecture for $|K^2(G)|$ (suspensions)

If $|G| \ge 5$, then we have suspensions in our conjecture.

Characterization of $K^2(S(\overline{G}))$

Theorem 1

 $K^2(S(G))\cong B(K(G)).$

Theorem 2

 $K^2(S(G))\cong B(K(G)).$

Sketch of the proof:

Theorem 2

 $K^2(S(G))\cong B(K(G)).$

Sketch of the proof:

Theorem 3

 $K^2(S(G))\cong B(K(G)).$

Sketch of the proof:

Define $\tau : K^2(S(G)) \to B(K(G))$ by noting that

Theorem 3

 $K^2(S(G))\cong B(K(G)).$

Sketch of the proof:

Define $\tau : K^2(S(G)) \to B(K(G))$ by noting that

if $Q \in K^2(S(G))$, then exists $\{q_1, \ldots, q_r\} \cup \{q'_1, \ldots, q'_r\} \subseteq K(G)$ such that

Theorem 3

 $K^2(S(G))\cong B(K(G)).$

Sketch of the proof: Define $\tau : K^2(S(G)) \to B(K(G))$ by noting that if $Q \in K^2(S(G))$, then exists $\{q_1, \dots, q_r\} \cup \{q'_1, \dots, q'_r\} \subseteq K(G)$ such that

 $Q = \{q_1 \cup \{x\}, \ldots, q_r \cup \{x\}\} \cup \{q'_1 \cup \{y\}, \ldots, q'_s \cup \{y\}\}.$

Theorem 3

 $K^2(S(G))\cong B(K(G)).$

Sketch of the proof:

Define $\tau : K^2(S(G)) \to B(K(G))$ by noting that

if $Q \in K^2(S(G))$, then exists $\{q_1, \dots, q_r\} \cup \{q'_1, \dots, q'_r\} \subseteq K(G)$ such that

 $Q = \{q_1 \cup \{x\}, \dots, q_r \cup \{x\}\} \cup \{q'_1 \cup \{y\}, \dots, q'_s \cup \{y\}\}.$ Then

 $(\{q_1,\ldots,q_r\}, \{q'_1,\ldots,q'_r\}) \in B(K(G))$

The closed neighborhood of a set

Let $X \subseteq G$, define $N : 2^G \to 2^G$ as

Let $X \subseteq G$, define $N : 2^G \to 2^G$ as

$$N[X] = \begin{cases} \bigcap_{x \in X} N_G[x] & \text{if } X \neq \emptyset \\ V(G) & \text{if } X = \emptyset \end{cases}$$

Let $X \subseteq G$, define $N : 2^G \to 2^G$ as

$$N[X] = \begin{cases} \bigcap_{x \in X} N_G[x] & \text{if } X \neq \emptyset \\ V(G) & \text{if } X = \emptyset \end{cases}$$

N[X] = set of vertices adjacent or equal to every $v \in X$.
N[X] = set of vertices adjacent or equal to every $v \in X$.

Biclique (X, Y)

N[X] = set of vertices adjacent or equal to every $v \in X$.

Biclique (X, Y)

N[X] = set of vertices adjacent or equal to every $v \in X$.

Biclique (X, Y)

N[X] = set of vertices adjacent or equal to every $v \in X$.

Biclique (X, Y) = (N[N[X]], N[X])

Define $\beta : 2^G \to B(G)$ by $\beta(X) = (N[N[X]], N[X]).$

Observation 1

 β is surjective, therefore $|B(G)| \leq 2^{|G|}$.

GRAPHS THAT MAXIMIZE |B(G)| IF |G| IS EVEN

$\beta(X) = (N[N[X]], N[X])$

Theorem 4

The following statements are equivalent:

1. β is injective.

 $\beta(X) = (N[N[X]], N[X])$

Theorem 4

- 1. β is injective.
- **2.** $N[X] \neq N[X']$ for all $X, X' \subseteq G$ with $X \neq X'$.

$\beta(X) = (N[N[X]], N[X])$

Theorem 4

- 1. β is injective.
- **2.** $N[X] \neq N[X']$ for all $X, X' \subseteq G$ with $X \neq X'$.
- 3. $N[G x] \neq N[G]$ for all $x \in G$.

$\beta(X) = (N[N[X]], N[X])$

Theorem 4

- 1. β is injective.
- **2.** $N[X] \neq N[X']$ for all $X, X' \subseteq G$ with $X \neq X'$.
- 3. $N[G x] \neq N[G]$ for all $x \in G$.
- 4. For all $x \in G$, there is some $y \in G$ such that $x \neq y$ and $y \simeq z$ for all $z \in G x$.

$\beta(X) = (N[N[X]], N[X])$

Theorem 4

- 1. β is injective.
- **2.** $N[X] \neq N[X']$ for all $X, X' \subseteq G$ with $X \neq X'$.
- 3. $N[G x] \neq N[G]$ for all $x \in G$.
- 4. For all $x \in G$, there is some $y \in G$ such that $x \neq y$ and $y \simeq z$ for all $z \in G x$.
- 5. n = |G| is even and $G \cong O_d$ for $d = \frac{n}{2}$.

For all $x \in G$, there is some $y \in G$ such that $x \neq y$ and $y \simeq z$ for all $z \in G - x$.

 $G \cong I_2 + (G - x - y)$

$$G \cong I_2 + \dots + I_2 \ (d = \frac{|G|}{2} \text{ times})$$

 $G \cong O_d$

$$n = |G|$$
 is even and $G \cong O_d$ for $d = \frac{n}{2}$.

GRAPHS THAT MAXIMIZE |B(G)| if |G| is odd

The *circle product* is defined as

 $G \circ H = \overline{\overline{G} \times \overline{H}}.$

The *circle product* is defined as

 $G \circ H = \overline{\overline{G} \times \overline{H}}.$

Note that if $(g_1, h_1), (g_2, h_2) \in G \circ H$, then:

 $(g_1, h_1) \simeq (g_2, h_2) \Leftrightarrow g_1 \simeq g_2$ in *G* or $h_1 \simeq h_2$ in *H*

Theorem 5

For any graphs G and H, we have: $B(G + H) \cong B(G) \circ B(H)$.

Sketch of the proof:

Define $\phi : B(G + H) \rightarrow B(G) \circ B(H)$ by

Theorem 5

For any graphs G and H, we have: $B(G + H) \cong B(G) \circ B(H)$.

Sketch of the proof:

Define $\phi : B(G + H) \rightarrow B(G) \circ B(H)$ by

 $\phi((G_1 \cup H_1, G_2 \cup H_2)) = ((G_1, G_2), (H_1, H_2))$

Bicliques

Lemma 1

Number of bicliques for some basic graph families:

○
$$|B(K_n)| = 1.$$

○ $|B(I_n)| = n + 2$, for $n \ge 2$.
○ $|B(P_n)| = 3n - 3$, for $n \ge 4$.
○ $|B(C_n)| = 3n + 2$, for $n \ge 5$.

Exceptional cases:

○
$$|B(P_3)| = 4$$

○ $|B(C_3)| = 1$
○ $|B(C_4)| = 16$

Lemma 2

Let
$$n = 2d + 3 = |I_3 + O_d|$$
, then $|B(I_3 + O_d)| = \frac{5}{8} \cdot 2^n$

Lemma 2

Let
$$n = 2d + 3 = |I_3 + O_d|$$
, then $|B(I_3 + O_d)| = \frac{5}{8} \cdot 2^n$

Proof.

By Theorem 5,

$$B(I_3 + O_d) \cong B(I_3) \circ B(O_d),$$

hence

$$|B(I_3 + O_d)| = |B(I_3) \circ B(O_d)| = |B(I_3)| \cdot |B(O_d)|$$
$$= 5 \cdot 2^{2d} = \frac{5}{8} \cdot 2^n.$$

Theorem 6

Let G be a graph of order n > 1*, maximizing* |B(G)|*. Then,*

$$\bigcirc$$
 if $n = 2d$, we have that $G \cong O_d$;

$$\bigcirc$$
 otherwise, $n = 2d + 3$ and $G \cong I_3 + O_d$.

Sketch of the proof if |G| = n = 2d + 3.

Lemma 3

G can not have twin vertices (i.e. $N[x] \neq N[y]$ for all $x, y \in G$) nor universal vertices (i.e. $N[x] \neq G$ for all $x \in G$).

Lemma 4

If \overline{G} has a vertex of degree r, then $|B(G)| \le 2^n(\frac{1}{2} + \frac{1}{2^r})$. Hence $\Delta(\overline{G}) \le 3$.

Lemma 5

If \overline{G} has a vertex of degree 3, then $|B(G)| \leq \frac{5}{8} \cdot 2^n - 1$. Hence $\Delta(\overline{G}) \leq 2$ and \overline{G} is the disjoint union of cycles and paths.

It follows that

$$G = \overline{P}_{n_1} + \overline{P}_{n_2} + \dots + \overline{P}_{n_r} + \overline{C}_{m_1} + \overline{C}_{m_2} + \dots + \overline{C}_{m_s}.$$

Lemma 6

The number of bicliques of the complements of paths satisfies:

1.
$$|B(\overline{P_2})| = 4 = 2^2$$

2.
$$|B(\overline{P_n})| < \frac{5}{8} \cdot 2^n$$
 for $n \ge 3$.

Lemma 7

The number of bicliques of the complements of cycles satisfies:

1.
$$|B(\overline{C_3})| = 5 = \frac{5}{8} \cdot 2^3$$
.
2. $|B(\overline{C_n})| < \frac{5}{8} \cdot 2^n$ for $n \ge 4$.

Since $I_2 = \overline{P}_2$, $I_3 = \overline{C}_3$ and $O_d = I_2 + I_2 + \cdots + I_2$ (*d* times), it follows by the previous lemmas and by Theorem 5 that $G \cong I_3 + O_d$, as claimed in Theorem 6.

Graphs that maximizes |B(G)|

Graphs that maximizes |B(G)|

Remember that $K^2(S(G)) \cong B(K(G))$.

Questions?