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Conjecture [Dourado, Protti and Szwarcfiter]
Every clique-Helly graph G (the family of maximal cliques of the
graph satisfies the Helly property) contains a vertex v such that
G − v is a clique-Helly graph.

Journal of the Brazilian Computer Society . 2006, Vol. 12, Issue 1, pp
7–33 Computational aspects of the Helly property: a survey
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A complete set of G is a subset of V (G) inducing a complete
subgraph. A clique is a maximal complete set (with respect to
the inclusion relation).

complete clique
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A set family F satisfies the Helly property if the intersection of
all the members of any pairwise intersecting subfamily of F is
non-empty. When the cliques family of G, C(G), satisfies the
Helly property, we say that G is a clique-Helly graph.

Not clique-Helly graph Clique-Helly graph
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The way we will build a counterexample to the conjecture:

Icosahedron

⇓

Icosahedron × K3 (tensor product)

⇓

K (Icosahedron × K3) (clique graph)
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Icosahedron

The icosahedron I is one of the platonic graphs.
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Icosahedron

* Every vertex has degree 5.
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Icosahedron

* The open neighborhood of each vertex induces a C5.
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Icosahedron

* The cliques are all triangles.
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Icosahedron

* Every vertex is in exactly 5 cliques.
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The tensor product I × K3

The tensor product P = I × K3 is the graph with:

- vertices (i , j) where i ∈ V (I) and j ∈ V (K3) and
- two vertices (i , j) and (i ′, j ′) adjacent in P if and only if

i is adjacent to i ′ in I and
j is adjacent to j ′ in K3.
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The tensor product I × K3

* Every vertex of P has degree 10.
* The open neighborhood of each vertex of P induces a C10.
* The cliques of P are triangles {(i ,1), (j ,2), (k ,3)} for
{i , j , k} any triangle of I.

* Every vertex of P is in exactly ten cliques.
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The clique graph K (I × K3)

The clique graph of I × K3 is the intersection graph of the
cliques family of I × K3.

It has 120 vertices.....

A example of clique graph

K(G)
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Main result of this work

Theorem
The graph G = K (I × K3) is clique-Helly and for each v ∈ G,
G − v is not clique-Helly .

Those graphs satisfying the conditions of the theorem are
called critical clique-Helly.
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K (I × K3) is clique-Helly

To prove this we will use

Theorem (Larrión, Neumann-Lara, Pizaña)

If the local girth of the graph G is greater than 6 (i.e. lg(G) ≥ 7)
then K (G) is clique-Helly.

The local girth of G at a vertex v ∈ V (G) is the length of a
shortest chordless cycle of the subgraph induced by the open
neighborhood of v in G.
And the local girth of G is the minimum of the local girth at all
the vertices v .
As we saw in the properties of P the open neighborhood of
each vertex induces a C10
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K (I × K3)− v is not clique-Helly for all
v ∈ V (K (I × K3))

- Every vertex v of G = K (I × K3) represents a clique Qv of
I × K3, say Qv = {x , y , z}.

- Each of these vertices is the center of a 10-wheel.
- Each pair of those wheels have two triangles in common.
- And the total intersection between them is Qv .
- So, if we remove v of G the corresponding cliques of the

wheels are pairwise intersecting with empty total
intersection.
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Future work

Show that there is an infinite family of critical clique-Helly
graphs.
Show that there is an infinite family of critical clique-Helly
self clique graphs.
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Thank you!
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